首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
Man's place in Hominoidea as inferred from molecular clocks of DNA   总被引:5,自引:0,他引:5  
Summary Divergence dates among primates were estimated by molecular clock analysis of DNA sequence data. A molecular clock of -globin pseudogene was calibrated by setting the date of divergence between Catarrhini and Platyrrhini at 38 million years (Myr) ago. The clock gave dates of 25.3±2.4, 11.9±1.7, 5.9±1.2, and 4.9±1.2 Myr ago (± refers to standard error) for the separation of rhesus monkey, orangutan, gorilla, and chimpanzee, respectively, from the line leading to humans. In placing confidence intervals of the estimates in a robust way, a bootstrap method was used. The 95% confidence intervals are 20.5–29.5, 9.0–14.8, 4.1–7.8, and 3.1–7.0 Myr ago for the separation of rhesus monkey, orangutan, gorilla, and chimpanzee, respectively. By a molecular clock dating of the Prosimii-Anthropoidea splitting, it was suggested that the evolutionary rate of the -globin gene was high early in primate evolution and subsequently decreased in the line of Anthropoidea. And, by a relative rate test using bootstrap sampling, the possibility of further decrease of the rate (more than 10%) in the line of Hominoidea compared with that of Cercopithecoidea was suggested. Therefore, the above dating of the splittings within Hominoidea may be biased slightly toward younger dates. On the other hand, mitochondrial DNA (mtDNA) seems to have evolved in mammals with a more uniform rate than the -globin gene. The ratio of the dates of orangutan splitting to chimpanzee splitting is larger for the mtDNA clock than that for the -globin clock, suggesting the possibilities of mt-DNA introgression among the early hominids and the early African apes, and/or of mtDNA polymorphism within the common ancestral species of orangutan and the African apes that obscures the date of the true species separation of orangutans.  相似文献   

2.
Time of the deepest root for polymorphism in human mitochondrial DNA   总被引:7,自引:0,他引:7  
Summary A molecular clock analysis was carried out on the nucleotide sequences of parts of the major noncoding region of mitochondrial DNA (mtDNA) from the major geographic populations of humans. Dates of branchings in the mtDNA tree among humans were estimated with an improved maximum likelihood method. Two species of chimpanzees were used as an outgroup, and the mtDNA clock was calibrated by assuming that the chimpanzee/human split occurred 4 million years ago, following our earlier works. A model of homogeneous evolution among sites does not fit well with the data even within hypervariable segments, and hence an additional parameter that represents a proportion of variable sites was introduced. Taking account of this heterogeneity among sites, the date for the deepest root of the mtDNA tree among humans was estimated to be 280,000±50,000 years old (±1 SE), although there remains uncertainty about the constancy of the evolutionary rate among lineages. The evolutionary rate of the most rapidly evolving sites in mtDNA was estimated to be more than 100 times greater than that of a nuclear pseudogene.  相似文献   

3.
Summary DNA-DNA hybridization was used to measure the average genomic divergence among the four chromosomal species of the Eurasian mole rats belonging to theSpalax ehrenbergi complex (Rodentia: Spalacidae). The percent nucleotide substitutions in the single-copy nuclear DNA among the species ranged from 0 to 5%, suggesting that speciation has occurred with minor genomic changes in these animals. The youngest chromosomal species appear to differ by 0.2–0.6% base pair mismatch, which is only between one and three base differences in a 500-bp fragment. The interspecific values of percent nucleotide differences permit the recognition of two well-separated speciation events in theS. ehrenbergi complex, the older (of Lower Pleistocene age) having isolated the chromosomal species 2n=54 before the divergence of the three other species.DNA-DNA hybridization was also used to compare the Spalacinae (Eurasian mole rats), Murinae (Old World rats and mice), and Arvicolinae (voles and lemmings). These data enabled us to estimate the time of divergence of the spalacids at ca. 19 million years ago. The dates of divergence among the other rodent lineages, as predicted by DNA hybridization results, agree well with paleontological data. These dates of divergence are obtained by the relation between geological time and single-copy nuclear DNA change, a relation that was calibrated by Catzeflis et al. (1987) through the use of fossil Arvicolinae and Murinae data.  相似文献   

4.
It has recently been argued that living metazoans diverged over 800 million years ago, based on evidence from 22 nuclear genes for such a deep divergence between vertebrates and arthropods (Gu 1998). Two ``internal' calibration points were used. However, only one fossil divergence date (the mammal–bird split) was directly used to calibrate the molecular clock. The second calibration point (the primate–rodent split) was based on molecular estimates that were ultimately also calibrated by the same mammal–bird split. However, the first tetrapods that can be assigned with confidence to either the mammal (synapsid) lineage or the bird (diapsid) lineage are approximately 288 million years old, while the first mammals that can be assigned with confidence to either the primate or the rodent lineages are 65 million years old, or 85 million years old if ferungulates are part of the primate lineage and zhelestids are accepted as ferungulate relatives. Recalibration of the protein data using these fossil dates indicates that metazoans diverged between 791 and 528 million years ago, a result broadly consistent with the palaeontological documentation of the ``Cambrian explosion.' The third, ``external' calibration point (the metazoan–fungal divergence) was similarly problematic, since it was based on a controversial molecular study (which in turn used fossil dates including the mammal–bird split); direct use of fossils for this calibration point gives the absurd dating of 455 million years for metazoan divergences. Similar calibration problems affect another recent study (Wang et al. 1999), which proposes divergences for metazoans of 1000 million years or more: recalibrations of their clock again yields much more recent dates, some consistent with a ``Cambrian explosion' scenario. Molecular clock studies have persuasively argued for the imperfection of the fossil record but have rarely acknowledged that their inferences are also directly based on this same record. Received: 26 January 1999 / Accepted: 14 April 1999  相似文献   

5.
Hemocyanin is a copper-containing respiratory protein that is widespread within the arthropod phylum. Among the Crustacea, hemocyanins are apparently restricted to the Malacostraca. While well-studied in Decapoda, no hemocyanin sequence has been known from the ’lower’ Malacostraca. The hemocyanin of the amphipod Gammarus roeseli is a hexamer that consists of at least five distinct subunits. The complete cDNA sequence of one subunit and a tentative partial sequence of another subunit have been determined. The complete G. roeseli hemocyanin subunit comprises 2,150 bp, which translates in a protein of 672 amino acids with a molecular mass of 76.3 kDa. Phylogenetic analyses show that, in contrast to previous assumptions, the amphipod hemocyanins do not belong to the α-type of crustacean hemocyanin subunits. Rather, amphipod hemocyanins split from the clade leading to α and γ-subunits most likely at the time of separation of peracarid and eucarid Crustacea about 300 million years ago. Molecular clock analyses further suggest that the divergence of β-type subunits and other crustacean hemocyanins occurred around 315 million years ago (MYA) in the malacostracan stemline, while α- and γ-type subunits separated 258 MYA, and pseudohemocyanins and γ-subunits 210 million years ago.  相似文献   

6.
Zhang W  Zhang Z  Shen F  Hou R  Lv X  Yue B 《Journal of genetics》2006,85(2):107-116
Using oligonucleotide primers designed to match hypervariable segments I (HVS-1) ofPanthera tigris mitochondrial DNA (mtDNA), we amplified two different PCR products (500 bp and 287 bp) in the tiger (Panthera tigris), but got only one PCR product (287 bp) in the leopard (Panthera pardus). Sequence analyses indicated that the sequence of 287 bp was a D-loop-like nuclear mitochondrial sequence (Numts), indicating a nuclear transfer that occurred approximately 4.8–17 million years ago in the tiger and 4.6–16 million years ago in the leopard. Although the mtDNA D-loop sequence has a rapid rate of evolution, the 287-bp Numts are highly conserved; they are nearly identical in tiger subspecies and only 1.742% different between tiger and leopard. Thus, such sequences represent molecular ‘fossils’ that can shed light on evolution of the mitochondrial genome and may be the most appropriate outgroup for phylogenetic analysis. This is also proved by comparing the phylogenetic trees reconstructed using the D-loop sequence of snow leopard and the 287-bp Numts as outgroup.  相似文献   

7.
The age of the angiosperms: a molecular timescale without a clock   总被引:8,自引:0,他引:8  
The age of the angiosperms has long been of interest to botanists and evolutionary biologists. Many early efforts to date the age of the angiosperms and evolutionary divergences within the angiosperm clade using a molecular clock have yielded age estimates that are grossly inconsistent with the fossil record. We investigated the age of angiosperms using Bayesian relaxed clock (BRC) and penalized likelihood (PL) approaches. Both of these methods allow the incorporation of multiple fossil constraints into the optimization procedure. The BRC method allows a range of values for among-lineage rate of substitution, from a nearly clocklike behavior to a condition in which each branch is allowed an optimal substitution rate, and also accounts for variation in molecular evolution across multiple genes. A topology derived from an analysis of genes from all three plant genomes for 71 taxa was used as a backbone. The effects on age estimates of different genes, single-gene versus concatenated datasets, and the inclusion and assumptions of fossils as age constraints were examined. In addition, the influence of prior distributions on estimates of divergence times was also explored. These results indicate that widely divergent age estimates can result from the different methods (198-139 million years ago), different sources of data (275-122 million years ago), and the inclusion of temporal constraints to topologies. Most dates, however, are between 180-140 million years ago, suggesting a Middle Jurassic-Early Cretaceous origin of flowering plants, predating the oldest unequivocal fossil angiosperms by about 45-5 million years. Nonetheless, these dates are consistent with other recent studies that have used methods that relax the assumption of a strict molecular clock and also agree with the hypothesis that the angiosperms may be somewhat older than the fossil record indicates.  相似文献   

8.

Background  

The earliest fossil evidence of terrestrial animal activity is from the Ordovician, ~450 million years ago (Ma). However, there are earlier animal fossils, and most molecular clocks suggest a deep origin of animal phyla in the Precambrian, leaving open the possibility that animals colonized land much earlier than the Ordovician. To further investigate the time of colonization of land by animals, we sequenced two nuclear genes, glyceraldehyde-3-phosphate dehydrogenase and enolase, in representative arthropods and conducted phylogenetic and molecular clock analyses of those and other available DNA and protein sequence data. To assess the robustness of animal molecular clocks, we estimated the deuterostome-arthropod divergence using the arthropod fossil record for calibration and tunicate instead of vertebrate sequences to represent Deuterostomia. Nine nuclear and 15 mitochondrial genes were used in phylogenetic analyses and 61 genes were used in molecular clock analyses.  相似文献   

9.
Comparative phylogeographic studies often reveal disparate levels of sequence divergence between lineages spanning a common geographic barrier, leading to the conclusion that isolation was nonsynchronous. However, only rarely do researchers account for the expected variance associated with ancestral coalescence and among-taxon variation in demographic history. We introduce a flexible approximate Bayesian computational (ABC) framework that can test for simultaneous divergence (TSD) using a hierarchical model that incorporates idiosyncratic differences in demographic history across taxon pairs. The method is tested across a range of conditions and is shown to be accurate even with single-locus mitochondrial DNA (mtDNA) data. We apply this method to a landmark dataset of putative simultaneous vicariance, eight geminate echinoid taxon pairs thought to have been split by the Isthmus of Panama 3.1 million years ago. The ABC posterior estimates are not consistent with a history of simultaneous vicariance given these data. Subsequent ABC estimates under a constrained model that assumes two divergence times across the eight taxon pairs suggests simultaneous divergence 3.1 million years ago in seven of the taxon pairs and a more recent divergence in the remaining taxon pair. These ABC estimates on the simultaneous divergence of the seven taxon pairs correspond to a DNA substitution rate of approximately 1.59% per lineage per million years at the mtDNA cytochrome oxidase I gene. This ABC framework can easily be modified to analyze single taxon-pair datasets and/or be expanded to include multiple loci, migration, recombination, and other idiosyncratic demographic histories. The flexible aspect of ABC and its built-in evaluation of estimator bias and statistical power has the potential to greatly enhance statistical rigor in phylogeographic studies.  相似文献   

10.
Molecular sequences do not only allow the reconstruction of phylogenetic relationships among species, but also provide information on the approximate divergence times. Whereas the fossil record dates the origin of most multicellular animal phyla during the Cambrian explosion less than 540 million years ago(mya), molecular clock calculations usually suggest much older dates. Here we used a large multiple sequence alignment derived from Expressed Sequence Tags and genomes comprising 129genes (37,476 amino acid positions) and 117 taxa, including 101 arthropods. We obtained consistent divergence time estimates applying relaxed Bayesian clock models with different priors and multiple calibration points. While the influence of substitution rates, missing data, and model priors were negligible, the clock model had significant effect. A log-normal autocorrelated model was selected on basis of cross-validation. We calculated that arthropods emerged ~600 mya. Onychophorans (velvet worms) and euarthropods split ~590 mya, Pancrustacea and Myriochelata ~560 mya, Myriapoda and Chelicerata ~555 mya, and 'Crustacea' and Hexapoda ~510 mya. Endopterygote insects appeared ~390 mya. These dates are considerably younger than most previous molecular clock estimates and in better agreement with the fossil record. Nevertheless, a Precambrian origin of arthropods and other metazoan phyla is still supported. Our results also demonstrate the applicability of large datasets of random nuclear sequences for approximating the timing of multicellular animal evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号