首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Whether plants respond to cues produced by neighbors has been a topic of much debate. Recent evidence suggests that wild tobacco plants transplanted near experimentally clipped sagebrush neighbors suffer less leaf herbivory than tobacco controls with unclipped neighbors. Here we expand these results by showing evidence for induced resistance in naturally rooted tobacco when sagebrush neighbors are clipped either with scissors or damaged with actual herbivores. Tobacco plants with sagebrush neighbors clipped in both ways had enhanced activity levels of polyphenol oxidase (PPO), a chemical marker of induced resistance in many solanaceous plants. Eavesdropping was found for plants that were naturally rooted, although only when sagebrush and tobacco grew within 10 cm of each other. Although tobacco with clipped neighbors experienced reduced herbivory, tobacco that grew close to sagebrush had lower production of capsules than plants that grew far from sagebrush. When neighboring tobacco rather than sagebrush was clipped, neither levels of PPO nor levels of leaf damage to tobacco were affected. Eavesdropping on neighboring sagebrush, but not neighboring tobacco, may result from plants using a jasmonate signaling system. These results indicate that plants eavesdrop in nature and that this behavior can increase resistance to herbivory although it does not necessarily increase plant fitness.  相似文献   

2.
Previous experiments showed that wild tobacco plants with experimentally clipped sagebrush neighbors experienced less damage by grasshoppers than tobacco plants with unclipped sagebrush neighbors. This result could have been caused by grasshoppers preferring not to feed near clipped sagebrush. This hypothesis was tested in field choice experiments using six grasshopper species feeding on an unresponsive and uniformly palatable food. When offered food that was either close to clipped sagebrush or close to unclipped sagebrush, grasshoppers showed no preference. When offered food that was either close to sagebrush (3 cm) or far from sagebrush (30 cm), grasshoppers preferred to feed far from sagebrush. However, this preference was similar whether or not the sagebrush had been clipped. Avoidance of feeding near clipped sagebrush, independent of changes in tobacco, was not found to contribute to our earlier result that tobacco near clipped sagebrush suffered less herbivory than tobacco near unclipped sagebrush.  相似文献   

3.
Communication between plants has not been widely accepted by most ecologists. However, recent field experiments indicated that wild tobacco plants became more resistant to herbivores when grown in close proximity to clipped sagebrush neighbors. Tobacco plants grown within 15 cm of sagebrush that had been either manually clipped with scissors or damaged by herbivores experienced less naturally occurring folivory than tobacco plants with unclipped neighbors. These results were consistent over five field seasons and involved treatments that were randomly assigned and well replicated. Associated with lower levels of herbivory were increased activities of polyphenol oxidase in tobacco foliage near clipped sagebrush neighbors. Experiments that blocked either air or soil contact between sagebrush and tobacco indicated that the communication was airborne rather than soilborne. Alternative explanations involving altered microenvironmental conditions or avoidance of clipped sagebrush by herbivores were not supported.Much remains to be learned about the natural history of this phenomenon. Apparently the plants must be in close proximity for communication to occur. Preliminary results suggest that communication between sagebrush and other plants may also occur. The mechanisms of communication as well as its ecological and evolutionary significance remain unknown.  相似文献   

4.
Seasonal changes in herbivore numbers and in plant defenses are well known to influence plant–herbivore interactions. Some plant defenses are induced in response to herbivore attack or cues correlated with risk of attack although seasonal variation in these defenses is relatively poorly known. We previously reported that sagebrush becomes more resistant to its herbivores when neighboring plants have been experimentally clipped with scissors. In this study we asked whether herbivory to leaves of sagebrush varied seasonally and whether there was seasonal variation in natural levels of damage when neighbors were clipped. We found that sagebrush accumulated most chewing damage early in the season, soon after the spring flush of new leaves. This damage was caused by generalist grasshoppers, deer, specialist caterpillars, beetles, gall makers, and other less common herbivores. Sagebrush showed no evidence of preferentially abscising leaves that had been experimentally clipped. Experimental clipping by Trirhabda pilosa beetle larvae caused neighbors to accumulate less herbivore damage later that season, similar to results in which clipping was done with scissors. Induced resistance caused by experimentally clipping a neighbor was affected by season; plants with neighbors clipped in May accumulated less damage throughout the season relative to plants with unclipped neighbors or neighbors clipped later in the summer. We found a correlation between seasonal herbivore pressure, damage accumulated by plants, and induced responses to experimentally clipping neighbors. The causal mechanisms responsible for this correlation are unknown although a strong seasonal effect was clear.  相似文献   

5.
Damage to sagebrush attracts predators but this does not reduce herbivory   总被引:2,自引:0,他引:2  
Emissions of volatiles increase following herbivory from many plant species and volatiles may serve multiple functions. Herbivore‐induced volatiles attract predators and parasitoids of herbivores and are often assumed to benefit plants by facilitating top‐down control of herbivores; this benefit of induced emissions has been tested only a few times. Volatile compounds released by experimentally clipped sagebrush shoots have been shown to reduce levels of chewing damage experienced by other shoots on the same plant and on neighboring sagebrush plants. In this study, I asked whether experimental clipping attracted predators of herbivorous insects to sagebrush shoots. I also evaluated aphid populations and chewing damage on clipped and unclipped shoots and whether predators were likely to have caused differences in aphids and chewing damage. Shoots that had been clipped recruited more generalist predators, particularly coccinellids and Geocoris spp. in visual surveys conducted during two seasons. Clipping also caused increased numbers of parasitized aphids in one season. Ants were common tending aphids but were not significantly affected by clipping. Despite the increase in generalist predators, clipped plants were more likely to support populations of aphids that increased during both seasons compared to aphids on unclipped control plants. Clipped shoots suffered less damage by chewing herbivores in the 1‐year in which this was measured. Chewing damage was not correlated with numbers of predators. These results suggest that predators and parasitoids were attracted to experimentally clipped sagebrush plants but that these predators were not effective at reducing net damage to the plant. This conclusion is not surprising as much of the herbivory is inflicted by grasshoppers and deer, herbivores that are not vulnerable to the predators attracted to sagebrush volatiles. More generally, it should not be assumed that predators that are attracted by herbivore‐induced volatiles necessarily benefit the plant without testing this hypothesis under field conditions.  相似文献   

6.
7.
Shiojiri K  Karban R 《Oecologia》2006,149(2):214-220
Plants progress through a series of distinct stages during development, although the role of plant ontogeny in their defenses against herbivores is poorly understood. Recent work indicates that many plants activate systemic induced resistance after herbivore attack, although the relationship between resistance and ontogeny has not been a focus of this work. In addition, for sagebrush and a few other species, individuals near neighbors that experience simulated herbivory become more resistant to subsequent attack. Volatile, airborne cues are required for both systemic induced resistance among branches and for communication among individuals. We conducted experiments in stands of sagebrush of mixed ages to determine effects of plant age on volatile signaling between branches and individuals. Young and old control plants did not differ in levels of chewing damage that they experienced. Systemic induced resistance among branches was only observed for young plants. Young plants showed strong evidence of systemic resistance only if airflow was permitted among branches; plants with only vascular connections showed no systemic resistance. We also found evidence for volatile communication between individuals. For airborne communication, young plants were more effective emitters of cues as well as more responsive receivers of volatile cues.  相似文献   

8.
Many examples of associational resistance have been reported, in which a plant’s neighbors reduce the rate of damage by herbivores that it experiences. Despite 30 years of interest and hundreds of examples of associational resistance, we still know very little about how plants avoid their herbivores. This lack of mechanistic understanding prevents us from predicting when or where associational resistance will be important or might affect species’ distributions. I demonstrate here that the plant neighborhoods that surrounded focal mule’s ears (Wyethia mollis) individuals affected the damage they received. In particular, distance between a focal mule’s ears individual and its nearest sagebrush neighbor (Artemisia tridentata) was a good predictor of how much leaf area the mule’s ears would lose to herbivores over 2 years. Mule’s ears close to sagebrush suffered less loss than those with more distant nearest sagebrush neighbors. Mule’s ears with near sagebrush neighbors suffered half the leaf loss as mule’s ears with sagebrush experimentally removed. This associational resistance was probably not caused by sagebrush attracting or increasing populations of predators of generalist herbivores. Sagebrush is known to emit chemicals that are feeding deterrents to generalist grasshoppers and these deterrents were probably involved here. Volatile chemicals emitted by damaged sagebrush have been found to induce resistance in neighboring plants of several species. However, I found no evidence for such eavesdropping here as mule’s ears gained associational resistance from sagebrush neighbors whether or not those sagebrush neighbors had been experimentally damaged. Understanding the mechanisms responsible for associational resistance is critical to predicting where and when it will be important.  相似文献   

9.
Volatile communication allows plants to coordinate systemic induced resistance against herbivores. The mechanisms responsible and nature of the cues remain poorly understood. It is unknown how plants distinguish between reliable cues and misinformation. Previous experiments in which clipped sagebrush branches were bagged suggested that cues are emitted or remain active for up to 3 days. We conducted experiments using plastic bags to block emission of cues at various times following experimental clipping. We also collected headspace volatiles from clipped and unclipped branches for 1 h, transferred those volatiles to assay branches, and incubated the assays for either 1 or 6 h. We found that assay branches that received volatile cues for less than 1 h following clipping of neighbors failed to induce resistance. Assay branches that received volatile cues for more than 1 h experienced reduced herbivory throughout the season. Branches incubated for 6 h with volatiles that had been collected during the first hour following clipping showed induced resistance. These results indicate that sagebrush must receive cues for an extended time (>1 h) before responding; they suggest that the duration of cue reception is an important and overlooked process in communication allowing plants to avoid unreliable, ephemeral cues.  相似文献   

10.
Karban R 《Ecology letters》2007,10(9):791-797
Current views of plant communities emphasize the importance of competition for resources and colonization ability in determining seedling establishment and plant distributions. Many desert shrubs are surrounded by bare zones that lack other plants or have different suites of species beneath them compared with the open desert surrounding them. Releases of biochemicals as volatiles from leaves, leachates from litter, or exudates from roots have been proposed as mechanisms for this pattern, but such phytotoxicity has been controversial. I tested the hypothesis that experimental clipping of sagebrush foliage enhances its effect as a germination inhibitor. Germination of native forbs and grasses was reduced in association with clipped, compared with unclipped, sagebrush foliage in lath house and field experiments. Sagebrush seeds were not significantly affected. Air contact was required for this inhibition of germination. Soil contact and leaf litter were not required and added little inhibition of germination. These results suggest a potentially large, indirect, and previously overlooked role for interactions between herbivory and germination that could affect plant community structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号