首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Comparing the relationship between resource use and resource availability (i.e. the functional response, FR) between two predators can provide useful insights on their relative predatory impacts. For instance in invasion ecology, an increase in the predation pressure on local prey populations can be predicted from a significant difference in FR revealing a higher FR for the invasive predator compared to the native trophic analogue it may replace. In traditional FR experiments, the focal prey species is the only source of food. This may lead to misinterpretations with opportunistic omnivores that are able to cope with different resource availabilities in their natural environment, and whose predation rate may therefore be modulated by the presence of alternative resources. To address this question, we compared the FR of two freshwater gammarid species known to behave as opportunistic omnivores: the invasive “killer shrimp” Dikerogammarus villosus and the native Gammarus pulex, in a treatment with a focal prey species as the only food source (the water flea Daphnia magna) and in a treatment with the focal prey and an alternative food source (Carpinus betulus leaves). D. villosus showed a significantly higher FR than G. pulex with water fleas only and providing leaf litter suppressed this difference. The predatory impact of D. villosus might therefore be modulated by the relative availability of live prey compared to the alternative food sources. Increasing the realism of FR experiments through the inclusion of abundant and easily accessible alternative resources, like leaf litter for benthic invertebrates, should refine the predictions made from FR comparisons.  相似文献   

2.
In most European freshwater ecosystems, the invasive gammarids Gammarus tigrinus and Dikerogammarus villosus strongly impair recipient communities through predation of a wide range of native invertebrates. Due to the effects of temperature on both the physiology and the behaviour of such ectotherms, understanding how global warming may influence their ecological impact is a research priority. These species were therefore exposed to three different food types to determine their detritivorous, herbivorous and carnivorous characters, and predation was measured characterizing the Holling’s functional response. The effect of increasing water temperatures (15, 20, 25°C) on both the food choice and predatory activities was investigated. Both species showed a significant preference for animal tissues at all temperatures. The total food intake increased with temperature for G. tigrinus but did not change for D. villosus, which may result from specific species differences in metabolic requirements. The consumption of live prey strongly increased with temperature. The main differences were an increased searching efficiency in G. tigrinus and a decreased handling time in D. villosus as temperature increased, which may result from differences in foraging strategies. These results suggest that climate change is likely to increase the predation pressure of both invasive gammarids on prey species.  相似文献   

3.
Invasive predators can have dramatic impacts on invaded communities. Extreme declines in macroinvertebrate populations often follow killer shrimp (Dikerogammarus villosus) invasions. There are concerns over similar impacts on fish through predation of eggs and larvae, but these remain poorly quantified. We compare the predatory impact of invasive and native amphipods (D. villosus and Gammarus pulex) on fish eggs and larvae (ghost carp Cyprinus carpio and brown trout Salmo trutta) in the laboratory. We use size-matched amphipods, as well as larger D. villosus reflecting natural sizes. We quantify functional responses, and electivity amongst eggs or larvae and alternative food items (invertebrate, plant and decaying leaf). D. villosus, especially large individuals, were more likely than G. pulex to kill trout larvae. However, the magnitude of predation was low (seldom more than one larva killed over 48 h). Trout eggs were very rarely killed. In contrast, carp eggs and larvae were readily killed and consumed by all amphipod groups. Large D. villosus had maximum feeding rates 1.6–2.0 times higher than the smaller amphipods, whose functional responses did not differ. In electivity experiments with carp eggs, large D. villosus consumed the most eggs and the most food in total. However, in experiments with larvae, consumption did not differ between amphipod groups. Overall, our data suggest D. villosus will have a greater predatory impact on fish populations than G. pulex, primarily due to its larger size. Higher invader abundance could amplify this difference. The additional predatory pressure could reduce recruitment into fish populations.  相似文献   

4.
Ponto-Caspian gammarids have invaded European waters, affecting local communities by predation and competition. Their ranges and dispersal rates vary across Europe, which may result from their interspecific interactions, accelerating or reducing migrations. We checked this hypothesis by testing interference competition among co-occurring invaders: Dikerogammarus villosus, D. haemobaphes and Pontogammarus robustoides. We used 140-cm long tanks (gravel substratum), divided into seven compartments. We introduced 25 “residents” into the outermost compartment, separated with a barrier. After 1 h, we introduced 25 “intruders”. After the next 1 h, we removed the barrier and the gammarids dispersed in the tank. After 4 or 20 h, we counted the gammarids in the compartments. We tested all pairwise species combinations and single-species controls. Dikerogammarus villosus displaced other species (P. robustoides only after 4 h) and reduced its own motility after 20 h in their presence. Pontogammarus robustoides stimulated the short-time migrations of D. villosus intruders and of D. haemobaphes. As P. robustoides migrated spontaneously much more than Dikerogammarus spp., its impact decreased after longer time. Dikerogammarus haemobaphes stimulated the short-time movement of P. robustoides intruders but reduced the long-time relocation of this species. In general, gammarid dispersal increased in the presence of stronger competitors (D. villosus and P. robustoides, especially residents) and decreased in response to weaker competitors (D. haemobaphes). Thus, competitive interactions may affect dispersal of invasive gammarids and contribute to the fastest spread of the weakest competitor, D. haemobaphes observed in the field, whereas the strongest species, D. villosus was the latest newcomer in many novel areas.  相似文献   

5.
The invasion of the Ponto–Caspian amphipod Dikerogammarus villosus in European rivers is assumed to reduce macroinvertebrate diversity and to alter ecosystem functions. D. villosus shows an extraordinarily flexible feeding behavior including the ability to use various food sources. On the other hand, its response to predation risk seems to depend on environmental factors. To evaluate the ecological function of D. villosus, we estimated the daily food consumption for different food sources and analyzed potential effects of predator avoidance behavior on feeding. D. villosus consumption of willow leaves or chironomid larvae was quantified in 24-h laboratory experiments with and without kairomones of the European bullhead (Cottus gobio). Consumption rates were estimated based on gut content and gut evacuation rate under semi-natural laboratory conditions enabling the animals to feed over the whole time of the evacuation rate experiment. We observed very high evacuation rates and consequently high consumption rates up to 89% of body weight per day. Consumption rates differed significantly between food sources: D. villosus ingested more leaves than chironomid larvae. In contrast, predator cues did not affect the feeding of D. villosus. This might be explained by its strong refuge affinity and probably benefits its successful invasion. A comparison of the estimated consumption rates with results of an own consumption experiment (and other studies) under more artificial conditions indicated that more natural conditions result in higher consumption rates. Consequently, feeding rates from highly artificial experiments should be used with great caution to assess the ecosystem function of D. villosus.  相似文献   

6.
Two Ponto-Caspian amphipods, Dikerogammarus villosus and Dikerogammarus haemobaphes, have expanded their geographical ranges from eastern Europe into Great Britain in recent years. This study represents one of the first examining the distribution and habitat preferences of coexisting populations of D. haemobaphes and D. villosus via field and laboratory experiments in the UK. Field surveys of a recently invaded lowland reservoir in the UK are complimented with ex situ laboratory mesocosm experiments examining the substrate preferences of coexisting populations of D. villosus and D. haemobaphes. Results from the field study indicated that D. haemobaphes dominated the macroinvertebrate community within the reservoir and demonstrated a strong affinity for large cobble and artificial substrates. D. villosus occurred at lower abundances but displayed a strong preference for coarse cobble substrates. A third invasive amphipod, Crangonyx pseudogracilis, was largely confined to sand/silt habitats. Laboratory mesocosm experiments clearly supported the field observations of D. villosus and D. haemobaphes with both species demonstrating a preference for cobble substrates. Results from the study highlight the importance of characterising physical habitat when investigating biological invasions and suggest that habitat availability may influence the extent and speed at which range expansion of new amphipod invaders occurs.  相似文献   

7.
Dikerogammarus villosus, a Ponto-Caspian species, is known to be a particularly successful invader, and is currently the prevailing invasive gammarid in Southern German large waters. Field observations suggest that D. villosus has replaced the native G. pulex and the invasive D. haemobaphes, also a Ponto-Caspian species, in some reaches of the German Danube. Dikerogammarus villosus is also believed to be the reason why Echinogammarus berilloni, a Mediterranean species, and Dikerogammarus bispinosus, a further Ponto-Caspian gammaridean species, could not build significant populations in Southern German rivers. Because intraguild predation (IGP) is regarded as a major force leading to species displacements, we hypothesized that superiority in predation by D. villosus is responsible for the disappearance or limited occurrence of several native and invasive gammarideans in many reaches of Southern German waters. To test this hypothesis, we conducted a series of laboratory IGP experiments with 1:1 combinations in which D. villosus was allowed to prey on other gammarids and vice versa. We also studied the extent of cannibalism within species. Dikerogammarus villosus was a stronger predator than G. pulex and E. berilloni. However, D. villosus was not stronger in predation than its relatives D. haemobaphes and D. bispinosus, although results with the combinations of D. villosus and D. bispinosus were less conclusive, especially in the female–female combination. Cannibalism rate was high in D. haemobaphes compared with other species. We conclude that superiority in IGP experiments could explain the disappearance of G. pulex and the missing or limited occurrence of E. berilloni since the arrival of D. villosus in Southern German rivers. However, the results of IGP experiments do not explain why D. haemobaphes was displaced by D. villosus in many places and why D. bispinosus could not build significant populations in Southern German waters. Possibly specific combinations between mutual predation and cannibalism or factors other than predation could have affected displacement and occurrence patterns of Dikerogammarus species in Southern German waters.  相似文献   

8.
9.
In aquatic systems, tilapia introductions may result in marked changes in the structure of prey communities. In this study, we experimentally examined the effects of tilapia-mediated water at the individual and population levels of prey by exposing three Daphnia species to predation cues. We hypothesized that tilapia-mediated water determines reduced age and size at primipara, greater and faster reproduction, enhanced intrinsic rates of population increase (r), and longer tail spines in Daphnia; but that the magnitude of these changes would be species and clone-dependent. When three tropical D. laevis and one temperate D. similis clones were exposed to predation cues, adaptive changes were observed in some of the aforementioned parameters for each clone. The three D. laevis clones exhibited changes in all life-history and morphological measures. Temperate Daphnia spinulata displayed no changes but decreased r values in the presence of predators. The observed changes in the species and clones tested here suggest that, overall, both temperate and tropical Daphnia can detect and adaptively react to the risk of tilapia predation. However, only a fraction of the possible defenses may be displayed by individual clones. In contrast, D. spinulata seems more vulnerable to tilapia predation, given its long body length and absence of adaptive changes. Our study indicates that Daphnia can respond to tilapia-mediated water, and that interspecific and clonal variation exists between temperate and tropical species.  相似文献   

10.
Global climate change is known to affect physiological processes in charge of cellular stress response. That often results in forcing many organisms to shift their biogeographic distribution ranges. It also holds true for euryoecious and highly invasive species like the killer shrimp, Dikerogammarus villosus. In this study we compare the level of response to thermal stress in two genetically diversified populations of the amphipod D. villosus on the cellular level, namely HSP70 expression. The results show clear difference in HSP70 expression, that can be a direct consequence of the different climatic conditions both populations faced along their invasion routes. We conclude that the eastern population of D. villosus is more sensitive to thermal stress than the western population, hence its invasion potential may be lower than that of the latter. Considering the thermal tolerance of both populations and global warming, we can make some predictions about further spread of D. villosus, including the possibility of an emergence of the super-invader that may arise after cross-breeding of both populations, imposing even larger threat to the freshwater ecosystems.  相似文献   

11.
Parasites can adversely affect host population densities, but predators can regulate disease by reducing the density of susceptible hosts and consuming parasites contained in infected hosts. Some parasites induce phenotypic modifications in their hosts that potentially lead to increased predation. We investigated the role of parasite-induced modified appearance in the interactions between the crustacean Daphnia magna, its bacterial parasite Pasteuria ramosa, and its predator, the backswimmer Anisops sp. Our aim was to test the backswimmer’s prey preference between infected and uninfected D. magna to find out whether infection by P. ramosa can affect predation risk by Anisops. We found that Anisops sp. had a strong preference for uninfected D. magna under light, but under dark conditions the preference was reversed, which suggests that the modified appearance is the cause of this preference. Such anti-parasite preference by Anisops sp. could strongly influence host population dynamics as loss of fecundity, disease mortality, and predation are additive, resulting in host population decline.  相似文献   

12.
13.
The data on the genetic polymorphism of the most widespread Daphnia species occupying different water bodies of Russia are presented. The phylogenetic relationships between the examined species were established, and the haplotype networks were constructed. A fragment of the 16S mitochondrial DNA gene was used as a genetic marker. The results of molecular phylogenetic analysis generally coincided with modern concepts in the systematics of the genus Daphnia. The representatives of the divergent mitochondrial lineages within the D. longispina, D. pulex, and D. magna complex remain poorly investigated morphologically. For D. dentifera, a new habitat on the territory of Russia, namely, the water bodies of the Lake Baikal basin, was identified. A conclusion was made that the 16S mtDNA gene could be successfully used in phylogeographic analysis of the genus Daphnia.  相似文献   

14.
To determine biologically important effects of the cytoplasmic endosymbiont Wolbachia, two substrains of the same Drosophila melanogaster strain have been studied, one of them infected with Wolbachia and the other treated with tetracycline to eliminate the bacterium. Females of D. melanogaster infected with Wolbachia are more resistant to the fungus Blauveria bassiana (an insect pathogen) than uninfected females; infected females also exhibited changes in oviposition substrate preference. Males infected with the bacterium are more competitive than uninfected males. The possible role of Wolbachia in the formation of alternative ecological strategies of D. melanogaster is discussed.  相似文献   

15.
Parasites often alter host physiology and behavior, which can enhance predation risk for infected hosts. Higher consumption of parasitized prey can in turn lead to a less parasitized prey population (the healthy herd hypothesis). Loxothylacus panopaei is a non-native castrating barnacle parasite on the mud crab Eurypanopeus depressus along the Atlantic coast. Through prey choice mesocosm experiments and a field tethering experiment, we investigated whether the predatory crab Callinectes sapidus and other predators preferentially feed on E. depressus infected with L. panopaei. We found that C. sapidus preferentially consumed infected E. depressus 3 to 1 over visibly uninfected E. depressus in the mesocosm experiments. Similarly, infected E. depressus were consumed 1.2 to 1 over uninfected conspecifics in field tethering trials. We evaluated a mechanism behind this skewed prey choice, specifically whether L. panopaei affects E. depressus movement, making infected prey more vulnerable to predator attack. Counter to our expectations, infected E. depressus ran faster during laboratory trials than uninfected E. depressus, suggesting that quick movement may not decrease predation risk and seems instead to make the prey more vulnerable. Ultimately, the preferential consumption of L. panopaei-infected prey by C. sapidus highlights how interactions between organisms could affect where novel parasites are able to thrive.  相似文献   

16.
The nosed charr Salvelinus schmidti that inhabits the littoral zone of Lake Kronotskoe is divided into two groups according to food preferences and parasite fauna. Fish of the first group (G) predominantly feed on gammarids and are characterized by a high infestation with Cystidicola farionis, Cyathocephalus truncatus, and Crepidostomum spр. Fish of the second group (A) do not consume gammarids but feed mostly on chironomid larvae and pupae and on mollusks; the predominant parasites are Phyllodistomum umblae and Proteocephalus longicollis. The significant difference in the abundance of C. farionis, which remains in fish at least for 2 years, is indicative of a long-term and persistent trophic diversification between the charr groups. Moreover, significantly higher growth rates, a larger body size, and a longer lifespan are observed for fish of group G. The feeding strategy of the nosed charr is maintained throughout the life and does not depend on the sex of fish and their distribution within the littoral zone of the lake.  相似文献   

17.

Background

Numerous cases of predator-induced polyphenisms, in which alternate phenotypes are produced in response to extrinsic stimuli, have been reported in aquatic taxa to date. The genus Daphnia (Branchiopoda, Cladocera) provides a model experimental system for the study of the developmental mechanisms and evolutionary processes associated with predator-induced polyphenisms. In D. pulex, juveniles form neckteeth in response to predatory kairomones released by Chaoborus larvae (Insecta, Diptera).

Results

Previous studies suggest that the timing of the sensitivity to kairomones in D. pulex can generally be divided into the embryonic and postembryonic developmental periods. We therefore examined which of the genes in the embryonic and first-instar juvenile stages exhibit different expression levels in the presence or absence of predator kairomones. Employing a candidate gene approach and identifying differentially-expressed genes revealed that the morphogenetic factors, Hox3, extradenticle and escargot, were up-regulated by kairomones in the postembryonic stage and may potentially be responsible for defense morph formation. In addition, the juvenile hormone pathway genes, JHAMT and Met, and the insulin signaling pathway genes, InR and IRS-1, were up-regulated in the first-instar stage. It is well known that these hormonal pathways are involved in physiological regulation following morphogenesis in many insect species. During the embryonic stage when morphotypes were determined, one of the novel genes identified by differential display was up-regulated, suggesting that this gene may be related to morphotype determination. Biological functions of the up-regulated genes are discussed in the context of defense morph formation.

Conclusions

It is suggested that, following the reception of kairomone signals, the identified genes are involved in a series of defensive phenotypic alterations and the production of a defensive phenotype.
  相似文献   

18.
Artificial light at night may affect mortality risk in prey from visually oriented predators because the effect of the artificial light spectrum may differ for a predator’s visual prey detection and for prey evasiveness. To test this, we conducted two types of experiment. First, we assessed the reaction distance and swimming speed of juvenile rudd (Scardinius erythrophthalmus) allowed to forage on juvenile Daphnia pulex?×?pulicaria under three artificial light sources: halogen, high pressure sodium (HPS), and metal halide bulbs, at the same light intensity. Second, we assessed the evasiveness of D. pulex?pulicaria under the same artificial light sources and in darkness (as a control), in the presence and absence of chemical information on predation risk (kairomones) of juvenile rudd. We found that while both reaction distance and swimming speed of fish was greater under halogen compared to HPS, and similar under metal halide light compared to halogen and HPS, the evasiveness of Daphnia was greater under halogen and HPS-generated light than under metal halide light. The results suggest a possible mismatch of Daphnia’s behavioural response under metal halide light to predicted predation risk, and thus a possible threat to predator–prey balance in a lake ecosystem.  相似文献   

19.
The effect of gonadotropic hormones (juvenile (JH) and 20-hydroxyecdysone (20E)) on heat stress resistance was for the first time studied in wild type D. melanogaster line females infected with different genotypes of the Wolbachia pipientis alpha-proteobacterium. It was found that an experimental increase in JH level induces a decrease in the heat stress resistance, while an increase in 20E level induces its increase in sixday females both uninfected with the Wolbachia and infected with different bacterium strains (wMelCS, wMelPop, and wMel). However, the intensity of response differs: a decrease in the survival with an increase in JH level and its increase with an increase in 20E level are more pronounced in females infected with pathogenic wMelPop strain and less pronounced in females infected with the wMelCS genotype than in uninfected females and females infected with the wMel genotype. Data obtained suggest that the wMelCS genotype induces a decrease and wMelPop induces an increase in the level of stress hormone (dopamine), since previously we demonstrated that an increase in the JH level in mature females increases the dopamine level, an increase in the 20E level decreases it, and an increase/decrease in the dopamine level, in turn, leads to a decrease/increase of the Drosophila female resistance to heat stress.  相似文献   

20.
Negative impacts of non-native Harmonia axyridis (Pallas) on members of the native aphid enemy guild have been widely hypothesised but mainly only assessed with other coccinellid species, and mostly in small experimental arenas. Here we investigated the interactions between H. axyridis and Chrysoperla carnea Stephens larvae. In small-scale (Petri dish) arenas 2nd-instar C. carnea were at risk of predation from larval (2nd and 4th-instar) and adult (male and female) H. axyridis while 3rd-instar C. carnea were only at minimal risk from 4th-instar and adult female H. axyridis. Plant species, aphid species and aphid density did not affect intraguild predation of 2nd-instar C. carnea by 4th-instar and adult H. axyridis in mesocosm experiments. Chrysoperla carnea consumed similar numbers of Megoura viciae Buckton, Aphis fabae Scop. and Acyrthosiphon pisum Harris aphids while H. axyridis consumed fewer M. viciae than the other two species. The greatest suppression of A. pisum was achieved in treatments with both C. carnea and H. axyridis. Life stage and the sex of H. axyridis as well as the life stage of C. carnea are important variables affecting intraguild predation and these attributes should be considered when assessing the potential threat of other potentially invasive alien predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号