首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Soil was incubated with various species of bacteria, Bacillus subtilis, or Bacillus thuringiensis spores and crystals. These were added to serve as potential prey for indigenous, copper-resistant, nonobligate bacterial predators of bacteria in the soil. Alternatively, the soil was incubated with soluble nutrients or water only to cause potential indigenous prey cells to multiply so the predator cells would multiply. All of these incubation procedures caused excessive multiplication of some gram-negative bacteria in soil. Even greater multiplication, however, often occurred for certain copper-resistant bacterial predators of bacteria that made up a part of the gram-negative response. Incubation of the soil with copper per se did not give these responses. In most cases, the copper-resistant bacteria that responded were Cupriavidus necator, bacterial predator L-2, or previously unknown bacteria that resembled them. As was the case for C. necator and L-2, these new bacteria did not use glucose, had white colonies, produced copper-related growth initiation factor (GIF), and attacked B. thuringiensis spores on laboratory media. The results were different, however, when B. thuringiensis spores and crystals per se were added to the soil. The copper-resistant bacterial response in the soil did not, to any extent, include C. necator-like bacteria. Instead, the main copper-resistant bacterial predators that developed had yellow colonies and did not resemble C. necator or L-2 in other ways. They were not seen before, and they did not develop on the addition of B. subtilis spores to soil. Apparently, they could not produce a C. necator-like GIF. Nevertheless, they did respond very quickly to B. thuringiensis spores and crystals in soil, as if a GIF of some sort were involved. These results suggest that, under various conditions of soil incubation, gram-negative bacterial predators of bacteria multiply and that several copper-resistant types among them can be detected, counted, and isolated by plating dilutions of the soil onto media containing excess copper.  相似文献   

2.
Representatives of several categories of bacteria were added to soil to determine which of them might elicit responses from the soil protozoa. The various categories were nonobligate bacterial predators of bacteria, prey bacteria for these predators, indigenous bacteria that are normally present in high numbers in soil, and non-native bacteria that often find their way in large numbers into soil. The soil was incubated and the responses of the indigenous protozoa were determined by most-probable-number estimations of total numbers of protozoa. Although each soil was incubated with only one species of added bacteria, the protozoan response for the soil was evaluated by using most-probable-number estimations of several species of bacteria. The protozoa did not respond to incubation of the soil with either Cupriavidus necator, a potent bacterial predator, or one of its prey species, Micrococcus luteus. C. necator also had no effect on the protozoa. Therefore, in this case, bacterial and protozoan predators did not interact, except for possible competition for bacterial prey cells. The soil protozoa did not respond to the addition of Arthrobacter globiformis or Bacillus thuringiensis. Therefore, the autochthonous state of Arthrobacter species in soil and the survival of B. thuringiensis were possibly enhanced by the resistance of these species to protozoa. The addition of Bacillus mycoides and Escherichia coli cells caused specific responses by soil protozoa. The protozoa that responded to E. coli did not respond to B. mycoides or any other bacteria, and vice versa. Therefore, addition to soil of a nonsoil bacterium, such as E. coli, did not cause a general increase in numbers of protozoa or in protozoan control of the activities of other bacteria in the soil.  相似文献   

3.
The existence of nonobligate bacterial predators of bacteria in soil has been previously reported. Several additional predators were isolated from soil and tested for predation in situ in soil by use of the indirect bacteriophage analysis technique. The trials were conducted with nutritionally poor and nutritionally enriched soil. Certain of the predators that were gram negative were found to attack a range of both gram-positive and gram-negative host cell species, including at least some of the other predator bacteria, both gram positive and gram negative. The attack occurred in both the nutritionally poor and rich soils, but in some instances it was somewhat depressed in the rich soil. This may be due to the nonobligate nature of the predation. The gram-positive predators attacked a relatively narrow range of prey species, and the attack occurred only in the nutritionally rich soil. In addition, the gram-positive predators were subject to attack by certain of the gram-negative predators. These gram-negative predators therefore appeared to play a dominant role in the control of bacterial numbers in soil.  相似文献   

4.
Death of Micrococcus luteus in Soil   总被引:4,自引:4,他引:0       下载免费PDF全文
Micrococcus luteus cells died relatively quickly when they were added to natural soil. The results were similar for soil in nature and as soil samples in the laboratory. The cells died more quickly when nutrients were added to the soil. Those cells that survived soil residence exhibited a temporary lengthening of the time required for colonial growth and pigment formation on laboratory media. They had not gained increased survival capability, however. This was evident when they were retested in soil. Good survival of the M. luteus cells was noted when the soil was incubated at lowered temperatures. Some protection to the cells was provided by slow drying of the soil during incubation or by addition of NaCl. Microscopic examination of the soil revealed that the M. luteus cells were being physically destroyed and that two different bacteria were growing in the areas where the cells had lysed. It was suggested that bacterial predators in the soil might be associated with the death of the M. luteus cells.  相似文献   

5.
Despite its importance in plant health and crop quality, the diversity of epiphytic bacteria on grape berries and other plant parts, like leaves and bark, remains poorly described, as does the role of telluric bacteria in plant colonization. In this study, we compare the bacterial community size and structure in vineyard soils, as well as on grapevine bark, leaves and berries. Analyses of culturable bacteria revealed differences in the size and structure of the populations in each ecosystem. The highest bacteria population counts and the greatest diversity of genera were found in soil samples, followed by bark, grapes and leaves. The identification of isolates revealed that some genera – Pseudomonas, Curtobacterium, and Bacillus – were present in all ecosystems, but in different amounts, while others were ecosystem-specific. About 50% of the genera were common to soil and bark, but absent from leaves and grapes. The opposite was also observed: grape and leaf samples presented 50% of genera in common that were absent from trunk and soil. The bacterial community structure analyzed by T-RFLP indicated similarities between the profiles of leaves and grapes, on the one hand, and bark and soil, on the other, reflecting the number of shared T-RFs. The results suggest an interaction between telluric bacterial communities and the epiphytic bacteria present on the different grapevine parts.  相似文献   

6.
Degradation of Alyssum murale biomass in soil   总被引:2,自引:0,他引:2  
The Ni-hyperaccumulating plant Alyssum murale accumulates exceptionally high concentrations of nickel in its aboveground biomass. The reasons for hyperaccumulation remain unproven; however, it has been proposed that elemental alelopathy might be important. High-Ni leaves shed by the plant may create a "toxic zone" around the plant where germination or growth of competing plants is inhibited. The efficacy of this argument will partially depend upon the rate at which leaves degrade in soil and free metals are released, and the subsequent rate at which metals are bound to soil constituents. To test the degradation of biomass of hyperaccumulators, A. murale was grown on both high- and low-Ni soils to achieve high- (12.0 g Ni/kg) and low- (0.445 g Ni/kg) Ni biomass. Shredded leaf and stem biomass were added to a serpentine soil from Oregon that was originally used to grow high-Ni biomass and a low-Ni control soil from Maryland. Biomass Ni was readily soluble and extractable, suggesting near immediate release as biomass was added to soil Extractable nickel in soil amended with biomass declined rapidly over time due to Ni binding in soil These results suggest that Ni released from biomass of Ni hyperaccumulators may significantly affect their immediate niche only for short periods of time soon after leaf fall, but repeated application may create high Ni levels under and around hyperaccumulators.  相似文献   

7.
Brand  J.D.  Tang  C.T.  Graham  R.D. 《Plant and Soil》2000,224(2):207-215
Two glasshouse experiments were conducted to examine the effects of nutrient supply and rhizobial inoculation on the performance of Lupinus pilosus genotypes differing in tolerance to calcareous soils. In experiment 1, plants were grown for 84 days in a calcareous soil (50% CaCO3; soil water content 90% of field capacity) at four nutrient treatments (no-added nutrients, added nutrients without Fe, added nutrients with soil applied FeEDDHA, added nutrients with foliar applied FeSO4). In experiment 2, plants were grown for 28 days with supply of NH4NO3 without inoculation or inoculated with Bradyrhizobium sp. (Lupinus). Chlorosis in the youngest leaves was a good indicator of the relative tolerance of the genotypes to the calcareous soil in both experiments, except the treatment with FeEDDHA at 5 mg kg–1 soil which was toxic to all genotypes. Chlorosis scores correlated with chlorophyll meter readings and chlorophyll concentrations. The foliar application of FeSO4 did not fully alleviate chlorotic symptoms despite concentrations of active or total Fe in the youngest leaves being increased. Adding nutrients and chemical nitrogen did not change the severity of chlorosis or improve the growth of the plant. The nutrient supply did not alter the ranking of tolerance of genotypes to the calcareous soil. The results suggest that nutrient deficiency or poor nodulation was not a major cause of poor plant growth on calcareous soils and that bicarbonate may exert a direct effect on chlorophyll synthesis. The mechanism for tolerance is likely to be related to an ability to exclude bicarbonate or prevent its transport to the leaves.  相似文献   

8.
Growth of Streptococcus faecalis var. liquefaciens on Plants   总被引:6,自引:4,他引:2       下载免费PDF全文
The proliferation of Streptococcus faecalis var. liquefaciens on two varieties of beans, and on corn, rye, and cabbage was investigated. Comparisons were made with growth patterns on these same plants exhibited by S. lactis and Lactobacillus plantarum. The ability of each of the bacteria to multiply and to spread to new plant parts as they developed from seed was studied under several environmental conditions. Plants were grown aseptically in glass culture and in sterilized and non-sterilized soil in the greenhouse. Quantitative estimations of increase in bacterial numbers were made. S. faecalis established commensal growth on each of five plants, although selectivity was noted for some plant parts. The organism increased in numbers on the plants equally as well as did the control bacteria, both alone, and in competition with the control bacteria and the microflora of the soil.  相似文献   

9.
As toxic pollutants commonly found in tobacco (Nicotiana tabacum L.) products, lead (Pb) and cadmium (Cd) can enter the human body via smoking and thus pose a potential health risk to smokers. We conducted a greenhouse experiment to study the effects of arbuscular mycorrhizal (AM) inoculation with Glomus intraradices BEG 141 and organic amendment with cattle manure, alone or in combination, on the growth, P nutrition, and heavy-metal uptake by tobacco plants grown in soil to which was added Pb-Cd at 0/0, 350/1, 500/10, and 1,000/100?mg?kg?1, respectively. In general, AM colonization and plant growth were greatly reduced by Pb-Cd contamination, whereas organic amendment alleviated Pb-Cd stress and showed some beneficial effects on AM symbiosis and some soil parameters. AM inoculation, alone or in combination with organic amendment, increased plant dry weights and improved P nutrition significantly at all Pb-Cd addition levels, and, in most cases, it decreased Pb and Cd concentrations in tobacco plants and DTPA-extractable concentrations in soil. AM inoculation increased total glomalin-related soil protein (GRSP) concentrations in soil to which Pb-Cd was added. The higher soil pH and GRSP contents and the lower DTPA-extractable Pb and Cd concentrations contributed by AM inoculation and/or organic amendment may be contributing factors that lead to higher growth promotion and lower metal toxicity and uptake by plants. Our findings suggest that AM inoculation in combination with organic manure may be a potential method for not only tobacco production but phytostabilization of Pb-Cd-contaminated soil.  相似文献   

10.
Bacterial Predators of Micrococcus luteus in Soil   总被引:8,自引:8,他引:0       下载免费PDF全文
Micrococcus luteus cells died relatively rapidly when they were added to natural soil. Microscopic observation showed that the cells were being physically destroyed by bacterial predators in the soil. Two of these predators were responsible for the initial, main attack, and they were isolated. The isolates on laboratory media lysed M. luteus cells in a manner similar to the attacks that occurred in soil. Neither predator was obligate, however, nor were they nutritionally fastidious. One of these bacteria produced mycelium and conidia. Under nutritionally poor conditions it used slender filaments of mycelium to seek out host cells. It had at least some of the characteristics of a Streptoverticillium species. The other bacterium was a short, gram-negative rod that did not easily fit into any of the known groups of gram-negative bacteria. It attached to host cells, but its mechanism of lysing these cells is not known.  相似文献   

11.
12.
A genetically engineered microorganism, Pseudomonas putida PPO301(pRO103), and the plasmidless parent strain, PPO301, were added at approximately 107 CFU/g of soil amended with 500 ppm of 2,4-dichlorophenoxyacetate (2,4-D) (500 μg/g). The degradation of 2,4-D and the accumulation of a single metabolite, identified by gas chromatography-mass spectrophotometry as 2,4-dichlorophenol (2,4-DCP), occurred only in soil inoculated with PPO301(pRO103), wherein 2,4-DCP accumulated to >70 ppm for 5 weeks and the concentration of 2,4-D was reduced to <100 ppm. Coincident with the accumulation of 2,4-DCP was a >400-fold decline in the numbers of fungal propagules and a marked reduction in the rate of CO2 evolution, whereas 2,4-D did not depress either fungal propagules or respiration of the soil microbiota. 2,4-DCP did not appear to depress the numbers of total heterotrophic, sporeforming, or chitin-utilizing bacteria. In vitro and in situ assays conducted with 2,4-DCP and fungal isolates from the soil demonstrated that 2,4-DCP was toxic to fungal propagules at concentrations below those detected in the soil.  相似文献   

13.
The understanding of relationships between the plants and environmental variables is important for ecological restoration. The objective of this research was to investigate the controlling soil factor in plant growth and salt tolerance of leguminous plant Alhagi sparsifolia Shap. (A. sparsifolia) in a saline desert ecosystem of western China. Results showed that coverage of A. sparsifolia was positively linked to soil total K. A. sparsifolia accumulated the toxic Na+ in either roots or stems and thus reduced their allocation in the leaves to adapt the salt stress. The most important factor that determined Na+ uptake of A. sparsifolia was soil total K content, which suggests that total K can alleviate toxic Na+ accumulation in A. sparsifolia. In addition, there was a significant negative correlation among toxic Cl? concentration in A. sparsifolia, soil total K and pH. Overall, soil total K accounted for 18.2% of plant growth and salt tolerance of A. sparsifolia, followed by soil pH 13.1%, and soil total P 11.6%. In order to restore A. sparsifolia in the degraded desert ecosystems on salinized soil, first we need to consider the effects of soil total K, and then synergistically consider the soil pH and total P.  相似文献   

14.
Environmental contamination caused by various pollutants due to automobile emissions is an alarming issue. One important type of the pollutants are heavy metals, including chromium (Cr) added by the exhaust of toxic smoke of vehicles. These pollutants are added to forage crops cultivated near roadsides, soil and irrigation water. However, rare studies have been conducted to infer Cr accumulation near heavy automobile emission areas. This study was conducted to determine Cr concentration in irrigation water, soil and forage. Water, forage and soil samples were collected from area impacted by heavy traffic. Atomic absorption spectrophotometer was used to appraise Cr values in the collected samples. Chromium values ranged from 0.50 to 1.14 mg/kg in water samples and from 0.04 to 2.23 mg/kg in soil samples. It was highest in Zea mays grown soil, whereas minimum in Brassica campestris soil. The Cr values in forages ranged from 0.09 to 1.06 mg/kg. Z. mays observed the highest Cr accumulation, whereas the lowest Cr accrual was noted for B. campestris. The pollution load index (PLI) was the highest for Trifolium alexandrinum, while the lowest for Z. mays. Bio-concentration factor (BCF) ranged from 0.14 to 8.63. The highest BCF was noted for T. alexandrinum, while the lowest for Z. mays. The highest and the lowest daily intake of metal (DIM) was noted for Z. mays at different sites. Health risk index (HRI) was highest for Z. mays and lowest for B. campestris. The results add valuable information on heavy metal accumulation in water, soil and forage samples near to automobile emission area.  相似文献   

15.
The influence of different chelates applied in the soil primary on Al and secondary on Fe and Mn mobilization and their removal from solution was investigated. The work compared the efficiency of 10 mM tartaric acid and 3 mM EDTA in soil washing process and accumulation potential of Pistia stratiotes in rhizofiltration process. The plant response on the toxic element Al and other elements Fe and Mn was determined through the nitrogen and free amino acids content in plants. The efficiency of chelates decreased in order 10 mM tartaric acid > deionized water > 3 mM EDTA for all studied elements. P. stratiotes was able to remove up to 90% of elements during the 15 days period. Higher content of toxic element Al and potential toxic elements Fe and Mn were observed in the roots than in the leaves with the increased time. The trend of Al accumulation correlated with Fe accumulation (R2=0.89). Toxicity impact of high level of Al was observed by increased free amino acids (AA) level. Proline, histidine, glutamic acid and glycine were the most synthesised free AA in leaves. Total AA content in leaves was significantly higher under chelates addition compared to control.  相似文献   

16.
17.
SOME EFFECTS OF HOST-PLANT NUTRITION ON THE MULTIPLICATION OF VIRUSES   总被引:1,自引:0,他引:1  
The amounts of tobacco mosaic virus present in systemically infected tobacco plants varied greatly with the mineral nutrition of the plants and were related to the effects on plant growth. With plants in soil, supplements of phosphorus produced the greatest increases in plant size, in virus concentration of expressed sap, and in total virus per plant; nitrogen increased plant size only when phosphorus was also added, and only then increased virus concentration and total virus per plant. Combined supplements of phosphorus and nitrogen doubled the virus concentration of sap and increased the total virus per plant by factors up to forty. Potassium slightly reduced the virus concentration of sap, though it usually increased plant size and total virus per plant. From all plants, only about one-third of the virus contained in leaves was present in sap. Virus production seemed to occur at the expense of normal plant proteins, and the ratio of virus to other nitrogenous materials was highest in plants receiving a supplement of phosphorus but not of nitrogen.
The effects of host nutrition on the production of virus in inoculated leaves resembled those in systemically infected leaves, but were more variable.
No evidence was obtained, with plants grown in soil or sand, that host nutrition had any consistent effect on the intrinsic infectivity of tobacco mosaic virus.
The concentration of virus in sap from potato plants systemically infected with two strains of potato virus X was not consistently affected by fertilizers; the chief effect of host nutrition on virus production was indirect by altering plant size.  相似文献   

18.
Syringomycin, a bacterial phytotoxin, closes stomata   总被引:3,自引:1,他引:2       下载免费PDF全文
Mott KA  Takemoto JY 《Plant physiology》1989,90(4):1435-1439
The effects of the bacterial phytotoxin, syringomycin, on stomata were investigated using detached leaves of Xanthium strumarium and isolated epidermes of Vicia faba. Syringomycin is known to cause K+ efflux in fungal and higher plant cells. Doses of syringomycin as low as 0.3 unit per square centimeter (about 0.88 pmole per square centimeter) resulted in measurable stomatal closure when applied through the transpiration stream of detached leaves; higher doses produced larger reductions in stomatal conductance. Stomatal apertures of isolated epidermes were also reduced by low concentrations (3.2 units per milliliter; 10−8 molar) of syringomycin. The effects of syringomycin were similar to those of ABA. Both compounds closed stomata at a similar rate and at similar concentrations. In addition, neither compound significantly affected the relationship between photosynthesis and intercellular CO2 based on data taken after stomatal conductance had stabilized following the treatment. It is possible that syringomycin and ABA activate the same K+ export system in guard cells, and syringomycin may be a valuable tool for studying the molecular basis of ABA effects on guard cells.  相似文献   

19.
The aim of this study was to investigate the ability of Pantoea agglomerans, a plant growth-promoting bacterium, to colonize various regions and tissues of the wheat plant (Triticum aestivum L.) by using different inoculation methods and inoculum concentrations. In addition, the enzyme-linked immunosorbent assay (ELISA) and transmission electron microscopy (TEM) were used to determine: (a) the ability of the bacterial cells to grow and survive both on the surface and within internal tissue of the plant and (b) the response of the plant to bacterial infection. After inoculation, cells of the diazotrophic bacterial strain P. agglomerans were found to be located in roots, stems and leaves. Colony development of bacterial cells was only detected within intercellular spaces of the root and on the root surface. However, single bacterial cells were observed in leaves and stems on the surface of the epidermis, in the vicinity to stomatal cells, within intercellular spaces of the mesophyll and within xylem vessels. Inoculated bacterial cells were found to be able to enter host tissues, to multiply in the plant and to maintain a delicate relationship between endophyte and host. The density of bacterial settlement in the plant in all experiments was about 106 to 107 cells per mL root or shoot sap. Establishment was confirmed by a low coefficient of variation of ELISA means at these concentrations.  相似文献   

20.
Soils may comprise tens of thousands to millions of bacterial species. It is still unclear whether this high level of diversity is governed by functional redundancy or by a multitude of ecological niches. In order to address this question, we analyzed the reproducibility of bacterial community composition after different experimental manipulations. Soil lysimeters were planted with four different types of plant communities, and the water content was adjusted. Group-specific phylogenetic fingerprinting by PCR-denaturing gradient gel electrophoresis revealed clear differences in the composition of Alphaproteobacteria, Betaproteobacteria, Bacteroidetes, Chloroflexi, Planctomycetes, and Verrucomicrobia populations in soils without plants compared to that of populations in planted soils, whereas no influence of plant species composition on bacterial diversity could be discerned. These results indicate that the presence of higher plant species affects the species composition of bacterial groups in a reproducible manner and even outside of the rhizosphere. In contrast, the environmental factors tested did not affect the composition of Acidobacteria, Actinobacteria, Archaea, and Firmicutes populations. One-third (52 out of 160) of the sequence types were found to be specifically and reproducibly associated with the absence or presence of plants. Unexpectedly, this was also true for numerous minor constituents of the soil bacterial assemblage. Subsequently, one of the low-abundance phylotypes (beta10) was selected for studying the interdependence under particular experimental conditions and the underlying causes in more detail. This so-far-uncultured phylotype of the Betaproteobacteria species represented up to 0.18% of all bacterial cells in planted lysimeters compared to 0.017% in unplanted systems. A cultured representative of this phylotype exhibited high physiological flexibility and was capable of utilizing major constituents of root exudates. Our results suggest that the bacterial species composition in soil is determined to a significant extent by abiotic and biotic factors, rather than by mere chance, thereby reflecting a multitude of distinct ecological niches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号