首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin film solar cells based on co‐evaporated Cu(In,Ga)Se2 absorber films present the highest efficiencies among current polycrystalline thin‐film technologies. Thanks to the development of a novel experimental setup for in situ growth studies, it was possible to follow the formation of the crystalline phases during such deposition processes for the first time. This synchrotron‐based energy‐dispersive X‐ray diffraction and fluorescence setup is suited for real‐time studies of thin film vapor deposition processes. Focusing on the growth of CuInSe2 and CuGaSe2 fabricated by three‐stage processing, we find that the phase transitions in the Cu‐In‐Se system follow the reported pseudo‐binary In2Se3‐Cu2Se phase diagram. This requires a transformation of the Se sublattice during the incorporation of Cu‐Se into the In2Se3 precursor film from the first process stage. In the Cu‐Ga‐Se system, besides an increase in the lattice spacings, we observe no transformation of the Se sublattice. Furthermore, the structural defects of the Ga‐Se precursor film are preserved until the CuGaSe2 stoichiometry is reached. By means of model calculations of the fluorescence signals, we confirm in both systems the segregation of Cu2Se at the surface near a concentration of 25 at.% Cu shortly after the recrystallization of the films. The modeling also reveals that Cu2Se penetrates into the CuInSe2 film, whereas it remains at the surface of the CuGaSe2 film.  相似文献   

2.
Novel thin film composite photocathodes based on device‐grade Cu(In,Ga)Se2 chalcopyrite thin film absorbers and transparent conductive oxide Pt‐implemented TiO2 layers on top are presented for an efficient and stable solar‐driven hydrogen evolution. Thin films of phase‐pure anatase TiO2 are implemented with varying Pt‐concentrations in order to optimize simultaneously i) conductivity of the films, ii) electrocatalytic activity, and iii) light‐guidance toward the chalcopyrite. Thereby, high incident‐photon‐to‐current‐efficiencies of more than 80% can be achieved over the full visible light range. In acidic electrolyte (pH 0.3), the most efficient Pt‐implemented TiO2–Cu(In,Ga)Se2 composite electrodes reveal i) photocurrent densities up to 38 mA cm?2 in the saturation region (?0.4 V RHE, reversible hydrogen electrode), ii) 15 mA cm?2 at the thermodynamic potential for H2‐evolution (0 V RHE), and iii) an anodic onset potential shift for the hydrogen evolution (+0.23 V RHE). It is shown that the gradual increase of the Pt‐concentration within the TiO2 layers passes through an efficiency‐ and stability‐maximum of the device (5 vol% of Pt precursor solution). At this maximum, optimized light‐incoupling into the device‐grade chalcopyrite light‐absorber as well as electron conductance properties within the surface layer are achieved while no degradation are observed over more than 24 h of operation.  相似文献   

3.
The understanding and control of nanostructures with regard to transport and recombination mechanisms is of key importance in the optimization of the power conversion efficiency (PCE) of solar cells based on inorganic nanocrystals. Here, the transport properties of solution‐processed solar cells are investigated using photo‐CELIV (photogenerated charge carrier extraction by linearly increasing voltage) and transient photovoltage techniques; the solar cells are prepared by an in‐situ formation of CuInS2 nanocrystals (CIS NCs) at the low temperature of 270 °C. Structural and morphological analyses reveal the presence of a metastable CuIn5S8 phase and a disordered morphology in the CuInS2 nanocrytalline films consisting of polycrystalline grains at the nanoscale range. Consistent with the disordered morphology of the CIS NC thin films, the CIS NC devices are characterized by a low carrier mobility. The carrier density dynamic indicates that the recombination kinetics in these devices follows the dispersive bimolecular recombination model and does not fully behave in a diffusion‐controlled manner, as expected by Langevin‐type recombination. The mobility–lifetime product of the charge carriers properly explains the performance of the thin (200 nm) CIS NC solar cell with a high fill‐factor of 64% and a PCE of over 3.5%.  相似文献   

4.
Grain boundaries (GBs) in polycrystalline Cu(In,Ga)Se2 thin films exhibit only slightly enhanced recombination, as compared with the grain interiors, allowing for very high power‐conversion efficiencies of more than 20% in the corresponding solar‐cell devices. This work highlights the specific compositional and electrical properties of Cu(In,Ga)Se2 GBs by application of appropriate subnanometer characterisation techniques: inline electron holography, electron energy‐loss spectroscopy, and atom‐probe tomography. It is found that changes of composition at the GBs are confined to regions of only about 1 nm in width. Therefore, these compositional changes are not due to secondary phases but atomic or ionic redistribution within the atomic planes close to the GBs. For different GBs in the Cu(In,Ga)Se2 thin film investigated, different atomic or ionic redistributions are also found. This chemical flexibility makes polycrystalline Cu(In,Ga)Se2 thin films particularly suitable for photovoltaic applications.  相似文献   

5.
As a wide‐bandgap semiconductor, titanium dioxide (TiO2) with a porous structure has proven useful in dye‐sensitized solar cells, but its application in low‐cost, high‐efficiency inorganic photovoltaic devices based on materials such as Cu(InGa)Se2 or Cu2ZnSnS4 is limited. Here, a thin film made from solution‐processed TiO2 nanocrystals is demonstrated as an alternative to intrinsic zinc oxide (i‐ZnO) as the window layer of CuInSxSe1?x solar cells. The as‐synthesized, well‐dispersed, 6 nm TiO2 nanocrystals are assembled into thin films with controllable thicknesses of 40, 80, and 160 nm. The TiO2 nanocrystal films with thicknesses of 40 and 80 nm exhibit conversion efficiencies (6.2% and 6.33%, respectively) that are comparable to that of a layer of the typical sputtered i‐ZnO (6.42%). The conversion efficiency of the devices with a TiO2 thickness of 160 nm decreases to 2.2%, owing to the large series resistance. A 9‐hour reaction time leads to aggregated nanoparticles with a much‐lower efficiency (2%) than that of the well‐dispersed TiO2 nanoparticles prepared using a 15‐hour reaction time. Under optimized conditions, the champion TiO2 nanocrystal‐film‐based device shows even higher efficiency (9.2%) than a control device employing a typical i‐ZnO film (8.6%).  相似文献   

6.
Charge transport materials (CTMs) are traditionally inorganic semiconductors or metals. However, over the past few decades, new classes of solution‐processable CTMs have evolved alongside new concepts for fabricating electronic devices at low cost and with exceptional properties. The vast majority of these novel materials are organic compounds and the use of transition metal complexes in electronic applications remains largely unexplored. Here, a solution‐processable solid‐state charge transport material composed of a blend of [Co(bpyPY4)](OTf)2 and Co(bpyPY4)](OTf)3 where bpyPY4 is the hexadentate ligand 6,6′‐bis(1,1‐di(pyridin‐2‐yl)ethyl)‐2,2′‐bipyridine and OTf? is the trifluoromethanesulfonate anion is reported. Surprisingly, these films exhibit a negative temperature coefficient of conductivity (dσ/dT) and non‐Arrhenius behavior, with respectable solid‐state conductivities of 3.0 S m?1 at room temperature and 7.4 S m?1 at 4.5 K. When employed as a CTM in a solid‐state dye‐sensitized solar cell, these largely amorphous, transparent films afford impressive solar energy conversion efficiencies of up to 5.7%. Organic–inorganic hybrid materials with negative temperature coefficients of conductivity generally feature extended flat π‐systems with strong π–π interactions or high crystallinity. The lack of these features promotes [Co(bpyPY4)](OTf)2+ x films as a new class of CTMs with a unique charge transport mechanism that remains to be explored.  相似文献   

7.
Solution and solution‐deposited thin films of the discotic liquid crystalline electron acceptor–donor–acceptor (A‐D‐A) p‐type organic semiconductor FHBC(TDPP)2, synthesized by coupling thienyl substituted diketopyrrolopyrrole (TDPP) onto a fluorenyl substituted hexa‐peri‐hexabenzocoronene (FHBC) core, are examined by ultrafast and nanosecond transient absorption spectroscopy, and time‐resolved photoluminescence studies to examine their ability to support singlet fission (SF). Grazing incidence wide‐angle X‐ray (GIWAX) studies indicate that as‐cast thin films of FHBC(TDPP)2 are “amorphous,” while hexagonal packed discotic liquid crystalline films evolve during thermal annealing. SF in as‐cast thin films is observed with an ≈150% triplet generation yield. Thermally annealing the thin films improves SF yields up to 170%. The as‐cast thin films show no long‐range order, indicating a new class of SF material where the requirement for local order and strong near neighbor coupling has been removed. Generation of long‐lived triplets (µs) suggests that these materials may also be suitable for inclusion in organic solar cells to enhance performance.  相似文献   

8.
As a promising alternative, inorganic perovskite nanocrystals allow reinforced stability of photovoltaic device. Unfortunately, directly assembling these nanocrystals into film is uncontrollable. Instead, in situ assembling technology under low temperature in open air is attractive but limited due to the tendency of nonperovskite transition. The adverse shell ligands and unstable core lattices are known as the fundamental problems. In order to address this issue, here proposed is a rational core–shell design: 1) with respect to ligands, a new one, 4‐fluorophenethylammonium iodide, is used to enhance bonding force and charge coupling between ligands and nanocrystals; 2) with respect to lattices, a novel compound H2PbI4 is employed to assist divalent ion (Mn2+) doping into perovskite lattices. By low temperature in situ processing CsPbI3 quasi‐nanocrystal film, the highest power conversion efficiency of 13.4% for p‐i‐n solar cells is achieved, which retains 92% after 500 h in ambient air. The current study underlines the significance of rational hierarchical design of inorganic perovskite nanocrystals, especially for low temperature in situ processable electronic devices.  相似文献   

9.
In this work, the structural, compositional, optical, and dielectric properties of Ga2S3 thin films are investigated by means of X-ray diffraction, scanning electron microscopy, energy dispersion X-ray analysis, and ultraviolet—visible light spectrophotometry. The Ga2S3 thin films which exhibited amorphous nature in its as grown form are observed to be generally composed of 40.7 % Ga and 59.3 % S atomic content. The direct allowed transitions optical energy bandgap is found to be 2.96 eV. On the other hand, the modeling of the dielectric spectra in the frequency range of 270–1,000 THz, using the modified Drude-Lorentz model for electron-plasmon interactions revealed the electrons scattering time as 1.8 (fs), the electron bounded plasma frequency as ~0.76–0.94 (GHz) and the reduced resonant frequency as 2.20–4.60 ×1015 (Hz) in the range of 270–753 THz. The corresponding drift mobility of electrons to the terahertz oscillating incident electric field is found to be 7.91 (cm 2/Vs). The values are promising as they nominate the Ga2S3 thin films as effective candidates in thin-film transistor and gas sensing technologies.  相似文献   

10.
Perovskite solar cells (PSCs) have been emerging as a breakthrough photovoltaic technology, holding unprecedented promise for low‐cost, high‐efficiency renewable electricity generation. However, potential toxicity associated with the state‐of‐the‐art lead‐containing PSCs has become a major concern. The past research in the development of lead‐free PSCs has met with mixed success. Herein, the promise of coarse‐grained B‐γ‐CsSnI3 perovskite thin films as light absorber for efficient lead‐free PSCs is demonstrated. Thermally‐driven solid‐state coarsening of B‐γ‐CsSnI3 perovskite grains employed here is accompanied by an increase of tin‐vacancy concentration in their crystal structure, as supported by first‐principles calculations. The optimal device architecture for the efficient photovoltaic operation of these B‐γ‐CsSnI3 thin films is identified through exploration of several device architectures. Via modulation of the B‐γ‐CsSnI3 grain coarsening, together with the use of the optimal PSC architecture, planar heterojunction‐depleted B‐γ‐CsSnI3 PSCs with power conversion efficiency up to 3.31% are achieved without the use of any additives. The demonstrated strategies provide guidelines and prospects for developing future high‐performance lead‐free PVs.  相似文献   

11.
Antimony (Sb) is a promising anode material for sodium‐ion batteries owing to its large capacity of 660 mAh g?1. However, its practical application is restricted by the rapid capacity decay resulted from a large volume expansion up to 390% upon Na alloying. Herein, construction of a self‐supported Sb array that has enough space allowing for effective accommodation of the volume change is reported. The array of Sb prisms is directly grown on a Cu substrate via a template‐free electrodeposition, followed by mild heating to consolidate the structural integrity between Sb and Cu. The resulting 3D architecture endows the Sb array with excellent sodium storage performance, exhibiting a reversible capacity of 578 mAh g?1 and retaining 531 mAh g?1 over 100 cycles at 0.5 C. The potential of Sb array in sodium‐ion full cells by pairing it with a Na0.67(Ni0.23Mg0.1Mn0.67)O2 cathode is further demonstrated. This full cell affords a specific energy of 197 Wh kg?1 at 0.2 C and a specific power of 1280 W kg?1 at 5 C. Considering its low cost and scale‐up capability, the template‐free route may find extensive applications in designing electrode architectures.  相似文献   

12.
State‐of‐the‐art perovskite solar cells (PSCs) have bandgaps that are invariably larger than 1.45 eV, which limits their theoretically attainable power conversion efficiency. The emergent mixed‐(Pb, Sn) perovskites with bandgaps of 1.2–1.3 eV are ideal for single‐junction solar cells according to the Shockley–Queisser limit, and they have the potential to deliver higher efficiency. Nevertheless, the high chemical activity of Sn(II) in these perovskites makes it extremely challenging to control their physical properties and chemical stability, thereby leading to PSCs with relatively low PCE and stability. In this work, the authors employ the Lewis‐adduct SnF2·3FACl additive in the solution‐processing of ideal‐bandgap halide perovskites (IBHPs), and prepare uniform large‐grain perovskite thin films containing continuously functionalized grain boundaries with the stable SnF2 phase. Such Sn(II)‐rich grain‐boundary networks significantly enhance the physical properties and chemical stability of the IBHP thin films. Based on this approach, PSCs with an ideal bandgap of 1.3 eV are fabricated with a promising efficiency of 15.8%, as well as enhanced stability. The concept of Lewis‐adduct‐mediated grain‐boundary functionalization in IBHPs presented here points to a new chemical route for approaching the Shockley–Queisser limit in future stable PSCs.  相似文献   

13.
Tremendous efforts have been invested in the development of the internet of things during the past 10 years. Implantable sensors still need embedded miniaturized energy harvesting devices, since commercialized thin films and microbatteries do not provide sufficient power densities and suffer from limited lifetime. Therefore, micro‐supercapacitors are good candidates to store energy and deliver power pulses while providing non‐constant voltage output with time. However, multistep expensive protocols involving mask aligners and sophisticated cleanrooms are used to prepare these devices. Here, a simple and versatile laser‐writing procedure to integrate flexible micro‐supercapacitors and microbatteries on current‐collector‐free polyimide foils is reported, starting from commercial powders. Ruthenium oxide (RuO2)‐based micro‐supercapacitors are prepared by laser irradiation of a bilayered tetrachloroauric acid (HAuCl4 · 3H2O)–cellulose acetate/RuO2 film deposited by spin‐coating, which leads to adherent Au/RuO2 electrodes with a unique pillar morphology. The as‐prepared microdevices deliver 27 mF cm?2/540 F cm?3 in 1 m H2SO4 and retain 80% of the initial capacitance after 10 000 cycles. This simple process is applied to make carbon‐based micro‐supercapacitors, as well as metal oxide based pseudocapacitors and battery electrodes, thus offering a straightforward solution to prepare low‐cost flexible microdevices at a large scale.  相似文献   

14.
Solution‐processable small molecules are significant for producing high‐performance bulk heterojunction organic solar cells (OSCs). Shortening alkyl chains, while ensuring proper miscibility with fullerene, enables modulation of molecular stacking, which is an effective method for improving device performance. Here, the design and synthesis of two solution‐processable small molecules based on a conjugated backbone with a novel end‐capped acceptor (oxo–alkylated nitrile) using octyl and hexyl chains attached to π–bridge, and octyl and pentyl chains attached to the acceptor is reported. Shortening the length of the widely used octyl chains improves self‐assembly and device performance. Differential scanning calorimetry and grazing incidence X‐ray diffraction results demonstrated that the molecule substituted by shorter chains shows tighter molecular stacking and higher crystallinity in the mixture with 6,6‐phenyl‐C71‐butyric acid methyl ester (PC71BM) and that the power conversion efficiency (PCE) of the OSC is as high as 5.6% with an open circuit voltage (Voc) of 0.87 V, a current density (Jsc) of 9.94 mA cm‐2, and an impressive filled factor (FF) of 65% in optimized devices. These findings provide valuable insights into the production of highly efficient solution‐processable small molecules for OSCs.  相似文献   

15.
Potassium‐ion batteries (PIBs) are promising energy storage systems because of the abundance and low cost of potassium. The formidable challenge is to develop suitable electrode materials and electrolytes for accommodating the relatively large size and high activity of potassium. Herein, Bi‐based materials are reported as novel anodes for PIBs. Nanostructural design and proper selection of the electrolyte salt have been used to achieve excellent cycling performance. It is found that the potassiation of Bi undergoes a solid‐solution reaction, followed by two typical two‐phase reactions, corresponding to Bi ? Bi(K) and Bi(K) ? K5Bi4 ? K3Bi, respectively. By choosing potassium bis(fluorosulfonyl)imide (KFSI) to replace potassium hexafluorophosphate (KPF6) in carbonate electrolyte, a more stable solid electrolyte interphase layer is achieved and results in notably enhanced electrochemical performance. More importantly, the KFSI salt is very versatile and can significantly promote the electrochemical performance of other alloy‐based anode materials, such as Sn and Sb.  相似文献   

16.
Understanding the degradation mechanisms of photoelectrodes and improving their stability are essential for fully realizing solar‐to‐hydrogen conversion via photo‐electrochemical (PEC) devices. Although amorphous TiO2 layers have been widely employed as a protective layer on top of p‐type semiconductors to implement durable photocathodes, gradual photocurrent degradation is still unavoidable. This study elucidates the photocurrent degradation mechanisms of TiO2‐protected Sb2Se3 photocathodes and proposes a novel interface‐modification methodology in which fullerene (C60) is introduced as a photoelectron transfer promoter for significantly enhancing long‐term stability. It is demonstrated that the accumulation of photogenerated electrons at the surface of the TiO2 layer induces the reductive dissolution of TiO2, accompanied by photocurrent degradation. In addition, the insertion of the C60 photoelectron transfer promoter at the Pt/TiO2 interface facilitates the rapid transfer of photogenerated electrons out of the TiO2 layer, thereby yielding enhanced stability. The Pt/C60/TiO2/Sb2Se3 device exhibits a high photocurrent density of 17 mA cm?2 and outstanding stability over 10 h of operation, representing the best PEC performance and long‐term stability compared with previously reported Sb2Se3‐based photocathodes. This research not only provides in‐depth understanding of the degradation mechanisms of TiO2‐protected photocathodes, but also suggests a new direction to achieve durable photocathodes for photo‐electrochemical water splitting.  相似文献   

17.
Cd‐free Cu(In,Ga)(S,Se)2 (CIGSSe) solar cells are fabricated by an all‐dry process (a Cd‐free and all‐dry process CIGSSe solar cell) with aged CIGSSe thin film absorbers. The aged CIGSSe thin films are kept in a desiccator cabinet under partial pressure of oxygen of ≈200 Pa for aging time up to 10 months. It is reported for the first time that aged CIGSSe thin film with increased aging time results in significant enhancement of photovoltaic performance of Cd‐free and all‐dry process CIGSSe solar cells, regardless of the alkali treatment. Based on carrier recombination analysis, carrier recombination rates at the interface and in the depletion region of the Cd‐free and all‐dry process CIGSSe solar cells are reduced owing to avoidance of sputtering damage on CIGSSe absorber surface, which is consistent with the strong electron beam‐induced current signal near CIGSSe surface after the increased aging time. It is implied that the interface and near‐surface qualities are clearly improved through the increased aging time, which is attributable to the self‐forming of Inx(O,S)y near CIGSSe surface, which acts as a buffer layer. Ultimately, the 22.0%‐efficient Cd‐free CIGSSe solar cell fabricated by all‐dry process is achieved with the aged Cs‐treated CIGSSe absorber with the aging time of 10 months.  相似文献   

18.
Direct sputtering of a single quaternary Cu(In,Ga)Se2 (CIGS) target without postselenization is a promising approach to fabricating CIGS absorbers. However, the device efficiency of the quaternary‐sputtered CIGS is limited to 10%–11% due to the low and uncontrollable Se supply during the quaternary sputtering process. Here, an enhanced efficiency of 14.1% is reported by directly sputtering from a CIGS target without extra Se supply followed by sequential postdeposition treatments (PDT) of NaF and KF. The effects of different post‐treatments of alkali metals on quaternary‐sputtered CIGS thin films are discussed in detail. A Cu‐depleted surface is not observed in the quaternary‐sputtered CIGS thin films after KF‐PDT, different from the observation in the coevaporated CIGS, in which the Cu‐depleted surface layer induced by KF‐PDT enhances the efficiency. On the other hand, it is found that KF‐PDT reduces Se vacancies more effectively than NaF‐PDT, which could be another electrically benign behavior of KF‐PDT. The effective passivation of Se vacancies after KF‐PDT overcomes the Se‐poor nature of the quaternary sputtering process without postselenization. Therefore, KF‐PDT combined with Na doping, which is known to annihilate InCu defects, significantly improves minority carrier lifetime and cell performance.  相似文献   

19.
Layered MoS2 prepared by liquid‐phase exfoliation has been blended with single‐walled carbon nanotubes (SWNTs) to form novel composite thin films for lithium battery applications. The films were formed by vacuum filtration of blended dispersions onto nitrocellulose membranes. The resulting composite films were transferred onto Cu foil electrodes via a facile filtration/wet transfer technique from nitrocellulose membranes. The morphology of the film was characterised by field emission scanning electron microscopy, which suggests that the MoS2‐SWNT composite film shows good adherence to the Cu foil substrate. The MoS2‐SWNT composite thin films show strong electrochemical performance at different charge‐discharge rates. The capacity of a MoS2‐SWNT composite film with thickness of 1 μm is approximately 992 mAh g?1 after 100 cycles. The morphology study showed that the MoS2‐SWNT thin film retains structural integrity after 100 cycles, while the MoS2 thin film without SWNTs displays significant cracking. In addition, the novel composite thin film preparation and transfer protocols developed in this study could be extended to the preparation of various layered‐material‐based composite films, with the potential for new device designs for energy applications.  相似文献   

20.
A novel atomic stacking transporting layer (ASTL) based on 2D atomic sheets of titania (Ti1?δO2) is demonstrated in organic–inorganic lead halide perovskite solar cells. The atomically thin ASTL of 2D titania, which is fabricated using a solution‐processed self‐assembly atomic layer‐by‐layer deposition technique, exhibits the unique features of high UV transparency and negligible (or very low) oxygen vacancies, making it a promising electron transporting material in the development of stable and high‐performance perovskite solar cells. In particular, the solution‐processable atomically thin ASTL of 2D titania atomic sheets shows superior inhibition of UV degradation of perovskite solar cell devices, compared to the conventional high‐temperature sintered TiO2 counterpart, which usually causes the notorious instability of devices under UV irradiation. The discovery opens up a new dimension to utilize the 2D layered materials with a great variety of homostructrual or heterostructural atomic stacking architectures to be integrated with the fabrication of large‐area photovoltaic or optoelectronic devices based on the solution processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号