首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Grain yield and grain protein content are two very important traits in bread wheat. They are controlled by genetic factors, but environmental conditions considerably affect their expression. The aim of this study was to determine the genetic basis of these two traits by analysis of a segregating population of 194 F(7) recombinant inbred lines derived from a cross between two wheat varieties, grown at six locations in France in 1999. A genetic map of 254 loci was constructed, covering about 75% of the bread wheat genome. QTLs were detected for grain protein-content (GPC), yield and thousand-kernel weight (TKW). 'Stable' QTLs (i.e. detected in at least four of the six locations) were identified for grain protein-content on chromosomes 2A, 3A, 4D and 7D, each explaining about 10% of the phenotypic variation of GPC. For yield, only one important QTL was found on chromosome 7D, explaining up to 15.7% of the phenotypic variation. For TKW, three QTLs were detected on chromosomes 2B, 5B and 7A for all environments. No negative relationships between QTLs for yield and GPC were observed. Factorial Regression on GxE interaction allowed determination of some genetic regions involved in the differential reaction of genotypes to specific climatic factors, such as mean temperature and the number of days with a maximum temperature above 25 degrees C during grain filling.  相似文献   

3.
施硒对两种类型玉米硒元素分配及产量、品质的影响   总被引:10,自引:0,他引:10  
通过盆栽试验,以普通玉米品种郑单958(ZD958)和糯玉米品种京紫糯218(JN218)为试验材料,研究了不同硒水平(0、10、25、50 mg·kg-1)下,玉米植株各器官对硒的分配和转运差异以及硒对玉米产量和籽粒品质的影响.结果表明: 低含量(≤10 mg·kg-1)硒促进了玉米生长,植株生物量和籽粒产量均显著增加;高含量(≥25 mg·kg-1)硒抑制了玉米生长,植株干物质积累量减少,籽粒产量和品质下降.施硒显著提高了玉米植株各器官的硒含量,硒在各器官的分配为根系>叶片>茎秆>叶鞘,两种类型玉米各器官硒含量均与土壤硒含量呈显著正相关.JN218在自然低硒土壤环境中具有较强的硒富集能力,而ZD958在10 mg·kg-1 硒水平下硒积累量高于JN218.如果以籽粒和地上部营养器官的硒积累量为评价标准,自然低硒(025 mg·kg-1)或高硒(25 mg·kg-1)土壤适宜种植JN218,而富硒(10 mg·kg-1)或硒污染(50 mg·kg-1)土壤适宜种植ZD958.  相似文献   

4.
This study, comprising three independent experiments, was conducted to optimize the zinc (Zn) application through seed coating for improving the productivity and grain biofortification of wheat. Experiment 1 was conducted in petri plates, while experiment 2 was conducted in sand-filled pots to optimize the Zn seed coating using two sources (ZnSO4, ZnCl2) of Zn. In the first two experiments, seeds of two wheat cultivars Lasani-2008 and Faisalabad-2008 were coated with 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00 g Zn kg?1 seed using ZnSO4 and ZnCl2 as Zn sources. The results of experiment I revealed that seed coating with 1.25 and 1.50 g Zn kg?1 seed using both sources of Zn improved the seedling emergence. However, seed coated with 1.25 and 1.50 g Zn kg?1 seed using ZnSO4 was better regarding improvement in seedling growth and seedling dry weight. The results of the second experiment indicated that seed coated with 1.25 and 1.50 g Zn kg?1 seed using ZnSO4 improved the seedling emergence and seedling growth of tested wheat cultivars. However, seed coating beyond 1.5 g Zn kg?1 seed using either Zn source suppressed the seedling emergence. Third experiment was carried out in glass house in soil-filled earthen pots. Seeds of both wheat cultivars were coated with pre-optimized treatments (1.25, 1.50 g Zn kg?1 seed) using both Zn sources. Seed coating with all treatments of ZnSO4 and seed coating with 1.25 g Zn kg?1 seed using ZnCl2 improved the seedling emergence and yield-related traits of wheat cultivars. Seed coating with 1.25 g Zn kg?1 seed also improved the chlorophyll a and b contents. Maximum straw Zn contents, before and after anthesis, were recorded from seed coated with 1.5 g Zn kg?1 seed using either Zn source. Increase in grain yield from seed coating followed the sequence 1.25 g Zn kg?1 seed (ZnSO4) >1.25 g Zn kg?1 seed (ZnCl2) >1.5 g Zn kg?1 seed (ZnSO4). However, increase in grain Zn contents from seed coated was 1.5 g Zn kg?1 seed (ZnCl2) >1.25 and 1.5 g Zn kg?1 seed (ZnCl2, ZnSO4) >1.25 g Zn kg?1 seed (ZnSO4). Seed coating with Zn increased the grain Zn contents from 21 to 35 %, while 33–55 % improvement in grain yield was recorded. In conclusion, wheat seeds may be coated with 1.25 g Zn kg?1 seed using either source of Zn for improving the grain yield and grain Zn biofortification.  相似文献   

5.
6.
7.
Argonaute (AGO) proteins and small RNAs (sRNAs) are core components of the RNA‐induced silencing complex (RISC). It has been reported that miRNAs regulate plant height and grain size in rice, but which AGO is involved in grain size regulation remains unclear. Here, we report that enhanced expression of OsAGO17, a putative AGO protein, could improve grain size and weight and promote stem development in rice. Cytological evidence showed that these effects are mainly caused by alteration of cell elongation. Expression analyses showed that OsAGO17 was highly expressed in young panicles and nodes, which was consistent with the expression pattern of OsmiR397b. SRNA sequencing, stem‐loop RT‐PCR and sRNA blotting showed that the expression of OsmiR397b was reduced in ago17 and enhanced in the OsAGO17 OE lines. Four OsmiR397b target laccase (LAC) genes showed complementary expression patterns with OsAGO17 and OsmiR397b. Combined with the results of immunoprecipitation (IP) analysis, we suggested that OsAGO17 formed an RISC with OsmiR397b and affected rice development by suppression of LAC expression. In conclusion, OsAGO17 might be a critical protein in the sRNA pathway and positively regulates grain size and weight in rice.  相似文献   

8.
The OsGS3 gene plays a principal role in controlling grain weight and grain length in rice. However, the function of an orthologous gene TaGS in wheat has not been analyzed to date. In the present study, we cloned the gDNA of TaGS gene, designated TaGS-D1, with four exons and three introns on chromosome 7DS by a comparative genomics approach. The cDNA of TaGS-D1 is 255 bp, and it encodes 85 amino acids. We also found a plant-specific organ size regulation domain in the deduced polypeptide, indicating that TaGS-D1, like OsGS3, does not belong to the PEBP family. DNA sequencing of the TaGS-D1 locus revealed no diversity in the coding sequence of exons, but there was a single nucleotide polymorphism (SNP) in the first intron, and 30 SNPs, a 40-bp InDel and a 3-bp InDel were found in the second intron between genotypes with higher and lower thousand grain weights (TGW). Based on the 40-bp InDel, a co-dominant STS marker, designated GS7D, was developed to discriminate the two alleles. GS7D was 8.0 cM from Xbarc184 located on chromosome 7DS by linkage mapping. A QTL for TGW and grain length at GS7D locus explained up to 16.3 and 7.7 %, respectively, of the phenotypic variances in a RIL population derived from Doumai/Shi 4185 grown in Shijiazhuang and Beijing. One hundred and seventy-five Chinese wheat cultivars were genotyped with GS7D, indicating that TaGS-D1 was significantly associated with grain weight. The allelic distribution at the TaGS-D1 locus showed that the frequencies of TaGS-D1a were high in cultivars from Serbia, Japan, Australia, Canada, and the Northeastern Spring Wheat and Northern Winter Wheat Regions of China.  相似文献   

9.
为探索小麦高产高效优质生产技术途径,指导小麦晚播生产实践,2012年10月—2014年6月,以弱春性小麦偃展4110和半冬性小麦矮抗58为材料进行连续2年的田间定位试验,设置了常规适播(10月中旬、240万株·hm-2)和极端晚播(11月中旬、600万株·hm-2)两种栽培模式,研究了极端晚播对0~40 cm土层土壤硝态氮含量、小麦氮素吸收利用、产量、籽粒蛋白质含量和氮素吸收效率的影响.结果表明: 与常规适播处理相比,两个生长季极端晚播处理均使拔节和开花期0~40 cm土壤硝态氮含量显著提高,从而促进拔节后小麦植株氮素吸收积累,成熟期穗部氮素的分配比例也得到提高,最终显著提高小麦籽粒蛋白质含量和偃展4110的蛋白质产量、氮素吸收效率,但对籽粒产量的影响因品种而异.其中,极端晚播处理使偃展4110的籽粒产量显著提高,而矮抗58的籽粒产量却显著降低.因此,极端晚播栽培模式可维持小麦拔节后的土壤氮供应,有利于提高小麦氮素吸收效率,从而提高小麦籽粒产量和蛋白质含量,是灌区小麦高产优质的有效途径之一.  相似文献   

10.
The number of potential annual generations of the rusty grain beetle,Cryptolestes ferrugineus, was simulated in wheat stored in granaries for all crop districts in the prairie provinces of Canada each year from 1952 to 1990 using a population dynamic model driven by ecological variables. Granary size was assumed to be 6 m in diameter. Historical data for temperatures at harvest and times when storage began were used in the simulation model. A second model, which predicted the rate of temperature change at the centre of a 6-m-diameter bulk of wheat, determined environmental parameters for the population dynamic model. (Grain moisture content was assumed constant at 14.5% wet mass basis.) The combined model shows that the initial storage temperature is the most important factor responsible for predicting the number of generations and levels of infestation ofC. ferrugineus. This finding was largely validated by historical grain storage and infestation data. For various years initial grain temperature ranged from 17.7 to 37.4 °C and harvest dates were between 1 August and 20 October. The number of generations annually in simulations based on field conditions ranged from 0.35 to 6.77 with a mean of 3.29. Three or more generations result in a severe infestation and every year at least three simulated generations were completed in some crop districts. In one year, at least three generations were completed in every crop district. Harvest temperature and date permit prediction of crop districts that will potentially have the largest populations of C.ferrugineus so that early monitoring of wheat for infestations can be targeted to areas most at risk. Cereal Research Centre Contribution No. 1660  相似文献   

11.
在不同土壤肥力条件下,研究了施氮量对小麦氮素吸收、转化及籽粒产量和蛋白质含量的影响。结果表明,增施氮肥可以提高小麦各生育阶段的吸氮强度,尤以生育后期提高的幅度为大认为是增施氮肥提高小麦籽粒产量和蛋白质含量的基础,增施氮肥虽提高了小麦植株的吸氮强度。吸氮量增加,但开花后营养器官氮素向籽粒中的转移率降低,增施氮肥不仅促进了小麦植株对肥料氮的吸收,而且也促进了对土壤氮的吸收,并讨论了在高、低土壤肥力条件下氮肥合理运筹的问题。  相似文献   

12.
Using a barley mapping population, ‘Vlamingh’ × ‘Buloke’ (V × B), whole grain analyses were undertaken for physical seed traits and malting quality. Grain density and size were predicted by digital image analysis (DIA), while malt extract and protein content were predicted using near infrared (NIR) analysis. Validation of DIA and NIR algorithms confirmed that data for QTL analysis was highly correlated (R 2 > 0.82), with high RPD values (the ratio of the standard error of prediction to the standard deviation, 2.31–9.06). Endosperm hardness was measured on this mapping population using the single kernel characterisation system. Grain density and endosperm hardness were significantly inter-correlated in all three environments (r > 0.22, P < 0.001); however, other grain components were found to interact with the traits. QTL for these traits were also found on different genomic regions, for example, grain density QTLs were found on chromosomes 2H and 6H, whereas endosperm hardness QTLs were found on 1H, 5H, and 7H. In this study, the majority of the genomic regions associated with grain texture were also coincident with QTLs for grain size, yield, flowering date and/or plant development genes. This study highlights the complexity of genomic regions associated with the variation of endosperm hardness and grain density, and their relationships with grain size traits, agronomic-related traits, and plant development loci.  相似文献   

13.
14.
Photosynthesis, grain yield, and nitrogen utilization in rice and wheat   总被引:8,自引:0,他引:8  
Makino A 《Plant physiology》2011,155(1):125-129
  相似文献   

15.
在盆栽土培条件下,研究了5种浓度(0、10、20、40、80 mg/kg土)的1,2,4-三氯苯(TCB)对两种基因型水稻品种宁粳1号(敏感基因型)和扬辐粳8号(耐性基因型)产量及灌浆期生理特性的影响。结果表明:TCB对两种基因型水稻产量和灌浆期生理特性的影响具有显著差异,随着TCB浓度的增加,宁粳1号的产量呈现递减趋势,而扬辐粳8号呈低浓度下产量增加高浓度下产量显著降低的趋势,在中高浓度TCB(40、80 mg/kg)处理时,宁粳1号每盆穗数,每穗粒数,结实率显著降低且降幅显著大于扬辐粳8号,两个基因型品种千粒重变化都不明显。宁粳1号株高、干物重受TCB抑制程度较明显,降幅显著大于扬辐粳8号。在低浓度TCB(20 mg/kg)处理时,宁粳1号根系活力、叶绿素含量、可溶性蛋白质含量显著降低,而扬辐粳8号有所提高。随着TCB浓度的增加,两个基因型品种叶片抗氧化酶SOD、POD、CAT活性均呈先升后降趋势,且在低浓度TCB(10 mg/kg、20mg/kg)处理时,扬辐粳8号抗氧化酶活性极显著高于宁粳1号,在高浓度TCB(80 mg/kg)TCB浓度胁迫下,宁粳1号抗氧化酶活性极显著低于对照,且降幅极显著大于扬辐粳8号,且MDA含量增幅较大,膜质过氧化程度高。总体而言,低浓度TCB对扬辐粳8号的产量和灌浆期株高、干物重、叶绿素含量、叶片蛋白质含量和抗氧化酶活性具有一定的促进作用,中高浓度TCB对宁粳1号的抑制作用显著大于扬辐粳8号,扬辐粳8号在不同浓度的TCB处理下较宁粳1号表现出较强的耐迫性和适应性。  相似文献   

16.
17.
18.
19.
20.
Lan  Jie  Lin  Qibing  Zhou  Chunlei  Ren  Yakun  Liu  Xi  Miao  Rong  Jing  Ruonan  Mou  Changling  Nguyen  Thanhliem  Zhu  Xingjie  Wang  Qian  Zhang  Xin  Guo  Xiuping  Liu  Shijia  Jiang  Ling  Wan  Jianmin 《Plant molecular biology》2020,104(4-5):429-450
Plant Molecular Biology - OsWRKY36 represses plant height and grain size by inhibiting gibberellin signaling. Plant height and grain size are important agronomic traits affecting yield in cereals,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号