首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 508 毫秒
1.
The role of glacial refugia in shaping contemporary species distribution is a long-standing question in phylogeography and evolutionary ecology. Recent studies are questioning previous paradigms on glacial refugia and postglacial recolonization pathways in Europe, and more flexible phylogeographic scenarios have been proposed. We used the widespread common vole Microtus arvalis as a model to investigate the origin, locations of glacial refugia, and dispersal pathways, in the group of “Continental” species in Europe. We used a Bayesian spatiotemporal diffusion analysis (relaxed random walk model) of cytochrome b sequences across the species range, including newly collected individuals from 10 Iberian localities and published sequences from 68 localities across 22 European countries. Our data suggest that the species originated in Central Europe, and we revealed the location of multiple refugia (in both southern peninsulas and continental regions) for this continental model species. Our results confirm the monophyly of Iberian voles and the pre-LGM divergence between Iberian and European voles. We found evidence of restricted postglacial dispersal from refugia in Mediterranean peninsulas. We inferred a complex evolutionary and demographic history of M. arvalis in Europe over the last 50,000 years that does not adequately fit previous glacial refugial scenarios. The phylogeography of M. arvalis provides a paradigm of ice-age survival of a temperate continental species in western and eastern Mediterranean peninsulas (sources of endemism) and multiple continental regions (sources of postglacial spread). Our findings also provide support for a major role of large European river systems in shaping geographic boundaries of M. arvalis in Europe.  相似文献   

2.
Recent studies suggest that alpine and arctic organisms may have distinctly different phylogeographic histories from temperate or tropical taxa, with recent range contraction into interglacial refugia as opposed to post-glacial expansion out of refugia. We use a combination of phylogeographic inference, demographic reconstructions, and hierarchical Approximate Bayesian Computation to test for phylodemographic concordance among five species of alpine-adapted small mammals in eastern Beringia. These species (Collared Pikas, Hoary Marmots, Brown Lemmings, Arctic Ground Squirrels, and Singing Voles) vary in specificity to alpine and boreal-tundra habitat but share commonalities (e.g., cold tolerance and nunatak survival) that might result in concordant responses to Pleistocene glaciations. All five species contain a similar phylogeographic disjunction separating eastern and Beringian lineages, which we show to be the result of simultaneous divergence. Genetic diversity is similar within each haplogroup for each species, and there is no support for a post-Pleistocene population expansion in eastern lineages relative to those from Beringia. Bayesian skyline plots for four of the five species do not support Pleistocene population contraction. Brown Lemmings show evidence of late Quaternary demographic expansion without subsequent population decline. The Wrangell-St. Elias region of eastern Alaska appears to be an important zone of recent secondary contact for nearctic alpine mammals. Despite differences in natural history and ecology, similar phylogeographic histories are supported for all species, suggesting that these, and likely other, alpine- and arctic-adapted taxa are already experiencing population and/or range declines that are likely to synergistically accelerate in the face of rapid climate change. Climate change may therefore be acting as a double-edged sword that erodes genetic diversity within populations but promotes divergence and the generation of biodiversity.  相似文献   

3.
The southern European peninsulas (Iberian, Italian and Balkan) are traditionally recognized as glacial refugia from where many species colonized central and northern Europe after the Last Glacial Maximum (LGM). However, evidence that some species had more northerly refugia is accumulating from phylogeographic, palaeontological and palynological studies, and more recently from species distribution modelling (SDM), but further studies are needed to test the idea of northern refugia in Europe. Here, we take a rarely implemented multidisciplinary approach to assess if the pygmy shrew Sorex minutus, a widespread Eurasian mammal species, had northern refugia during the LGM, and if these influenced its postglacial geographic distribution. First, we evaluated the phylogeographic and population expansion patterns using mtDNA sequence data from 123 pygmy shrews. Then, we used SDM to predict present and past (LGM) potential distributions using two different training data sets, two different algorithms (Maxent and GARP) and climate reconstructions for the LGM with two different general circulation models. An LGM distribution in the southern peninsulas was predicted by the SDM approaches, in line with the occurrence of lineages of S. minutus in these areas. The phylogeographic analyses also indicated a widespread and strictly northern‐central European lineage, not derived from southern peninsulas, and with a postglacial population expansion signature. This was consistent with the SDM predictions of suitable LGM conditions for S. minutus occurring across central and eastern Europe, from unglaciated parts of the British Isles to much of the eastern European Plain. Hence, S. minutus likely persisted in parts of central and eastern Europe during the LGM, from where it colonized other northern areas during the late‐glacial and postglacial periods. Our results provide new insights into the glacial and postglacial colonization history of the European mammal fauna, notably supporting glacial refugia further north than traditionally recognized.  相似文献   

4.
The influence of Pleistocene climatic oscillations on shaping the genetic structure of Asian biota is poorly known. The Japanese pipistrelle bat occurs over a wide range in eastern Asia, from Siberia to Japan. To test the relative impact of ancient and more recent events on genetic structure in this species, we combined mitochondrial (cytochrome b) and microsatellite markers to reconstruct its phylogeographic and demographic history on continental China and its offshore islands, Hainan Island and the Zhoushan Archipelago. Our mitochondrial DNA tree recovered two divergent geographical clades, indicating multiple glacial refugia in the region. The first clade was mainly confined to Hainan Island, indicating that gene flow between this population and the continent has been restricted, despite being repeatedly connected to the mainland during repeated glacial episodes. By contrast, haplotypes sampled on the Zhoushan Archipelago were mixed with those from the mainland, suggesting a recent shared history of expansion. Although microsatellite allele frequencies showed clear discontinuities across the sampling range, supporting the current isolation of both Hainan Island and the Zhoushan Archipelago, we also found clear evidence of more recent back colonization, probably via post‐glacial expansion or, in the latter case, occasional long distance dispersal. The results obtained highlight the importance of using multiple sets of markers for teasing apart the roles of ancient and more recent events on population genetic structure. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 582–594.  相似文献   

5.
Pleistocene glacial cycles undoubtedly altered the evolutionary trajectories of many taxa, yet few studies have examined the impact of such events on genetic differentiation and phylogeography at large geographic scales. Here we present the results of a circumarctic survey of mitochondrial DNA diversity in members of the Daphnia pulex complex. The analysis involved the survey of restriction site polymorphisms in a 2100-bp fragment of the NADH-4 (ND4) and NADH-5 (ND5) genes for 276 populations representing the two major groups (tenebrosa and pulicaria) in this complex across their Holarctic range. A comparison of the distribution patterns for seven clades in this complex revealed very clear phylogeographic structuring. Most notably, pulicaria group lineages were restricted primarily to the Nearctic, with some colonization of formerly glaciated portions of northern Europe. This group was not detected from vast expanses of northern Eurasia, including the Beringian glacial refuge. In contrast, tenebrosa group haplotypes showed considerable intercontinental divergence between Eurasian and North American lineages, but were absent from Greenland and Iceland, as well as the Canadian arctic archipelago. Dispersal in Eurasia was primarily in a westerly direction from Beringia, whereas dispersal in the Nearctic followed proglacial drainage patterns. Long-distance dispersal of certain lineages was observed in both groups, and variation in haplotype richness and nucleotide diversity allowed us to make inferences about the positioning of putative glacial refugia. Overall, the phylogeographic pattern of diversification in this arctic complex is characterized by the apparently unique postglacial histories for each clade, indicating that even closely allied taxa can respond independently to the allopatric effects of glacial cycles. This is in sharp contrast to other phylogeographic studies of species assemblages from more southern (unglaciated) latitudes, which are often characterized by concordant patterns.  相似文献   

6.
Jaarola M  Searle JB 《Molecular ecology》2002,11(12):2613-2621
In a distribution-wide phylogeographic survey of the field vole (Microtus agrestis), 75 specimens from 56 localities across Eurasia were examined for DNA sequence variation along the whole 1140 base pair (bp) mitochondrial (mt) cytochrome b gene. The species is subdivided into three main mtDNA phylogeographic groups - western, eastern and southern - with largely allopatric distributions. The western phylogeographical group is found in west and central Europe and spread most probably from a glacial refugium in the Carpathians. The eastern group covers a large range from Lithuania to central Asia, and probably originated from a southeast European source (e.g. the southern Urals or the Caucasus). The southern group occupies an area from Portugal to Hungary, with division into two distinct mtDNA sublineages that presumably derive from separate glacial refugia in the Iberian Peninsula. Molecular clock estimates suggest that the western and eastern field vole populations separated during the last glaciation, whereas the southern population dates back 0.5-0.9 Myr. High levels of mtDNA variation indicate relatively large population sizes and subdivisions within phylogeographic groups during the last glaciation. We report a possible new suture zone in east Europe.  相似文献   

7.
Pleistocene glacial cycles play a major role in diversification and speciation, although the relative importance of isolation and expansion in driving diversification remains debated. We analysed mitochondrial DNA sequence data from 15 great reed warbler (Acrocephalus arundinaceus) populations distributed over the vast Eurasian breeding range of the species, and revealed unexpected postglacial expansion patterns from two glacial refugia. There were 58 different haplotypes forming two major clades, A and B. Clade A dominated in Western Europe with declining frequencies towards Eastern Europe and the Middle East, but showed a surprising increase in frequency in Western and Central Asia. Clade B dominated in the Middle East, with declining frequencies towards north in Central and Eastern Europe and was absent from Western Europe and Central Asia. A parsimonious explanation for these patterns is independent postglacial expansions from two isolated refugia, and mismatch distribution analyses confirmed this suggestion. Gene flow analyses showed that clade A colonised both Europe and Asia from a refugium in Europe, and that clade B expanded much later and colonised parts of Europe from a refugium in the Middle East. Great reed warblers in the eastern parts of the range have slightly paler plumage than western birds (sometimes treated as separate subspecies; A. a. zarudnyi and A. a. arundinaceus, respectively) and our results suggest that the plumage diversification took place during the easterly expansion of clade A. This supports the postglacial expansion hypothesis proposing that postglacial expansions drive diversification in comparatively short time periods. However, there is no indication of any (strong) reproductive isolation between clades and our data show that the refugia populations became separated during the last glaciation. This is in line with the Pleistocene speciation hypothesis invoking that much longer periods of time in isolation are needed for speciation to occur.  相似文献   

8.
Repeated glacial events during the Pleistocene fragmented and displaced populations throughout the northern continents. Different models of the effects of these climate-driven events predict distinct phylogeographic and population genetic outcomes for high-latitude faunas. The role of glaciations in (i) promoting intraspecific genetic differentiation and (ii) influencing genetic diversity was tested within a phylogeographic framework using the rodent Microtus oeconomus. The spatial focus for the study was Beringia, which spans eastern Siberia and northwestern North America, and was a continental crossroads and potential high arctic refugium during glaciations. Variation in mitochondrial DNA (cytochrome b and control region; 214 individuals) and nuclear DNA (ALDH1 intron; 63 individuals) was investigated across the Beringian region. Close genetic relationships among populations on either side of the Bering Strait are consistent with a history of periodic land connections between North America and Asia. A genetic discontinuity observed in western Beringia between members of a Central Asian clade and a Beringian clade is geographically congruent with glacial advances and with phylogeographic discontinuities identified in other organisms. Divergent island populations in southern Alaska were probably initially isolated by glacial vicariance, but subsequent differentiation has resulted from insularity. Tests of the genetic effects of postglacial colonization were largely consistent with expansion accompanied by founder effect bottlenecking, which yields reduced diversity in populations from recently deglaciated areas. Evidence that populations in the Beringian clade share a history of expansion from a low-diversity ancestral population suggests that Beringia was colonized by a small founder population from central Asia, which subsequently expanded in isolation.  相似文献   

9.
Climate changes can have fundamental impacts on the distributional patterns of montane species, and range shifts frequently lead to allopatric divergence followed by the establishment of secondary contact zones. Many European and North American organisms have retreated to southern refugia during glacial periods and colonized northward during postglacial periods, but little is known about the evolutionary response of cold‐adapted insects to Pleistocene climate changes in eastern Asia. The scorpionfly Dicerapanorpa magna (Chou), with cold temperate habitat preference and weak dispersal ability, provides a good model system to explore how climate changes have influenced the distribution and divergence of cold‐adapted insects in eastern Asia. This study reconstructed the demographic dynamics and evolutionary history of D. magna with phylogeographic approaches, and predicted the species’ suitable areas under the Last Glacial Maximum (LGM) and current scenarios with the ecological niche modelling analysis. The mitochondrial cytochrome c oxidase subunit I resolved three phylogenetic lineages in D. magna dating back to Pleistocene, corresponding well with the geographically isolated Qinling, Bashan and Minshan Mountains. The ecological niche modelling recovered the suitable habitats for D. magna were the Qinling and Bashan Mountains under LGM and current conditions. The three lineages of D. magna might be in a process of incipient speciation, and likely derived their current distribution from separate glacial origins, followed by vicariance and divergence.  相似文献   

10.
Current understanding of the postglacial colonization of Nearctic and Palearctic species relies heavily on inferences drawn from the phylogeographic analysis of contemporary generic variants. Modern postglacial populations are supposed to be representative of their Pleistocene ancestors, and their current distribution is assumed to reflect the different colonization success and dispersal patterns of refugial lineages. Yet, testing of phylogeographic models against ancestral genomes from glacial refugia has rarely been possible. Here we compare ND1 mitochondrial DNA variation in late Pleistocene (16,000-40,000 years before present), historical and contemporary Atlantic salmon (Salmo salar) populations from northern Spain and other regions of western Europe. Our study demonstrates the presence of Atlantic salmon in the Iberian glacial refugium during the last 40,000 years and points to the Iberian Peninsula as the likely source of the most common haplotype within the Atlantic lineage in Europe. However, our findings also suggest that there may have been significant changes in the genetic structure of the Iberian refugial stock since the last ice age, and question whether modern populations in refugial areas are representative of ice age populations. A common haplotype that persisted in the Iberian Peninsula during the Pleistocene last glacial maximum is now extremely rare or absent from European rivers, highlighting the need for caution when making phylogeographic inferences about the origin and distribution of modern genetic types.  相似文献   

11.
Widely distributed Palearctic insects are ideal to study phylogeographic patterns owing to their high potential to survive in many Pleistocene refugia and-after the glaciation-to recolonize vast, continuous areas. Nevertheless, such species have received little phylogeographic attention. Here, we investigated the Pleistocene refugia and subsequent postglacial colonization of the common, abundant, and widely distributed ant Myrmica rubra over most of its Palearctic area, using mitochondrial DNA (mtDNA). The western and eastern populations of M. rubra belonged predominantly to separate haplogroups, which formed a broad secondary contact zone in Central Europe. The distribution of genetic diversity and haplogroups implied that M. rubra survived the last glaciation in multiple refugia located over an extensive area from Iberia in the west to Siberia in the east, and colonized its present areas of distribution along several routes. The matrilineal genetic structure of M. rubra was probably formed during the last glaciation and subsequent postglacial expansion. Additionally, because M. rubra has two queen morphs, the obligately socially parasitic microgyne and its macrogyne host, we tested the suggested speciation of the parasite. Locally, the parasite and host usually belonged to the same haplogroup but differed in haplotype frequencies. This indicates that genetic differentiation between the morphs is a universal pattern and thus incipient, sympatric speciation of the parasite from its host is possible. If speciation is taking place, however, it is not yet visible as lineage sorting of the mtDNA between the morphs.  相似文献   

12.
Aim The evolution of avian speciation patterns across much of Eurasia is under‐explored. Excepting phylogeographic patterns of single species, or speciation involving the Himalayas, there has been no attempt to understand the evolution of avian distributional patterns across the rest of the continent. Within many genera there is a pattern of (presumed) sister species occurring in adjacent areas (western, eastern or southern Eurasia), yet this pattern cannot be explained by existing biogeographic barriers. My aim was to examine the possible role of climate‐driven vicariance events in generating avian distributions. Location Eurasia. Methods I constructed a molecular phylogeny of Phoenicurus redstarts, and assembled phylogenetic data from published studies of seven other Eurasian bird genera. On each phylogeny, I assessed the distributional patterns of species and clades relative to refugial areas in western, eastern and southern Eurasia. I also estimated the timing of lineage divergences via a molecular clock, to determine whether distributional patterns can be explained by well‐defined periods of climate change in Eurasia that are recorded from dated sediments in the Chinese Loess Plateau. Results Species relationships in a well‐supported phylogeny of Phoenicurus show a pattern of distributions consistent with repeated speciation in major refugial areas, where one lineage is isolated in a single area of Eurasia relative to its sister lineage. This same pattern is evident in Eurasian Turdus thrushes, and six additional avian genera distributed across Eurasia. Molecular clock dating indicates that divergences within each genus are the result of multiple rounds of speciation in refugia through time, during major climate‐driven episodes of vicariance. Main conclusions Analyses revealed substantial evidence supporting a repeated, non‐random pattern of speciation within and across eight songbird lineages since the Late Miocene. The pattern of speciation supports a model of isolation in refugia during major episodes of vicariance, specifically periods of either intensified desertification of Central Asia or Eurasian glacial cycles. The densely sampled clades used here preclude inter‐continental dispersal as an alternative explanation for distributions. The signature of climate‐driven vicariance across epochs is, given the absence of extant biogeographic barriers, a suitable hypothesis to explain major lineage divergences in widely distributed Eurasian songbird lineages.  相似文献   

13.
The Sino-Japanese Floristic Region (SJFR) of East Asia harbors the most diverse of the world's temperate flora, and was the most important glacial refuge for its Tertiary representatives ('relics') throughout Quaternary ice-age cycles. A steadily increasing number of phylogeographic studies in the SJFR of mainland China and adjacent areas, including the Qinghai-Tibetan-Plateau (QTP) and Sino-Himalayan region, have documented the population histories of temperate plant species in these regions. Here we review this current literature that challenges the oft-stated view of the SJFR as a glacial sanctuary for temperate plants, instead revealing profound effects of Quaternary changes in climate, topography, and/or sea level on the current genetic structure of such organisms. There are three recurrent phylogeographic scenarios identified by different case studies that broadly agree with longstanding biogeographic or palaeo-ecological hypotheses: (i) postglacial re-colonization of the QTP from (south-)eastern glacial refugia; (ii) population isolation and endemic species formation in Southwest China due to tectonic shifts and river course dynamics; and (iii) long-term isolation and species survival in multiple localized refugia of (warm-)temperate deciduous forest habitats in subtropical (Central/East/South) China. However, in four additional instances, phylogeographic findings seem to conflict with a priori predictions raised by palaeo-data, suggesting instead: (iv) glacial in situ survival of some hardy alpine herbs and forest trees on the QTP platform itself; (v) long-term refugial isolation of (warm-)temperate evergreen taxa in subtropical China; (vi) 'cryptic' glacial survival of (cool-)temperate deciduous forest trees in North China; and (vii) unexpectedly deep (Late Tertiary/early-to-mid Pleistocene) allopatric-vicariant differentiation of disjunct lineages in the East China-Japan-Korea region due to past sea transgressions. We discuss these and other consequences of the main phylogeographic findings in light of palaeo-environmental evidence, emphasize notable gaps in our knowledge, and outline future research prospects for disentangling the evolution and biogeographic history of the region's extremely diverse temperate flora.  相似文献   

14.
Mitochondrial DNA sequence data were used to examine the phylogeographic history of Steller's sea lions (Eumetopias jubatus) in relation to the presence of Plio-Pleistocene insular refugia. Cytochrome b and control region sequences from 336 Steller's sea lions reveal phylogenetic lineages associated with continental refugia south of the ice sheets in North America and Eurasia. Phylogenetic analysis suggests the genetic structure of E. jubatus is the result of Pleistocene glacial geology, which caused the elimination and subsequent reappearance of suitable rookery habitat during glacial and interglacial periods. The cyclic nature of geological change produced a series of independent population expansions, contractions and isolations that had analogous results on Steller's sea lions and other marine and terrestrial species. Our data show evidence of four glacial refugia in which populations of Steller's sea lions diverged. These events occurred from approximately 60,000 to 180,000 years BP and thus preceded the last glacial maximum.  相似文献   

15.
The number and location of Arctic glacial refugia utilized by taxa during the Pleistocene are continuing uncertainties in Holarctic phylogeography. Arctic grayling (Thymallus arcticus) are widely distributed in freshwaters from the eastern side of Hudson Bay (Canada) west to central Asia. We studied mitochondrial DNA (mtDNA) and microsatellite DNA variation in North American T. arcticus to test for genetic signatures of survival in, and postglacial dispersal from, multiple glacial refugia, and to assess their evolutionary affinities with Eurasian Thymallus. In samples from 32 localities, we resolved 12 mtDNA haplotypes belonging to three assemblages that differed from each other in sequence by between 0.75 and 2.13%: a 'South Beringia' lineage found from western Alaska to northern British Columbia, Canada; a 'North Beringia' lineage found on the north slope of Alaska, the lower Mackenzie River, and to eastern Saskatchewan; and a 'Nahanni' lineage confined to the Nahanni River area of the upper Mackenzie River drainage. Sequence analysis of a portion of the control region indicated monophyly of all North American T. arcticus and their probable origin from eastern Siberian T. arcticus at least 3 Mya. Arctic grayling sampled from 25 localities displayed low allelic diversity and expected heterozygosity (H(E)) across five microsatellite loci (means of 2.1 alleles and 0.27 H(E), respectively) and there were declines in these measures of genetic diversity with distance eastward from the lower Yukon River Valley. Assemblages defined by mtDNA divergences were less apparent at microsatellite loci, but again the Nahanni lineage was the most distinctive. Analysis of molecular variance indicated that between 24% (microsatellite DNA) and 81% (mtDNA) of the variance was attributable to differences among South Beringia, North Beringia and Nahanni lineages. Our data suggest that extant North American Arctic grayling are more diverse phylogeographically than previously suspected and that they consist of at least three major lineages that originated in distinct Pleistocene glacial refugia. T. arcticus probably originated and dispersed from Eurasia to North America in the late to mid-Pliocene, but our data also suggest more recent (mid-late Pleistocene) interactions between lineages across Beringia.  相似文献   

16.
Quaternary glaciations have played a major role in shaping the genetic diversity and distribution of plant species. Strong palaeoecological and genetic evidence supports a postglacial recolonization of most plant species to northern Europe from southern, eastern and even western glacial refugia. Although highly controversial, the existence of small in situ glacial refugia in northern Europe has recently gained molecular support. We used genomic analyses to examine the phylogeography of a species that is critical in this debate. Carex scirpoidea Michx subsp. scirpoidea is a dioecious, amphi‐Atlantic arctic–alpine sedge that is widely distributed in North America, but absent from most of Eurasia, apart from three extremely disjunct populations in Norway, all well within the limits of the Weichselian ice sheet. Range‐wide population sampling and variation at 5,307 single nucleotide polymorphisms show that the three Norwegian populations comprise unique evolutionary lineages divergent from Greenland with high between‐population divergence. The Norwegian populations have low within‐population genetic diversity consistent with having experienced genetic bottlenecks in glacial refugia, and host private alleles that probably accumulated in long‐term isolated populations. Demographic analyses support a single, pre‐Weichselian colonization into Norway from East Greenland, and subsequent divergence of the three populations in separate refugia. Other refugial areas are identified in North‐east Greenland, Minnesota/Michigan, Colorado and Alaska. Admixed populations in British Columbia and West Greenland indicate postglacial contact. Taken together, evidence from this study strongly indicates in situ glacial survival in Scandinavia.  相似文献   

17.
Since the last glacial maximum (LGM), many plant and animal taxa have expanded their ranges by migration from glacial refugia. Weeds of cultivation may have followed this trend or spread globally following the expansion of agriculture or ruderal habitats associated with human‐mediated disturbance. We tested whether the range expansion of the weed Silene vulgaris across Europe fit the classical model of postglacial expansion from southern refugia, or followed known routes of the expansion of human agricultural practices. We used species distribution modeling to predict spatial patterns of postglacial expansion and contrasted these with the patterns of human agricultural expansion. A population genetic analysis using microsatellite loci was then used to test which scenario was better supported by spatial patterns of genetic diversity and structure. Genetic diversity was highest in southern Europe and declined with increasing latitude. Locations of ancestral demes from genetic cluster analysis were consistent with areas of predicted refugia. Species distribution models showed the most suitable habitat in the LGM on the southern coasts of Europe. These results support the typical postglacial northward colonization from southern refugia while refuting the east‐to‐west agricultural spread as the main mode of expansion for S. vulgaris. We know that S. vulgaris has recently colonized many regions (including North America and other continents) through human‐mediated dispersal, but there is no evidence for a direct link between the Neolithic expansion of agriculture and current patterns of genetic diversity of S. vulgaris in Europe. Therefore, the history of range expansion of S. vulgaris likely began with postglacial expansion after the LGM, followed by more recent global dispersal by humans.  相似文献   

18.
Phylogeographic structures of two weakly dispersing Mysis sibling species, one with a circumarctic coastal, the other with a boreal lacustrine-Baltic distribution, were studied from mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. Mysis segerstralei showed high overall diversity and little phylogeographic structure across the Arctic, indicating late-glacial dispersal among coastal and lake populations from Alaska, Siberia and the north of Europe. A strongly divergent refugial lineage was however identified in Beringia. The boreal 'glacial relict'Mysis salemaai in turn displayed clear structuring among postglacially isolated Scandinavian lake populations. The inferred pattern of intralake mitochondrial DNA (mtDNA) monophyly in Scandinavia suggested relatively small population sizes and a remarkably fast postglacial mtDNA divergence rate (0.27% per 10 000 years). Nevertheless, the broader phylogeographic pattern did not support distinct eastern and western glacial refugia in Northern Europe, unlike in some other aquatic taxa. In all, the two species comprised three equidistant mitochondrial lineages (approximately 2% divergence), corresponding to M. salemaai, to the bulk of M. segerstralei, and to the Beringian M. segerstralei lineage. The lack of reciprocal monophyly of the two species in respect to their mitochondrial genealogy could indicate postspeciation mitochondrial introgression, also exemplified by an evidently more recent capture of M. segerstralei mitochondria in a Karelian population of M. salemaai. Overall, the data suggest that the continental boreal M. salemaai has a relatively recent ancestry in arctic coastal waters, whereas two other boreal 'glacial relict'Mysis sibling species in Europe (Mysis relicta) and North America (Mysis diluviana) have colonized inland waters much earlier (approximately 8% COI divergence).  相似文献   

19.
The potentially important role of northern microrefugia during postglacial dispersal is challenging the view of southern Europe as a refuge and source area of European biota. In groundwaters, large geographic ranges of presumably good dispersers are increasingly suspected to consist of assemblages of cryptic species with narrow ranges. Moreover, a large species range, even when confirmed by molecular evidence, tells us little about the spatiotemporal dynamics of dispersal. Here, we used phylogenetic inferences, species delineation methods and Bayesian phylogeographic diffusion models to test for the likelihood of postglacial colonization from distant refugia among five morphospecies of Proasellus (Isopoda, Asellidae). All morphospecies except one were monophyletic, but they comprised a total of 15–17 cryptic species. Three cryptic species retained ranges that spanned a distance >650 km, similar to that of the nominal morphospecies. Bayesian diffusion models based on mitochondrial markers revealed considerable spatiotemporal heterogeneity in dispersal rates, suggesting that short‐time dispersal windows were instrumental in shaping species ranges. Only one species was found to experience a recent, presumably postglacial, range expansion. The Jura and Alpine foothills probably played a major role in maintaining diversity within Proasellus in northern regions by acting both as diversification hotspots and Pleistocene refugia. Gaining insight into the spatiotemporal heterogeneity of dispersal rates revealed contrasting colonization dynamics among species that were not consistent with a global postglacial colonization of Europe from distant refugia.  相似文献   

20.
Mesic southeastern Australia represents the continent's ancestral biome and is highly biodiverse, yet its phylogeographic history remains poorly understood. Here, we examine mitochondrial DNA (mtDNA) control region and microsatellite diversity in the brush‐tailed rock‐wallaby (Petrogale penicillata;= 279 from 31 sites), to assess historic evolutionary and biogeographic processes in southeastern Australia. Our results (mtDNA, microsatellites) confirmed three geographically discrete and genetically divergent lineages within brush‐tailed rock‐wallabies, whose divergence appears to date to the mid‐Pleistocene. These three lineages had been hypothesized previously but data were limited. While the Northern and Central lineages were separated by a known biogeographic barrier (Hunter Valley), the boundary between the Central and Southern lineages was not. We propose that during particularly cool glacial cycles, the high peaks of the Great Dividing Range and the narrow adjacent coastal plain resulted in a more significant north–south barrier for mesic taxa in southeastern Australia than has been previously appreciated. Similarly, located phylogeographic breaks in codistributed species highlight the importance of these regions in shaping the distribution of biodiversity in southeastern Australia and suggest the existence of three major refuge areas during the Pleistocene. Substructuring within the northern lineage also suggests the occurrence of multiple local refugia during some glacial cycles. Within the three major lineages, most brush‐tailed rock‐wallaby populations were locally highly structured, indicating limited dispersal by both sexes. The three identified lineages represent evolutionarily significant units and should be managed to maximize the retention of genetic diversity within this threatened species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号