首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jan Marc  Wesley P. Hackett 《Planta》1991,185(2):171-178
The transition from spiral to distichous leaf arrangement during gibberellic-acid (GA3)-induced rejuvenation in Hedera was studied in detail by scanning electron microscopy of the shoot apical meristem. The transition, which involves the initiation of about 14 new leaf primordia, is accomplished by progressive increments in the divergence angle between the leaf primordia from an initial average value of 138.9 ° until it approaches 180 °. This process is preceded, as well as accompanied, by an increased radial displacement of young leaf primordia away from the apical meristem. Although the width of the leaf primordia also increases, this is unlikely to be a causal factor since it occurs only late in the transition. The size of the primordium-free area of the apical meristem is also unlikely to be involved. Quantitative analysis shows that the divergence angle of consecutive leaf primordia commonly fluctuates between relatively large and small values. Thus the transitional stages form a spirodistichous arrangement in which the divergence angle within each pair of leaves is large relative to that between leaf pairs. The stimulation of the radial displacement of the leaf primordia and the associated phyllotactic transition may involve GA3-induced modification in the spatial organization of cortical microtubules in the apical meristem and related changes in directional cell expansion.Abbreviations DA divergence angle - GA3 gibberellic acid We thank Mr. Gilbert Ahlstrand for his advice regarding scanning electron microscopy. This paper is contribution of the University of Minnesota Agricultural Experimental Station No. 18,726.  相似文献   

2.
3.
The oxidation of carbohydrate by the pentose-phosphate pathway in the shoot apical meristem and developing leaf primordia of Dianthus chinensis was assessed by measuring the activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49). On a kg-1 dry weight h-1 basis, activity rose from 250 mmol in the apical meristem to 550 mmol in the first two leaf primordia and then declined to 350 mmol in the sixth pair of leaf primordia, and finally to 200 mmol in leaves just emerged from the shoot bud. Measurements of activity in the sixth leaf pair from the apex showed differential distribution in leaf tissues. Epidermal and mesophyll tissue had about the same activity as whole-leaf tissue, but vascular bundles had 70% greater activity. Within the vascular tissue, activity in the phloem was twice as high as in the xylem. When activity was expressed on a per-cell basis, there was a continuous increase from 20 fmol in the apex to 2 pmol in the sixth leaf pair. Activity on a per unit cell volume basis showed that cells of the apical meristem and the epidermis, mesophyll and xylem of the sixth leaf pair had similar values, about 30 amol; only the two youngest pairs of primordia and the phloem had values two or three times this amount.  相似文献   

4.
5.
Transgenic tobacco plants were generated carrying a rice homeobox gene,OSH1, controlled by the promoter of a gene encoding a tobacco pathogenesis-related protein (PR1a). These lines were morphologically abnormal, with wrinkled and/or lobed leaves. Histological analysis of shoot apex primordia indicated arrest of lateral leaf blade expansion, often resulting in asymmetric and anisotropic growth of leaf blades. Other notable abnormalities included abnormal or arrested development of leaf lateral veins. Interestingly,OSH1 expression was undetectable in mature leaves with the aberrant morphological features. Thus,OSH1 expression in mature leaves is not necessary for abnormal leaf development. Northern blot and in situ hybridization analyses indicate thatPR1a-OSH1 is expressed only in the shoot apical meristem and in very young leaf primordia. Therefore, the aberrant morphological features are an indirect consequence of ectopicOSH1 gene expression. The only abnormality observed in tissues expressing the transgene was periclinal (rather than anticlinal) division in mesophyll cells during leaf blade initiation. This generates thicker leaf blades and disrupts the mesophyll cell layers, from which vascular tissues differentiate. TheOSH1 product appears to affect the mechanism controlling the orientation of the plane of cell division, resulting in abnormal periclinal division of mesophyll cell, which in turn results in the gross morphological abnormalities observed in the transgenic lines.  相似文献   

6.
7.
Patterning of the polar axis during the early leaf developmental stage is established by cell-to-cell communication between the shoot apical meristem (SAM) and the leaf primordia. In a previous study, we showed that the DRL1 gene, which encodes a homolog of the Elongator-associated protein KTI12 of yeast, acts as a positive regulator of adaxial leaf patterning and shoot meristem activity. To determine the evolutionally conserved functions of DRL1, we performed a comparison of the deduced amino acid sequence of DRL1 and its yeast homolog, KTI12, and found that while overall homology was low, well-conserved domains were presented. DRL1 contained two conserved plant-specific domains. Expression of the DRL1 gene in a yeast KTI12-deficient yeast mutant suppressed the growth retardation phenotype, but did not rescue the caffeine sensitivity, indicating that the role of Arabidopsis Elongator-associated protein is partially conserved with yeast KTI12, but may have changed between yeast and plants in response to caffeine during the course of evolution. In addition, elevated expression of DRL1 gene triggered zymocin sensitivity, while overexpression of KTI12 maintained zymocin resistance, indicating that the function of Arabidopsis DRL1 may not overlap with yeast KTI12 with regards to toxin sensitivity. In this study, expression analysis showed that class-I KNOX genes were downregulated in the shoot apex, and that YAB and KAN were upregulated in leaves of the Arabidopsis drl1-101 mutant. Our results provide insight into the communication network between the SAM and leaf primordia required for the establishment of leaf polarity by mediating histone acetylation or through other mechanisms.  相似文献   

8.
9.
10.
Transgenic tobacco plants were generated carrying a rice homeobox gene,OSH1, controlled by the promoter of a gene encoding a tobacco pathogenesis-related protein (PR1a). These lines were morphologically abnormal, with wrinkled and/or lobed leaves. Histological analysis of shoot apex primordia indicated arrest of lateral leaf blade expansion, often resulting in asymmetric and anisotropic growth of leaf blades. Other notable abnormalities included abnormal or arrested development of leaf lateral veins. Interestingly,OSH1 expression was undetectable in mature leaves with the aberrant morphological features. Thus,OSH1 expression in mature leaves is not necessary for abnormal leaf development. Northern blot and in situ hybridization analyses indicate thatPR1a-OSH1 is expressed only in the shoot apical meristem and in very young leaf primordia. Therefore, the aberrant morphological features are an indirect consequence of ectopicOSH1 gene expression. The only abnormality observed in tissues expressing the transgene was periclinal (rather than anticlinal) division in mesophyll cells during leaf blade initiation. This generates thicker leaf blades and disrupts the mesophyll cell layers, from which vascular tissues differentiate. TheOSH1 product appears to affect the mechanism controlling the orientation of the plane of cell division, resulting in abnormal periclinal division of mesophyll cell, which in turn results in the gross morphological abnormalities observed in the transgenic lines.  相似文献   

11.
12.
The adaxial-abaxial axis in leaf primordia is thought to be established first and is necessary for the expansion of the leaf lamina along the mediolateral axis. To understand axis information in leaf development, we isolated the adaxialized leaf1 (adl1) mutant in rice, which forms abaxially rolled leaves. adl1 leaves are covered with bulliform-like cells, which are normally distributed only on the adaxial surface. An adl1 double mutant with the adaxially snowy leaf mutant, which has albino cells that specifically appear in the abaxial mesophyll tissue, indicated that adl1 leaves show adaxialization in both epidermal and mesophyll tissues. The expression of HD-ZIPIII genes in adl1 mutant increased in mature leaves, but not in the young primordia or the SAM. This indicated that ADL1 may not be directly involved in determining initial leaf polarity, but rather is associated with the maintenance of axis information. ADL1 encodes a plant-specific calpain-like cysteine proteinase orthologous to maize DEFECTIVE KERNEL1. Furthermore, we identified intermediate and strong alleles of the adl1 mutant that generate shootless embryos and globular-arrested embryos with aleurone layer loss, respectively. We propose that ADL1 plays an important role in pattern formation of the leaf and embryo by promoting proper epidermal development.  相似文献   

13.
The cell cycle plays an important role in the development and adaptation of multicellular organisms; specifically, it allows them to optimally adjust their architecture in response to environmental changes. Kip-related proteins (KRPs) are important negative regulators of cyclin-dependent kinases (CDKs), which positively control the cell cycle during plant development. The Arabidopsis genome possesses seven KRP genes with low sequence similarity and distinct expression patterns; however, why Arabidopsis needs seven KRP genes and how these genes function in cell cycle regulation are unknown. Here, we focused on the characterization of KRP3, which was found to have unique functions in the shoot apical meristem (SAM) and leaves. KRP3 protein was localized to the SAM, including the ground meristem and vascular tissues in the ground part of the SAM and cotyledons. In addition, KRP3 protein was stabilized when treated with MG132, an inhibitor of the 26S proteasome, indicating that the protein may be regulated by 26S proteasome-mediated protein degradation. KRP3-overexpressing (KRP3 OE) transgenic plants showed reduced organ size, serrated leaves, and reduced fertility. Interestingly, the KRP3 OE transgenic plants showed a significant reduction in the size of the SAM with alterations in cell arrangement. In addition, compared to the wild type, the KRP3 OE transgenic plants had a higher DNA ploidy level in the SAM and leaves. Taken together, our data suggest that KRP3 plays important regulatory roles in the cell cycle and endoreduplication in the SAM and leaves.  相似文献   

14.
In Arabidopsis thaliana, like in other dicots, the shoot epidermis originates from protodermis, the outermost cell layer of shoot apical meristem. We examined leaf epidermis in transgenic A. thaliana plants in which CDKA;1.N146, a negative dominant allele of A-type cyclin-dependent kinase, was expressed from the SHOOTMERISTEMLESS promoter, i.e., in the shoot apical meristem. Using cleared whole mount preparations of expanding leaves and sequential in vivo replicas of expanding leaf surface, we show that dominant-negative CDKA;1 expression results in defects in epidermis continuity: loss of individual cells and occurrence of gaps between anticlinal walls of neighboring pavement cells. Another striking feature is ingrowth-like invaginations of anticlinal cell walls of pavement cells. Their formation is related to various processes: expansion of cells surrounding the sites of cell loss, defected cytokinesis, and presumably also, the actual ingrowth of an anticlinal cell wall. The mutant exhibits also increased variation in cell size and locally reduced waviness of anticlinal walls of pavement cells. These unusual features of leaf epidermis phenotype may shed a new light on our knowledge on morphogenesis of jigsaw puzzle-shaped pavement cells and on the CDKA;1 role in regulation of plant development via influence on cytoskeleton and plant cell wall.  相似文献   

15.
16.
The mutually exclusive relationship between ARP and KNOX1 genes in the shoot apical meristem and leaf primordia in simple leaved plants such as Arabidopsis has been well characterized. Overlapping expression domains of these genes in leaf primordia have been described for many compound leaved plants such as Solanum lycopersicum and Cardamine hirsuta and are regarded as a characteristic of compound leaved plants. Here, we present several datasets illustrating the co-expression of ARP and KNOX1 genes in the shoot apical meristem, leaf primordia, and developing leaves in plants with simple leaves and simple primordia. Streptocarpus plants produce unequal cotyledons due to the continued activity of a basal meristem and produce foliar leaves termed “phyllomorphs” from the groove meristem in the acaulescent species Streptocarpus rexii and leaves from a shoot apical meristem in the caulescent Streptocarpus glandulosissimus. We demonstrate that the simple leaves in both species possess a greatly extended basal meristematic activity that persists over most of the leaf’s growth. The area of basal meristem activity coincides with the co-expression domain of ARP and KNOX1 genes. We suggest that the co-expression of ARP and KNOX1 genes is not exclusive to compound leaved plants but is associated with foci of meristematic activity in leaves.  相似文献   

17.
Cytokinin metabolism in plants is very complex. More than 20 cytokinins bearing isoprenoid and aromatic side chains were identified by high performance liquid chromatography-mass spectrometry (HPLC-MS) in pea (Pisum sativum L. cv. Gotik) leaves, indicating diverse metabolic conversions of primary products of cytokinin biosynthesis. To determine the potential involvement of two enzymes metabolizing cytokinins, cytokinin oxidase/dehydrogenase (CKX, EC 1.5.99.12) and zeatin reductase (ZRED, EC 1.3.1.69), in the control of endogenous cytokinin levels, their in vitro activities were investigated in relation to the uptake and metabolism of [2−3H]trans-zeatin ([2−3H]Z) in shoot explants of pea. Trans-zeatin 9-riboside, trans-zeatin 9-riboside-5′-monophosphate and cytokinin degradation products adenine and adenosine were detected as predominant [2−3H]Z metabolites during 2, 5, 8, and 24 h incubation. Increasing formation of adenine and adenosine indicated extensive degradation of [2−3H]Z by CKX. High CKX activity was confirmed in protein preparations from pea leaves, stems, and roots by in vitro assays. Inhibition of CKX by dithiothreitol (15 mM) in the enzyme assays revealed relatively high activity of ZRED catalyzing conversion of Z to dihydrozeatin (DHZ) and evidently competing for the same substrate cytokinin (Z) in protein preparations from pea leaves, but not from pea roots and stems. The conversion of Z to DHZ by pea leaf enzyme was NADPH dependent and was significantly inhibited or completely suppressed in vitro by diethyldithiocarbamic acid (DIECA; 10 mM). Relations of CKX and ZRED in the control of cytokinin levels in pea leaves with respect to their potential role in establishment and maintenance of cytokinin homeostasis in plants are discussed.  相似文献   

18.
Background and Aims The arrangement of flowers in inflorescence shoots of Arabidopsis thaliana represents a regular spiral Fibonacci phyllotaxis. However, in the cuc2 cuc3 double mutant, flower pedicels are fused to the inflorescence stem, and phyllotaxis is aberrant in the mature shoot regions. This study examined the causes of this altered development, and in particular whether the mutant phenotype is a consequence of defects at the shoot apex, or whether post-meristematic events are involved.Methods The distribution of flower pedicels and vascular traces was examined in cross-sections of mature shoots; sequential replicas were used to investigate the phyllotaxis and geometry of shoot apices, and growth of the young stem surface. The expression pattern of CUC3 was analysed by examining its promoter activity.Key Results Phyllotaxis irregularity in the cuc2 cuc3 double mutant arises during the post-meristematic phase of shoot development. In particular, growth and cell divisions in nodes of the elongating stem are not restricted in the mutant, resulting in pedicel–stem fusion. On the other hand, phyllotaxis in the mutant shoot apex is nearly as regular as that of the wild type. Vascular phyllotaxis, generated almost simultaneously with the phyllotaxis at the apex, is also much more regular than pedicel phyllotaxis. The most apparent phenotype of the mutant apices is a higher number of contact parastichies. This phenotype is associated with increased meristem size, decreased angular width of primordia and a shorter plastochron. In addition, the appearance of a sharp and deep crease, a characteristic shape of the adaxial primordium boundary, is slightly delayed and reduced in the mutant shoot apices.Conclusions The cuc2 cuc3 double mutant displays irregular phyllotaxis in the mature shoot but not in the shoot apex, thus showing a post-meristematic effect of the mutations on phyllotaxis. The main cause of this effect is the formation of pedicel–stem fusions, leading to an alteration of the axial positioning of flowers. Phyllotaxis based on the position of vascular flower traces suggests an additional mechanism of post-meristematic phyllotaxis alteration. Higher density of flower primordia may be involved in the post-meristematic effect on phyllotaxis, whereas delayed crease formation may be involved in the fusion phenotype. Promoter activity of CUC3 is consistent with its post-meristematic role in phyllotaxis.  相似文献   

19.
Following a study of the relationship between cytokinin oxidase/dehydrogenase (CKX) and senescence in darkened barley leaf segments, we have now investigated the influence of light on the in vitro activity of CKX. Seedlings of Hordeum vulgare L. were grown for 8 d under a light/dark regime of 18 h white light and 6 h darkness. Then apical parts of 7 cm length were cut from the first foliage leaves and their bases were placed in water. In segments kept in the dark, the CKX activity measured by cleavage of N6-(Δ2-isopentenyl)adenine rose from 0.1 pkat (g FW)−1 to 0.8 pkat (g initial FW)−1 within the first 4 d of incubation. In contrast, in segments kept under the light/dark regime it reached a value of 8.6 pkat (g initial FW)−1 over the same time period. The chlorophyll a content declined slightly slower during light/dark cycling than in darkness. In contrast to segments and isolated laminae, corresponding attached laminae exhibited less CKX activity after 2 d under light/dark conditions than after 2 d in the dark. The activity in attached laminae of first foliage leaves of plants growing in light/dark cycling increased strongly only when the plants were older than 4 weeks. In line with this, the CKX activity in attached laminae of flag leaves of barley growing in fields increased in a late developmental state. The senescence of darkened isolated laminae of Zea mays L. and Phragmites australis (Cav.) Trin. ex Steudel was associated with an enhancement of CKX activity too. Because in most cases a positive correlation between CKX activity and senescence was found, it is likely that the enzyme promotes senescence by destroying cytokinins, which help to keep Poaceae leaves green. Light may promote not only cytokinin degradation but also the formation of bioactive cytokinins in leaf segments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号