首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
抱茎独行菜(Lepidium perfoliatum L.)为十字花科具典型粘液质繁殖体植物,而TTG1基因(Transpa-rent testa glabra 1)所编码的蛋白是调控种皮细胞分化并影响粘液质释放的转录因子。目前关于TTG1基因在粘液质繁殖体植物中的研究报道较少,为探究TTG1基因在抱茎独行菜粘液质发育中的作用,本研究利用同源克隆技术获得抱茎独行菜TTG1基因cDNA开放阅读框(ORF)序列,命名为LpTTG1。序列分析表明,该基因ORF全长为1032 bp,编码343个氨基酸,含有WD40基序;qRT-PCR分析结果显示,该基因在抱茎独行菜各组织中均有表达,反映了该基因功能的多样性;免疫组织化学定位结果表明,LpTTG1在种子发育过程中内珠被和外珠被的表达水平变化与外珠被粘液质的合成过程相一致,推测该基因可能参与调控抱茎独行菜种皮的发育及粘液质的形成。将LpTTG1基因转化拟南芥,该基因的过量表达显著促进了粘液质合成途径下游基因AtMUM4在角果中的表达,表明该基因有可能参与粘液质合成途径调控,并促进下游产物MUM4的产生。然而,对LpTTG1转基因拟南芥与野生型植株表型的比较发现,两者种子形态及粘液质分泌与释放方式均无显著差异,这可能是因为抱茎独行菜种皮发育和粘液质形成是一个多基因调控的复杂过程,某一基因的过量表达也许不会引起明显的表型变化。  相似文献   

2.
新疆北部早春短命植物独行菜幼苗期能够在早春的低温条件下生长,具有良好的耐受低温胁迫的能力。前期研究获得了独行菜幼苗冷诱导上调表达基因片段,通过同源克隆获得该基因的全长cDNA序列(LaNHR2B),运用生物信息学软件预测分析该基因编码蛋白的性质及其构象,采用荧光定量RT PCR技术分析其表达量与幼苗生长阶段、冷诱导处理以及外源ABA处理间的关系,通过转化拟南芥研究过表达该基因对植物幼苗低温耐受性的影响。结果表明:(1)LaNHR2B基因全长1 035 bp,编码344个氨基酸,蛋白质分子质量为85 791.16 kD,理论等电点为5.06,分子式为C3129H5225N1035O1307S235;其蛋白主要由丙氨酸、苏氨酸、甘氨酸及半胱氨酸组成,具有3个跨膜结构,功能未知;在十字花科植物中保守性强,其他科的植物中未见同源基因。(2)LaNHR2B受4 ℃低温诱导显著上调表达,但随幼苗生长受低温诱导上调表达有所降低,与幼苗随发育耐受低温能力下降变化一致。(3)外源ABA可诱导LaNHR2B表达上调;过表达拟南芥幼苗低温耐受性明显增强。该研究初步证明,LaNHR2B表达量与独行菜幼苗耐受低温密切相关,可能是独行菜幼苗经过冷驯化后能够增强植株抗寒能力的功能性基因。这为进一步开发利用该基因进行油菜等作物抗寒育种提供理论依据。  相似文献   

3.
以枸杞品种‘宁杞1号’花药为材料,采用 RT-PCR技术,分离了R2R3类MYB基因LbMYB103包含完整开放阅读框(ORF)的cDNA片段,碱基序列与已知基因HQ415755完全一致。运用Gateway技术构建LbMYB103基因植物过表达载体pMDC83-LbMYB103,利用基因枪法将融合有绿色荧光蛋白(GFP)的过表达载体转入洋葱表皮细胞,将LbMYB103基因定位在细胞核。实时荧光定量PCR分析发现,LbMYB103基因在花药中优势表达,果实中表达量较低,在根、茎和叶中均未检测到其转录本,推测LbMYB103基因可能在花药发育过程中起重要作用。通过根癌农杆菌介导法将pMDC83-LbMYB103转入拟南芥(Col-0),经筛选获得T1代抗性再生植株52棵,PCR鉴定有41棵阳性植株,收获T1代种子,经抗性筛选获得T2代抗性植株29棵,PCR鉴定有23棵阳性植株。实时荧光定量PCR分析表明,LbMYB103在拟南芥植株的基因组中正常表达。表型观察发现T1和T2代拟南芥花药发育异常,花发育迟缓,果荚短小无种子,进一步表明LbMYB103可能与植物的育性有关。该结果为进一步开展枸杞遗传转化,深入研究LbMYB103基因在枸杞花药发育过程中可能发挥的调控功能奠定了基础。  相似文献   

4.
该研究利用海岛棉‘新海21’和陆地棉ND203以及模式植物拟南芥,通过转基因及荧光定量检测等方法探究海岛棉GbHCT13基因(GenBank 登录号MW048849)在纤维发育中的功能。结果显示:(1)成功构建重组载体pCAMBIA3301 GbHCT13,经农杆菌介导法转化、除草剂抗性基因筛选、荧光定量检测方法鉴定获得转GbHCT13基因拟南芥T3代植株4株;qRT PCR检测表明,转基因植株中GbHCT13基因表达量较野生型极显著增加。(2)转基因拟南芥过表达GbHCT13基因使植株同一时期的生长较野生型旺盛,株形、叶片数、抽薹数和茎秆表皮毛数量均与野生型存在差异;组织化学分析发现,转GbHCT13基因的拟南芥较野生型茎秆初生木质部生长活跃,导管增粗,次生木质部导管细胞壁横截面积变大,但髓质细胞无明显变化;过表达GbHCT13使拟南芥中木质素合成途径基因发生不同程度改变,其中CADCCoAOMTPAL和4CLGbHCT13基因的表达呈正相关。(3)经大田筛选、分子鉴定,成功获得转GbHCT13基因棉花植株3株;转GbHCT13基因棉花的棉纤维伸长率增加,纤维强度增大;沉默GbHCT13基因使棉花植株木质素含量降低,茎秆表皮毛数量减少,木质部导管细胞数量减少,导管细胞壁中木质素沉积量降低,而棉株并未发生株高上的明显矮化现象,且木质素合成通路中的CADCCoAOMTCCRPAL 4个基因的表达均呈降低趋势,说明抑制GbHCT13使得棉花生长代谢受阻,影响纤维发育起始。研究表明,GbHCT13基因能影响棉花植株中木质素合成从而调控纤维的生长发育,其功能与GbHCT13基因在模式植物拟南芥中的基本一致。  相似文献   

5.
以三倍体枇杷(Eriobotrya japonica) ‘华玉无核1号’的花芽为材料,采用基因克隆技术获得EjAGL6基因,分析其序列、亚细胞定位特性以及在二倍体和三倍体枇杷早晚花品种中的表达水平。采用花序浸染转化拟南芥,并利用实时荧光定量PCR分析转基因拟南芥植株的EjAGL6基因表达量,进一步观察野生型与EjAGL6转基因拟南芥的表型差异,分析EjAGL6基因的功能,为解析EjAGL6基因参与三倍体枇杷花期调控机制提供理论依据。结果显示:(1)成功获得MADS box基因EjAGL6;该基因的编码区序列(CDS)为732 bp,编码243个氨基酸,分子质量为27.88 kD,等电点为 9.05,脂溶指数为 79.05;系统进化树分析表明,枇杷EjAGL6与苹果MdAGL6蛋白质的相似性较高,聚在同一分支。(2)蛋白序列比对发现,EjAGL6的M区有57个氨基酸,I区有30个氨基酸,K区有82个氨基酸,C区有74个氨基酸,其中C区包含高度保守的AGL6基序Ⅰ和AGL6基序Ⅱ。(3)亚细胞定位分析表明,EjAGL6蛋白定位在细胞核,具有典型的MADS box转录因子亚细胞定位特性。(4)实时荧光定量PCR分析表明,EjAGL6基因在二倍体和三倍体枇杷早、晚花品种中均有表达,主要集中于小花分化期(S6)、花蕾露白期(S7)和盛花期(S8),且EjAGL6基因在二倍体和三倍体早花品种中的花蕾露白期的表达量均较高。(5) 转基因拟南芥株系的EjAGL6基因表达量显著高于野生型拟南芥;转EjAGL6基因植株表型观察显示,EjAGL6基因在拟南芥中过量表达能够使转EjAGL6基因拟南芥的开花时间提前1周左右。研究认为,EjAGL6基因可促使枇杷开花时间提前,推测EjAGL6基因在花蕾露白期发挥调控花期的关键作用。  相似文献   

6.
原卟啉原氧化酶(Protoporphyrinogen oxidase, PPOX1) 是叶绿素生物合成途径中的关键酶,为深入探究苹果PPOX1基因的功能,该研究以苹果砧木垂丝海棠(Malus halliana)为试材,采用PCR方法,克隆MhPPOX1基因,并进行生物信息学分析及功能鉴定;采用农杆菌介导法转化烟草和拟南芥,进一步分析MhPPOX1在缺铁胁迫中的功能,并对转基因烟草与拟南芥进行抗性分析。结果表明:(1)成功克隆获得 垂丝海棠MhPPOX1基因片段,经序列比对鉴定为苹果的 MhPPOX1基因(序列号:LOC103444480)。MhPPOX1基因的开放阅读框为1 644 bp,编码547个氨基酸,等电点为8.98;系统进化树分析表明,苹果属垂丝海棠MhPPOX1与白梨该家族蛋白的亲缘关系最近。(2)成功克隆获得垂丝海棠MhPPOX1启动子序列片段(2 016 bp),对该启动子顺式作用元件预测结果显示,MhPPOX1启动子序列中存在干旱、低温、光、生长素以及与叶绿素相关等响应元件。(3)成功构建过表达载体 MhPPOX1 pRI101,并成功获得转MhPPOX1基因烟草和拟南芥。(4)qRT PCR分析表明,垂丝海棠幼苗在缺铁( Fe)胁迫下植株叶片黄化枯死,且MhPPOX1基因表达量较对照显著升高;转MhPPOX1基因烟草和拟南芥在缺铁胁迫中与野生型相比均生长良好,不易黄化,且缺铁条件下转基因拟南芥和烟草的叶绿素a、叶绿素b总量以及总铁含量明显高于野生型植株,表明MhPPOX1基因过量表达提高了拟南芥和烟草对缺铁胁迫的抗性。研究认为,MhPPOX1基因在植物抵抗缺铁胁迫中可能发挥重要作用。  相似文献   

7.
为深入探究叶原基分化成叶器官的形态建成机制,该研究以北美鹅掌楸为材料,采用RT-PCR和RACE克隆技术获得LtAGO1的cDNA全长和启动子序列并预测其功能,通过RT-qPCR分析LtAGO1在鹅掌楸属中的组织表达模式。同时,经抗性筛选和DNA鉴定获得ProAGO1 ∷ GUS的转基因拟南芥株系,并进一步对T2代阳性植株进行表型和GUS组织化学染色分析。结果表明:(1) LtAGO1基因包含3 300 bp的开放阅读框,编码1 100个氨基酸,分子量为122.14 kD,理论等电点(pI)为9.36。(2)氨基酸序列分析显示LtAGO1含Gly-rich-AGO1和Piwi两个典型的AGO基因结构域,同源性分析显示LtAGO1蛋白与沉水樟AGO1蛋白(RWR84608.1)亲缘关系最近。(3)组织表达特异性分析显示LtAGO1在北美鹅掌楸不同组织间的相对表达量为雄蕊>花芽>花瓣>花萼>叶片>雌蕊>叶芽>茎,LtAGO1在北美鹅掌楸叶片不同发育阶段的相对表达量为叶芽萌动期>幼叶期>衰老期>成熟期,AGO1在鹅掌楸属叶缘的表达量高于叶片的其他部位且北美鹅掌楸叶凹陷部位的表达量高于叶尖部位。(4)获得叶中-侧轴向和基-顶轴向的极性缺失、叶缘锯齿、重瓣花型的转化株系,GUS组织染色显示ProAGO1启动GUS基因在叶芽顶端稳定表达且在新分化的叶柄上表达较强,在成熟期的茎、叶、花和果的维管束中均特异表达。LtAGO1启动子的GUS活性强度为叶顶芽>花>维管束,这与实时定量PCR结果相一致。综上认为,LtAGO1基因在顶端分生组织特异表达且受到多种途径的调控而参与到叶和花器官的发育进程中。该研究结果为进一步了解北美鹅掌楸LtAGO1基因的基本功能及其调控叶形发育机制提供了理论基础。  相似文献   

8.
为了深入探究忽地笑(Lycoris aurea)组蛋白赖氨酸甲基转移酶(histone lysine methyltransferase, HKMT)基因的功能,该研究根据前期转录组测序结果,采用RT PCR方法克隆得到一个组蛋白赖氨酸甲基转移酶基因LaSUVH1。序列分结果表明, LaSUVH1基因的编码区(coding sequences, CDs)序列长2 007 bp,编码668个氨基酸残基;LaSUVH1蛋白不具有信号肽结构,无跨膜结构,为亲水性蛋白,含有SET、YDG/SRA、Pre SET和Post SET结构域;序列比对和系统进化树分析发现,LaSUVH1与芦笋AoSUVH1 like蛋白亲缘关系最近。实时荧光定量PCR分析表明,LaSUVH1基因在忽地笑不同组织部位均有表达,且在叶中表达量最高。经潮霉素筛选成功获得3个反义过表达LaSUVH1的转基因拟南芥株系。进一步功能分析发现,反义过表达LaSUVH1促进了拟南芥幼苗侧根的发生,降低了拟南芥对NaCl的耐受性,增加了拟南芥种子萌发对脱落酸(ABA)的敏感性,表明LaSUVH1基因响应盐胁迫应答可能依赖ABA信号通路。  相似文献   

9.
该研究从甘蓝型油菜中克隆获得了二酰甘油酰基转移酶基因(DGAT),命名为BnDGAT1,并对该基因编码的氨基酸序列、蛋白结构域和系统进化树进行分析。结果表明:该基因编码的氨基酸序列包含二酰甘油酰基转移酶等多个功能结构域,并具有8个疏水跨膜结构区。系统进化分析表明,BnDGAT1与芥菜、拟南芥、旱金莲中DGAT1系统进化关系相对较近。利用定量PCR对BnDGAT1基因的RNA转录表达分析表明,在不同组织和角果的不同发育阶段,BnDGAT1基因的表达具有组织特异性,且在角果不同发育阶段,其RNA转录水平随着角果发育的成熟表达明显下调。  相似文献   

10.
SVP (SHORT VEGETATIVE PHASE)是MADS box家族一员,它能够整合多条开花途径的开花信号,调节植物由营养生长向生殖生长的转变。为了解梅花(Prunus mume Sieb. et Zucc.)成花转变过程的分子机理,该研究采用RT PCR方法从梅花‘长蕊绿萼’中克隆到2个SVP的同源基因,分别命名为PmSVP1和PmSVP2,并采用荧光定量PCR对2个基因的表达模式进行分析。序列分析表明,PmSVP1和PmSVP2的编码区长度分别为687 和672 bp,分别编码228和223氨基酸。系统进化结果显示,PmSVP1与拟南芥AtSVP以及一些木本植物SVP同源基因聚为一组,PmSVP2与马铃薯、乳浆大戟等草本植物中的SVP同源基因聚为一组。实时荧光定量分析表明,在成年梅花中,2个PmSVP基因主要在茎、叶和叶芽等营养器官中表达,且都在叶中表达量最高。在1月龄幼苗中,PmSVP1基因在根、茎、叶中都有表达,PmSVP2基因则没有任何表达;在梅花花芽分化过程中,PmSVP1和PmSVP2基因的表达量均呈现下调表达的趋势。研究推测,PmSVP1和PmSVP2基因可能参与调控梅花从营养生长向生殖生长的转变。  相似文献   

11.
In Arabidopsis, fertilization induces the epidermal cells of the outer ovule integument to differentiate into a specialized seed coat cell type producing extracellular pectinaceous mucilage and a volcano-shaped secondary cell wall. Differentiation involves a regulated series of cytological events including growth, cytoplasmic rearrangement, mucilage synthesis, and secondary cell wall production. We have tested the potential of Arabidopsis seed coat epidermal cells as a model system for the genetic analysis of these processes. A screen for mutants defective in seed mucilage identified five novel genes (MUCILAGE-MODIFIED [MUM]1–5). The seed coat development of these mutants, and that of three previously identified ones (TRANSPARENT TESTA GLABRA1, GLABRA2, and APETALA2) were characterized. Our results show that the genes identified define several events in seed coat differentiation. Although APETALA2 is needed for differentiation of both outer layers of the seed coat, TRANSPARENT TESTA GLABRA1, GLABRA2, and MUM4 are required for complete mucilage synthesis and cytoplasmic rearrangement. MUM3 and MUM5 may be involved in the regulation of mucilage composition, whereas MUM1 and MUM2 appear to play novel roles in post-synthesis cell wall modifications necessary for mucilage extrusion.  相似文献   

12.
Drimys winteri (Winteraceae) and 11 species ofAnnonaceae, namelyAnnona montana, Artabotrys hexapetalus, Bocagea sp.,Papualthia sp.,Polyalthia nitidissima, Tetrameranthus umbellatus, T. duckei, Uvaria sp.,Xylopia malayana, X. aromatica, andX. emarginata, were investigated embryologically with special reference to development of ovule and embryo sac. The ovules are anatropous, crassinucellate and in most taxa bitegmic. The inner integument is of epidermal origin. TheAnnonaceae investigated have a multi-layered, later vascularized outer integument with most probably subepidermal initiation. In contrast,Drimys winteri has a three-layered, non-vascularized outer integument of epidermal origin. The annonaceous genusTetrameranthus (T. umbellatus andT. duckei) possesses a middle integument between the inner and the outer one, stated here for the first time in a neotropic representative ofAnnonaceae. Within the angiosperms this feature occurs inAnnonaceae only. The embryological characters are rather homogeneous. Differences between the species investigated are found in, e.g. the number of cell layers in the inner integument, which is commonly two inAnnonaceae as compared to three inDrimys winteri, the presence or absence of a hypostase, the number of layers in the nucellar epidermis, great differences in size of ovules, and the species-specific pattern of tannin deposition in the ovules. In the species so far investigated the embryo sacs develop according to thePolygonum-type. InXylopia malayana andBocagea sp. in addition the carpels were investigated. They are conduplicate. InXylopia malayana the free carpels are united by an extragynoecial compitum, inBocagea sp. each stigma produces its isolated mucilage cap. The results obtained from the investigated taxa are discussed and compared with published data on embryology and gynoecium structure in other annonaceous and winteraceous taxa.  相似文献   

13.
Seed coat development of Harpagophytum procumbens (Devil's Claw) and the possible role of the mature seed coat in seed dormancy were studied by light microscopy (LM), transmission electron microscopy (TEM) and environmental scanning electron microscopy (ESEM). Very young ovules of H. procumbens have a single thick integument consisting of densely packed thin-walled parenchyma cells that are uniform in shape and size. During later developmental stages the parenchyma cells differentiate into 4 different zones. Zone 1 is the multi-layered inner epidermis of the single integument that eventually develops into a tough impenetrable covering that tightly encloses the embryo. The inner epidermis is delineated on the inside by a few layers of collapsed remnant endosperm cell wall layers and on the outside by remnant cell wall layers of zone 2, also called the middle layer. Together with the inner epidermis these remnant cell wall layers from collapsed cells may contribute towards seed coat impermeability. Zone 2 underneath the inner epidermis consists of large thin-walled parenchyma cells. Zone 3 is the sub-epidermal layers underneath the outer epidermis referred to as a hypodermis and zone 4 is the single outer seed coat epidermal layer. Both zones 3 and 4 develop unusual secondary wall thickenings. The primary cell walls of the outer epidermis and hypodermis disintegrated during the final stages of seed maturation, leaving only a scaffold of these secondary cell wall thickenings. In the mature seed coat the outer fibrillar seed coat consists of the outer epidermis and hypodermis and separates easily to reveal the dense, smooth inner epidermis of the seed coat. Outer epidermal and hypodermal wall thickenings develop over primary pit fields and arise from the deposition of secondary cell wall material in the form of alternative electron dense and electron lucent layers. ESEM studies showed that the outer epidermal and hypodermal seed coat layers are exceptionally hygroscopic. At 100% relative humidity within the ESEM chamber, drops of water readily condense on the seed surface and react in various ways with the seed coat components, resulting in the swelling and expansion of the wall thickenings. The flexible fibrous outer seed coat epidermis and hypodermis may enhance soil seed contact and retention of water, while the inner seed coat epidermis maintains structural and perhaps chemical seed dormancy due to the possible presence of inhibitors.  相似文献   

14.
McFarlane HE  Young RE  Wasteneys GO  Samuels AL 《Planta》2008,227(6):1363-1375
During their differentiation Arabidopsis thaliana seed coat cells undergo a brief but intense period of secretory activity that leads to dramatic morphological changes. Pectic mucilage is secreted to one domain of the plasma membrane and accumulates under the primary cell wall in a ring-shaped moat around an anticlinal cytoplasmic column. Using cryofixation/transmission electron microscopy and immunofluorescence, the cytoskeletal architecture of seed coat cells was explored, with emphasis on its organization, function and the large amount of pectin secretion at 7 days post-anthesis. The specific domain of the plasma membrane where mucilage secretion is targeted was lined by abundant cortical microtubules while the rest of the cortical cytoplasm contained few microtubules. Actin microfilaments, in contrast, were evenly distributed around the cell. Disruption of the microtubules in the temperature-sensitive mor1-1 mutant affected the eventual release of mucilage from mature seeds but did not appear to alter the targeted secretion of vesicles to the mucilage pocket, the shape of seed coat cells or their secondary cell wall deposition. The concentration of cortical microtubules at the site of high vesicle secretion in the seed coat may utilize the same mechanisms required for the formation of preprophase bands or the bands of microtubules associated with spiral secondary cell wall thickening during protoxylem development.  相似文献   

15.
The development of the floral bud, especially the ovule and seed coat, of Sinomanglietia glauca was observed. Floral buds were covered by eight to nine hypsophyll pieces. The hypsophyll nearest the tepal was closed completely and characterized by two arrays of densely stained cells with dense cytoplasm, which split longitudinally at flowering. The perianth consisted of 16 tepals arranged in three whorls. The gynoecium was composed of numerous apocarpous carpels; the ovule was anatropous with two integuments. Embryogenesis was of the Polygonum type, and the endosperm was nuclear. The inner integument degenerated during seed development. The seed of S. glauca had an endotestal seed coat comprised of a sclerotic layer derived from the inner adaxial epidermis of the outer integument and a sarcotesta derived mainly from the middle cells between the inner and outer epidermis of the outer integument. The embryo developed normally, so embryogenesis is not the cause of difficult regeneration.  相似文献   

16.
All members of Aristolochiaceae have anatropous, bitegmic, crassinucellate ovules, which are endostomic except in Saruma and Asarum arifolium where ovules are amphistomic. The outer integument is two cell-layered and the inner integument is three cell-layered. The chalazal megaspore is the functional one. All these conditions appear to be plesiomorphic for the order Piperales, which consists of five families, Aristolochiaceae, Hydnoraceae, Lactoridaceae, Piperaceae and Saururaceae. The embryo sac in Aristolochiaceae is eight-nucleate and corresponds to the Polygonum type; a hypostase is frequently present in this family. The seed coat of Aristolochia s.l., Asarum, Saruma and some Thottea species consists primarily of a two cell-layered testa, and a three cell-layered tegmen. In some species the cells of the outer epidermis become radially elongated, forming reticulate wall thickenings. Cells of the inner layer of the testa have crystals and thickened inner walls. The three layers of the tegmen are tangentially elongated, and become cross fibres at maturity, as fibres of the outer and inner layers are parallel to the seed axis, whereas those of the middle layer are perpendicular to it. This type of seed coat anatomy is synapomorphic for Aristolochiaceae. In addition, the gross morphology of the seed and elaiosome histology are remarkably similar in Asarum and Saruma, thus supporting a sister-group relationship between them. Embryological and seed characters do not supply any synapomorphy that support a close relationship between Aristolochiaceae, Hydnoraceae and Lactoridaceae. Instead, some seed features such as the absence of seed appendages and the collapsed cells of endotesta may indicate a close relationship of Lactoris with Piperaceae plus Saururaceae, although this is the subject of further analysis.  相似文献   

17.
Summary A pea vicilin promoter-diphtheria toxin A (DTx-A) chain gene fusion was introduced into Arabidopsis and tobacco. The chimeric Dtx-A gene behaves as a dominant, seed-lethal, Mendelian factor, and the segregation ratios are consistent with the numbers of integrated copies as revealed by Southern blotting. Germination deficiency results from distinct developmental abnormalities, thus allowing genetic dissection of seed development. The endosperm is affected first in both species. In Arabidopsis, full cellularization of the initially syncytial endosperm does not take place, which results in shrinkage and a shriveled appearance of the mature dry seed. The embryo, which appears structurally normal and lacks visible lesions, ceases to develop at the partially recurved cotyledon stage and does not use the remaining endosperm. In tobacco, peripheral degeneration and premature termination of cellular endosperm development occurs at the cotyledon initiation stage. Lesions appear in the cotyledons at the advanced cotyledon stage, but the embryo continues to grow and attains nearly the same size and level of differentiation as mature wild-type embryos before degeneration and intracellular disintegration take place throughout. Accumulation of protein bodies and other cytoplasmic inclusions is very limited and occurs only in few cells. The timing and distribution of lesions follow a pattern typical for accumulation of protein bodies in wild-type seeds. These observations are consistent with expression of the vicilin promoter in the enlargement phase of cell differentiation. A novel tissue interaction arises, when the embryo uses up all the arrested endosperm: the embryo proves to be capable of absorbing the parenchyma layers of the integument, which are normally obliterated by, and incorporated into, the endosperm. The mature seed thus consists of a seed coat of one rigid cell layer, and a degenerated embryo. The genetic ablation technique has thus contributed to the establishment of the sequence of events and elucidation of the role of different cell lineages and tissues in seed development.  相似文献   

18.
In some plant species, including Arabidopsis, fertilization induces the epidermal cells of the outer ovule integument to differentiate into a specialized seed coat cell type with a unique morphology and containing large quantities of polysaccharide mucilage (pectin). Such seed coat mucilage cells are necessary for neither viability nor germination under normal laboratory conditions. Thus, the Arabidopsis seed coat offers a unique system with which to use genetics to identify genes controlling cell morphogenesis and complex polysaccharide biosynthesis and secretion. As a first step in the application of this system, we have used microscopy to investigate the structure and differentiation of Arabidopsis seed coat mucilage cells, including cell morphogenesis and the synthesis, secretion, and extrusion of mucilage. During seed coat development in Arabidopsis, the epidermal cells of the outer ovule integument grow and differentiate into cells that produce large quantities of mucilage between the primary cell wall and plasma membrane. Concurrent with mucilage production, the cytoplasm is shaped into a column in the center of the cell. Following mucilage secretion the cytoplasmic column is surrounded by a secondary cell wall to form a structure known as the columella. Thus, differentiation of the seed coat mucilage cells involves a highly regulated series of events including growth, morphogenesis, mucilage biosynthesis and secretion, and secondary cell wall synthesis.  相似文献   

19.
为建立新疆狭叶薰衣草(Lavandula angustifolia)的快速繁殖体系,以种子、茎、叶为外植体,对种子萌发、愈伤组织诱导、丛芽分化和生根的最适培养条件进行了研究;用水蒸气蒸馏法提取狭叶薰衣草挥发油,采用气相色谱-质谱法测定挥发油成分。结果表明,种子浸泡的适宜时间为6 h,切开种皮培养,出芽时间最少为6 d;诱导种子出芽的适宜培养基为MS+6-BA2 mg/L;以茎为外植体诱导愈伤组织效果较好,适宜培养基为MS+6-BA 2 mg/L+2,4-D 1 mg/L;诱导分化丛芽的适宜培养基为MS+6-BA 1 mg/L+NAA 0.5 mg/L;生根的适宜培养基为1/2MS+NAA 1 mg/L+6-BA 0.5 mg/L;盆栽薰衣草和无菌苗薰衣草的挥发油主要成分相差较大,离体培养的薰衣草的主要挥发性成分有叶绿醇、丁香油烃、氧化石竹烯等。  相似文献   

20.

Background  

The Arabidopsis outer ovule integument is a simple two-cell layered structure that grows around the developing embryo and develops into the outer layer of the seed coat. As one of the functions of the seed coat is the protection of the plant embryo, the outer ovule integument is an example for a plant organ whose morphogenesis has to be precisely regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号