首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brucella abortus is a Gram-negative bacterium responsible for a worldwide zoonotic infection—Brucellosis, which has been associated with high morbidity rate in humans and severe economic losses in infected livestock. The natural route of infection is through oral and nasal mucosa but the invasion process through host gut mucosa is yet to be understood. Studies have examined the role of NLRP6 (NOD-like receptor family pyrin domain-containing-6 protein) in gut homeostasis and defense against pathogens. Here, we investigated the impact of gut microbiota and NLRP6 in a murine model of Ba oral infection. Nlrp6-/- and wild-type (WT) mice were infected by oral gavage with Ba and tissues samples were collected at different time points. Our results suggest that Ba oral infection leads to significant alterations in gut microbiota. Moreover, Nlrp6-/- mice were more resistant to infection, with decreased CFU in the liver and reduction in gut permeability when compared to the control group. Fecal microbiota transplantation from WT and Nlrp6-/- into germ-free mice reflected the gut permeability phenotype from the donors. Additionally, depletion of gut microbiota by broad-spectrum-antibiotic treatment prevented Ba replication in WT while favoring bacterial growth in Nlrp6-/-. Finally, we observed higher eosinophils in the gut and leukocytes in the blood of infected Nlrp6-/- compared to WT-infected mice, which might be associated to the Nlrp6-/- resistance phenotype. Altogether, these results indicated that gut microbiota composition is the major factor involved in the initial stages of pathogen host replication and partially also by the resistance phenotype observed in Nlrp6 -/- mice regulating host inflammation against Ba infection.  相似文献   

2.
《遗传学报》2022,49(11):1042-1052
Advanced maternal age is characterized by declines in the quantity and quality of oocytes in the ovaries, and the aging process is accompanied by changes in gut microbiota composition. However, little is known about the relationship between gut microbiota and ovarian aging. By using fecal microbiota transplantation (FMT) to transplant material from young (5-week-old) into aged (42-week-old) mice, we find that the composition of gut microbiota in FMT-treated mice presents a “younger-like phenotype” and an increase of commensal bacteria, such as Bifidobacterium and Ruminococcaceae. Moreover, the FMT-treated mice show increased anti-inflammatory cytokine IL-4 and decreased pro-inflammatory cytokine IFN-γ. Fertility tests for assessing ovarian function reveal that the first litter size of female FMT-treated mice is significantly higher than that of the non-FMT group. Morphology analysis demonstrates a dramatic decrease in follicle atresia and apoptosis as well as an increase in cellular proliferation in the ovaries of the FMT-treated mice. Our results also show that FMT improves the immune microenvironment in aged ovaries, with decreased macrophages and macrophage-derived multinucleated giant cells (MNGCs). These results suggest that FMT from young donors could be a good choice for delaying ovarian aging.  相似文献   

3.
Fecal microbiota transplantation (FMT) of human fecal samples into germ-free (GF) mice is useful for establishing causal relationships between the gut microbiota and human phenotypes. However, due to the intrinsic differences between human and mouse intestines and the different diets of the two organisms, it may not be possible to replicate human phenotypes in mice through FMT; similarly, treatments that are effective in mouse models may not be effective in humans. In this study, we aimed to identify human gut microbes that undergo significant and consistent changes (i.e., in relative abundances) after transplantation into GF mice in multiple experimental settings. We collected 16S rDNA-seq data from four published studies and analyzed the gut microbiota profiles from 1713 human–mouse pairs. Strikingly, on average, we found that only 47% of the human gut microbes could be re-established in mice at the species level, among which more than 1/3 underwent significant changes (referred to as “variable taxa”). Most of the human gut microbes that underwent significant changes were consistent across multiple human–mouse pairs and experimental settings. Consequently, about 1/3 of human samples changed their enterotypes, i.e., significant changes in their leading species after FMT. Mice fed with a controlled diet showed a lower enterotype change rate (23.5%) than those fed with a noncontrolled diet (49.0%), suggesting a possible solution for rescue. Most of the variable taxa have been reported to be implicated in human diseases, with some recognized as the causative species. Our results highlight the challenges of using a mouse model to replicate human gut microbiota-associated phenotypes, provide useful information for researchers using mice in gut microbiota studies, and call for additional validations after FMT. An online database named FMT-DB is publicly available at http://fmt2mice.humangut.info/#/.  相似文献   

4.
Campylobacter jejuni is a leading cause of human foodborne gastroenteritis worldwide. The interactions between this pathogen and the intestinal microbiome within a host are of interest as endogenous intestinal microbiota mediates a form of resistance to the pathogen. This resistance, termed colonization resistance, is the ability of commensal microbiota to prevent colonization by exogenous pathogens or opportunistic commensals. Although mice normally demonstrate colonization resistance to C. jejuni, we found that mice treated with ampicillin are colonized by C. jejuni, with recovery of Campylobacter from the colon, mesenteric lymph nodes, and spleen. Furthermore, there was a significant reduction in recovery of C. jejuni from ampicillin-treated mice inoculated with a C. jejuni virulence mutant (ΔflgL strain) compared to recovery of mice inoculated with the C. jejuni wild-type strain or the C. jejuni complemented isolate (ΔflgL/flgL). Comparative analysis of the microbiota from nontreated and ampicillin-treated CBA/J mice led to the identification of a lactic acid-fermenting isolate of Enterococcus faecalis that prevented C. jejuni growth in vitro and limited C. jejuni colonization of mice. Next-generation sequencing of DNA from fecal pellets that were collected from ampicillin-treated CBA/J mice revealed a significant decrease in diversity of operational taxonomic units (OTUs) compared to that in control (nontreated) mice. Taken together, we have demonstrated that treatment of mice with ampicillin alters the intestinal microbiota and permits C. jejuni colonization. These findings provide valuable insights for researchers using mice to investigate C. jejuni colonization factors, virulence determinants, or the mechanistic basis of probiotics.  相似文献   

5.
Gut microbiota has been recognized as an important environmental factor in health, as well as in metabolic and immunological diseases, in which perturbation of the host gut microbiota is often observed in the diseased state. However, little is known on the role of gut microbiota in systemic lupus erythematosus. We investigated the effects of host genetics, sex, age, and dietary intervention on the gut microbiome in a murine lupus model. In young, female lupus-prone mice resembling women at childbearing age, a population with the highest risk for lupus, we found marked depletion of lactobacilli, and increases in Lachnospiraceae and overall diversity compared to age-matched healthy controls. The predicted metagenomic profile in lupus-prone mice showed a significant enrichment of bacterial motility- and sporulation-related pathways. Retinoic acid as a dietary intervention restored lactobacilli that were downregulated in lupus-prone mice, and this correlated with improved symptoms. The predicted metagenomes also showed that retinoic acid reversed many lupus-associated changes in microbial functions that deviated from the control. In addition, gut microbiota of lupus-prone mice were different between sexes, and an overrepresentation of Lachnospiraceae in females was associated with an earlier onset of and/or more severe lupus symptoms. Clostridiaceae and Lachnospiraceae, both harboring butyrate-producing genera, were more abundant in the gut of lupus-prone mice at specific time points during lupus progression. Together, our results demonstrate the dynamics of gut microbiota in murine lupus and provide evidence to suggest the use of probiotic lactobacilli and retinoic acid as dietary supplements to relieve inflammatory flares in lupus patients.  相似文献   

6.
Cockroaches are widely perceived to evolve resistance to insecticides. Over-expression of a resistance-conferring gene can be costly and may require energy and resource reallocation for metabolic and developmental processes. To evaluate whether changes in the composition of gut microbiota in Blattella germanica affected its resistance evolution to beta-cypermethrin and to determine the role of gut microbiota in host growth and development, we studied the relationship between insecticide resistance and the diversity and genetic content of gut microbiota in cockroaches. Results suggest beta-cypermethrin-resistant cockroaches (R strain) exhibited a delayed development period and reduced adult longevity compared with susceptible cockroaches (S strain). Based on 16S rRNA gene sequencing and community metagenomics, we found that the relative abundance of Lactobacillus and Acetobacteraceae were significantly lower in the R strain compared with the S strain in the foregut and midgut of both strains. Functional annotation of Kyoto Encyclopedia of Genes and Genomes (KEGG) modules of midgut genes in the two strains revealed that 10.6% were involved in metabolism, while the relative abundance in the R strain was 7.4%. Unigenes were also translated into amino acid sequences and assigned to protein families based on hits to the Carbohydrate-Active enzymes (CAZy) database. This process identified the glycoside hydrolases, glycosyl transferases and carbohydrate-binding modules of the S strain as all being significantly higher in diversity than those in the R strain. Overall, we conclude that fitness-related costs increased in the resistant strain of cockroaches compared with the susceptible strain, and the variation in insect gut microbiota, especially those related to growth and development, was an important influencing factor.  相似文献   

7.
Inbred mice were infected with cloned populations of Trypanosoma brucei brucei Lister S42 under carefully controlled conditions. The course of infection was found to depend both on host strain and the antigenic type of the infecting organisms. The two antigenic types used, “NIM2” and “NIM6” had differing virulence for (CBA/H × C57BL/6)F1 mice, and when mice were infected with parasites of one clone, trypanosomes of the other type frequently appeared after the initial population had been eliminated. Different mouse strains had varying susceptibility to clone NIM6. In most cases there was an inverse relation between the survival time and the parasite load during the first peak of parasitemia. The differences in resistance to T. brucei were unrelated to H-2 haplotype: C57BL/6 and (CBA/H × C57BL/6)F1 were most resistant, CBA/H, BALB/c and DBA/2 less so, and C3H/He most susceptible.  相似文献   

8.
Nematospiroides dubius: genetic control of immunity to infections of mice   总被引:1,自引:0,他引:1  
Inbred strains of mice differ in their susceptibility and resistance to challenge infections with Nematospiroides dubius. In our studies, F1 hybrid mice from resistant SJL and susceptible CBA parents were resistant to N. dubius challenge infections. Only 22% of backcrosses to SJL were susceptible while backcrosses to CBA had a wide range of susceptibility. Male mice were more susceptible than female mice. In another experiment, inbred strains of mice were compared in their ability to resist N. dubius challenge infection: SJL and A.SW (H-2s) mice became resistant after one immunizing infection, A, A/He (both H-2a), as well as BALB/c and DBA/2 (both H-2d) mice became resistant after two immunizing infections, while C57BL/6 (H-2b), C3H/He, CBA, and AKR (H-2k) mice remained susceptible. The resistance to reinfections was characterized by reduction of worm burdens between Days 6 and 14 postinfection. It was concluded that (1) resistance to N. dubius challenge infections is inherited in a dominant fashion and that multiple genes may influence such response, which in turn might be modulated by the Y chromosome; (2) both MHC and non-MHC genes may influence, in conjunction with the number of exposures to parasite antigens, the resistance to challenge infections.  相似文献   

9.
The gut microbiota is a complex ecological community that plays multiple critical roles within a host. Known intrinsic and extrinsic factors affect gut microbiota structure, but the influence of host genetics is understudied. To investigate the role of host genetics upon the gut microbiota structure, we performed a longitudinal study in which we evaluated the hindgut microbiota and its association with animal growth and immunity across life. We evaluated three different growth stages in an Angus-Brahman multibreed population with a graduated spectrum of genetic variation, raised under variable environmental conditions and diets. We found the gut microbiota structure was changed significantly during growth when preweaning, and fattening calves experienced large variations in diet and environmental changes. However, regardless of the growth stage, we found gut microbiota is significantly influenced by breed composition throughout life. Host genetics explained the relative abundances of 52.2%, 40.0%, and 37.3% of core bacterial taxa at the genus level in preweaning, postweaning, and fattening calves, respectively. Sutterella, Oscillospira, and Roseburia were consistently associated with breed composition at these three growth stages. Especially, butyrate-producing bacteria, Roseburia and Oscillospira, were associated with nine single-nucleotide polymorphisms (SNPs) located in genes involved in the regulation of host immunity and metabolism in the hindgut. Furthermore, minor allele frequency analysis found breed-associated SNPs in the short-chain fatty acids (SCFAs) receptor genes that promote anti-inflammation and enhance intestinal epithelial barrier functions. Our findings provide evidence of dynamic and lifelong host genetic effects upon gut microbiota, regardless of growth stages. We propose that diet, environmental changes, and genetic components may explain observed variation in critical hindgut microbiota throughout life.Subject terms: Microbiome, Agricultural genetics  相似文献   

10.
Nonspecific immune responses during the course of murine Trypanosoma cruzi infection were examined in mouse strains genetically resistant or susceptible to the Brazil strain of T. cruzi. Spleen cells from infected susceptible (C3H) or resistant [C57 B1/10 and FI (C3H × C57)]mice at various points during the course of infection exhibited a reduced response to concanavalin A and lipopolysaccharide in vitro. Since this reduced response occurred in both susceptible and resistant mice, it was not predictive of resistance or susceptibility in vivo. We next examined the kinetics of in vivo primary antibody response to sheep red blood cells (SRBC) in infected C3H and C57 mice. C3H mice exhibited inhibition of the direct plaque-forming cell assay (d-PFC) which persisted until death. In contrast C57 mice exhibited no inhibition of the response at Day 5 and subsequently a markedly augmented response was observed. Other strains of mice were similarly investigated: all the susceptible mice examined (A/J, BALB/c) showed inhibition or depression of the primary antibody response and resistant mice [B10Br, C57B1/10, SJL, F1 (C3H × C57)]demonstrated either no inhibition or considerable augmentation of this response. CS7 mice resistant to the Brazil strain were susceptible to the Tulahuén strain. The mice in this latter group exhibited a markedly significant inhibition of the in vivo primary antibody response to SRBC. Culture forms of the Brazil strain protected C3H mice from a virulent challenge. This immunization resulted in a markedly augmented antibody response. The data reported herein are consistent with the notion that inhibition of the primary antibody response to SRBC correlates with susceptibility whereas no inhibition or, indeed, augmentation of the response correlates with natural as well as acquired resistance.  相似文献   

11.
Stockdale P. G. H., Stockdale M. J., Rickard M. D. and Mitchell G. F. 1985. Mouse strain variation and effects of oocyst dose in infection of mice with Eimeria falciformis, a coccidian parasite of the large intestine, International Journal for Parasitology15: 447–452. Five inbred strains of mice and three hypothymic (nude) strains were infected orally with different doses of E. falciförmis oocysts. After resolution of primary infection as determined by faecal oocyst output, mice were challenged orally with a second dose of E. falciformis. Amongst the intact mice, BALB/c proved the most resistant to primary infection, while C3H/He mice were most susceptible, in terms of faecal oocyst production. Resistance was far more dramatic in BALB/c mice given high numbers of challenge oocysts. In terms of mortality at high oocyst doses, CBA/H were the most susceptible. All of the strains of mice were highly resistant to reinfection. In the case of nude mice, BALB/c. nu/nu were more susceptible than CBA/H.nu/nu or C57BL/6.nu/nu both in terms of faecal oocyst production and mortality. Thus the most resistant inbred mouse strain (BALB/c) is the least resistant in the absence of T cells. Unlike intact mice, nude mice showed no resistance to reinfection, this result being in line with previous work on this and other Eimeria spp. in nude mice.  相似文献   

12.
Coinfections with parasitic helminths and microparasites are highly common in nature and can lead to complex within-host interactions between parasite species which can cause negative health outcomes for humans, and domestic and wild animals. Many of these negative health effects worsen with increasing parasite burdens. However, even though many studies have identified several key factors that determine worm burdens across various host systems, less is known about how the immune response interacts with these factors and what the consequences are for the outcome of within-host parasite interactions. We investigated two interacting gastrointestinal parasites of wild wood mice, Heligmosomoides polygyrus (nematode) and Eimeria spp. (coccidia), in order to investigate how host demographic factors, coinfection and the host’s immune response affected parasite burdens and infection probability, and to determine what factors predict parasite-specific and total antibody levels. We found that antibody levels were the only factors that significantly influenced variation in both H. polygyrus burden and infection probability, and Eimeria spp. infection probability. Total faecal IgA was negatively associated with H. polygyrus burden and Eimeria spp. infection, whereas H. polygyrus-specific IgG1 was positively associated with H. polygyrus infection. We further found that the presence of Eimeria spp. had a negative effect on both faecal IgA and H. polygyrus-specific IgG1. Our results show that even in the context of natural demographic and immunological variation amongst individuals, we were able to decipher a role for the host humoral immune response in shaping the within-host interaction between H. polygyrus and Eimeria spp.  相似文献   

13.
The intestinal ecosystem is formed by a complex, yet highly characteristic microbial community. The parameters defining whether this community permits invasion of a new bacterial species are unclear. In particular, inhibition of enteropathogen infection by the gut microbiota ( = colonization resistance) is poorly understood. To analyze the mechanisms of microbiota-mediated protection from Salmonella enterica induced enterocolitis, we used a mouse infection model and large scale high-throughput pyrosequencing. In contrast to conventional mice (CON), mice with a gut microbiota of low complexity (LCM) were highly susceptible to S. enterica induced colonization and enterocolitis. Colonization resistance was partially restored in LCM-animals by co-housing with conventional mice for 21 days (LCMcon21). 16S rRNA sequence analysis comparing LCM, LCMcon21 and CON gut microbiota revealed that gut microbiota complexity increased upon conventionalization and correlated with increased resistance to S. enterica infection. Comparative microbiota analysis of mice with varying degrees of colonization resistance allowed us to identify intestinal ecosystem characteristics associated with susceptibility to S. enterica infection. Moreover, this system enabled us to gain further insights into the general principles of gut ecosystem invasion by non-pathogenic, commensal bacteria. Mice harboring high commensal E. coli densities were more susceptible to S. enterica induced gut inflammation. Similarly, mice with high titers of Lactobacilli were more efficiently colonized by a commensal Lactobacillus reuteri RR strain after oral inoculation. Upon examination of 16S rRNA sequence data from 9 CON mice we found that closely related phylotypes generally display significantly correlated abundances (co-occurrence), more so than distantly related phylotypes. Thus, in essence, the presence of closely related species can increase the chance of invasion of newly incoming species into the gut ecosystem. We provide evidence that this principle might be of general validity for invasion of bacteria in preformed gut ecosystems. This might be of relevance for human enteropathogen infections as well as therapeutic use of probiotic commensal bacteria.  相似文献   

14.
We investigated the hypothesis that the endocannabinoidome (eCBome), an extension of the endocannabinoid (eCB) signaling system with important functions in the CNS, may play a role in the microbiota-gut-brain axis. Using LC-MS/MS and qPCR arrays we profiled the brain eCBome of juvenile (4 weeks) and adult (13 weeks) male and female germ-free (GF) mice, which are raised in sterile conditions and virtually devoid of microbiota, present neurophysiological deficits, and were found recently to exhibit a strongly altered gut eCBome in comparison to conventionally raised age/sex-matched controls. The causal effect of the gut microbiome on the eCBome was investigated through the re-introduction into adult male GF mice of a functional gut microbiota by fecal microbiota transfer (FMT). The concentrations of the eCB, 2-arachidonoylglycerol (2-AG), and its 2-monoacylglycerol congeners, were significantly reduced in the brain, but not in the hypothalamus, of both juvenile and adult male and adult female GF mice. FMT rendered these decreases non-statistically significant. The eCB, anandamide (AEA), and its congener N-acylethanolamines (NAEs), were instead increased in the brain of adult female GF mice. Saturated fatty acid-containing NAEs were decreased in adult male GF mouse hypothalamus in a manner not reversed by FMT. Only few changes were observed in the expression of eCBome enzymes and receptors. Our data open the possibility that altered eCBome signaling may underlie some of the brain dysfunctions typical of GF mice.  相似文献   

15.

Background

The human gastrointestinal tract is inhabited by a very diverse symbiotic microbiota, the composition of which depends on host genetics and the environment. Several studies suggested that the host genetics may influence the composition of gut microbiota but no genes involved in host control were proposed. We investigated the effects of the wild type and mutated alleles of the gene, which encodes the protein called pyrin, one of the regulators of innate immunity, on the composition of gut commensal bacteria. Mutations in MEFV lead to the autoinflammatory disorder, familial Mediterranean fever (FMF, MIM249100), which is characterized by recurrent self-resolving attacks of fever and polyserositis, with no clinical signs of disease in remission.

Methodology/Principal Findings

A total of 19 FMF patients and eight healthy individuals were genotyped for mutations in the MEFV gene and gut bacterial diversity was assessed by sequencing 16S rRNA gene libraries and FISH analysis. These analyses demonstrated significant changes in bacterial community structure in FMF characterized by depletion of total numbers of bacteria, loss of diversity, and major shifts in bacterial populations within the Bacteroidetes, Firmicutes and Proteobacteria phyla in attack. In remission with no clinical signs of disease, bacterial diversity values were comparable with control but still, the bacterial composition was substantially deviant from the norm. Discriminant function analyses of gut bacterial diversity revealed highly specific, well-separated and distinct grouping, which depended on the allele carrier status of the host.

Conclusions/Significance

This is the first report that clearly establishes the link between the host genotype and the corresponding shifts in the gut microbiota (the latter confirmed by two independent techniques). It suggests that the host genetics is a key factor in host-microbe interaction determining a specific profile of commensal microbiota in the human gut.  相似文献   

16.
A delayed-type hypersensitivity response to washed Plasmodium berghei-infected blood cells can be elicited in sensitized BALB/c, CBA/H, and SJL/J mice. The response is T-cell dependent and the genotype of the cells used to elicit the response does not play any obvious role. The eliciting antigens, therefore, are unlikely to be modified polymorphic host cell surface components and appear to be parasite antigens.  相似文献   

17.
Western-style diet (WSD), which is high in fat and low in fiber, lacks nutrients to support gut microbiota. Consequently, WSD reduces microbiota density and promotes microbiota encroachment, potentially influencing colonization resistance, immune system readiness, and thus host defense against pathogenic bacteria. Here we examined the impact of WSD on infection and colitis in response to Citrobacter rodentium. We observed that, relative to mice consuming standard rodent grain-based chow (GBC), feeding WSD starkly altered the dynamics of Citrobacter infection, reducing initial colonization and inflammation but frequently resulting in persistent infection that associated with low-grade inflammation and insulin resistance. WSD’s reduction in initial Citrobacter virulence appeared to reflect that colons of GBC-fed mice contain microbiota metabolites, including short-chain fatty acids, especially acetate, that drive Citrobacter growth and virulence. Citrobacter persistence in WSD-fed mice reflected inability of resident microbiota to out-compete it from the gut lumen, likely reflecting the profound impacts of WSD on microbiota composition. These studies demonstrate potential of altering microbiota and their metabolites by diet to impact the course and consequence of infection following exposure to a gut pathogen.  相似文献   

18.
Vitamin A deficiency (A−) is a worldwide public health problem. To better understand how vitamin A status influences gut microbiota and host metabolism, we systematically analyzed urine, cecum, serum and liver samples from vitamin A sufficient (A+) and deficient (A−) mice using 1H NMR-based metabolomics, quantitative (q)PCR and 16S rRNA gene sequencing coupled with multivariate data analysis. The microbiota in the cecum of A− mice showed compositional as well as functional shifts compared to the microbiota from A+ mice. Targeted 1H NMR analyses revealed significant changes in microbial metabolite concentrations including higher butyrate and hippurate and decreased acetate and 4-hydroxyphenylacetate in A+ relative to A− mice. Bacterial butyrate-producing genes including butyryl-CoA:acetate CoA-transferase and butyrate kinase were significantly higher in bacteria from A+ versus bacteria from A− mice. A− mice had disturbances in multiple metabolic pathways including alterations in energy (hyperglycemia, glycogenesis, TCA cycle and lipoprotein biosynthesis), amino acid and nucleic acid metabolism. A− mice had hyperglycemia, liver dysfunction, changes in bacterial metabolism and altered gut microbial communities. Moreover, integrative analyses indicated a strong correlation between gut microbiota and host energy metabolism pathways in the liver. Vitamin A regulates host and bacterial metabolism, and the result includes alterations in energy homeostasis.  相似文献   

19.
Many enteropathogenic bacteria target the mammalian gut. The mechanisms protecting the host from infection are poorly understood. We have studied the protective functions of secretory antibodies (sIgA) and the microbiota, using a mouse model for S. typhimurium diarrhea. This pathogen is a common cause of diarrhea in humans world-wide. S. typhimurium (S. tm att, sseD) causes a self-limiting gut infection in streptomycin-treated mice. After 40 days, all animals had overcome the disease, developed a sIgA response, and most had cleared the pathogen from the gut lumen. sIgA limited pathogen access to the mucosal surface and protected from gut inflammation in challenge infections. This protection was O-antigen specific, as demonstrated with pathogens lacking the S. typhimurium O-antigen (wbaP, S. enteritidis) and sIgA-deficient mice (TCRβ−/−δ−/−, JH −/−, IgA−/−, pIgR−/−). Surprisingly, sIgA-deficiency did not affect the kinetics of pathogen clearance from the gut lumen. Instead, this was mediated by the microbiota. This was confirmed using ‘L-mice’ which harbor a low complexity gut flora, lack colonization resistance and develop a normal sIgA response, but fail to clear S. tm att from the gut lumen. In these mice, pathogen clearance was achieved by transferring a normal complex microbiota. Thus, besides colonization resistance ( = pathogen blockage by an intact microbiota), the microbiota mediates a second, novel protective function, i.e. pathogen clearance. Here, the normal microbiota re-grows from a state of depletion and disturbed composition and gradually clears even very high pathogen loads from the gut lumen, a site inaccessible to most “classical” immune effector mechanisms. In conclusion, sIgA and microbiota serve complementary protective functions. The microbiota confers colonization resistance and mediates pathogen clearance in primary infections, while sIgA protects from disease if the host re-encounters the same pathogen. This has implications for curing S. typhimurium diarrhea and for preventing transmission.  相似文献   

20.
Monozygotic and dizygotic twin studies investigating the relative roles of host genetics and environmental factors in shaping gut microbiota composition have produced conflicting results. In this study, we investigated the gut microbiota composition of a healthy dichorionic triplet set. The dichorionic triplet set contained a pair of monozygotic twins and a fraternal sibling, with similar pre- and post-natal environmental conditions including feeding regime. V4 16S rRNA and rpoB amplicon pyrosequencing was employed to investigate microbiota composition, and the species and strain diversity of the culturable bifidobacterial population was also examined. At month 1, the monozygotic pair shared a similar microbiota distinct to the fraternal sibling. By month 12 however, the profile was more uniform between the three infants. Principal coordinate analysis (PCoA) of the microbiota composition revealed strong clustering of the monozygotic pair at month 1 and a separation of the fraternal infant. At months 2 and 3 the phylogenetic distance between the monozygotic pair and the fraternal sibling has greatly reduced and by month 12 the monozygotic pair no longer clustered separately from the fraternal infant. Pulse field gel electrophoresis (PFGE) analysis of the bifidobacterial population revealed a lack of strain diversity, with identical strains identified in all three infants at month 1 and 12. The microbiota of two antibiotic-treated dichorionic triplet sets was also investigated. Not surprisingly, in both triplet sets early life antibiotic administration appeared to be a major determinant of microbiota composition at month 1, irrespective of zygosity. By month 12, early antibiotic administration appeared to no longer exert such a strong influence on gut microbiota composition. We hypothesize that initially host genetics play a significant role in the composition of an individual’s gut microbiota, unless an antibiotic intervention is given, but by month 12 environmental factors are the major determinant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号