首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
The nucleotide sequence of chicken, pheasant, duck and Tetrahymena pyriformis U5 RNAs as well as that of new mammalian variant U5 RNAs was determined and compared to that of rat and HeLa cells U5 RNAs. Primary structure conservation is about 95% between rat and human cells, 82% between mammals and birds and 57% between the Protozoan and mammals. The same model of secondary structure, a free single-stranded region flanked by two hairpins can be constructed from all RNAs and is identical to the model previously proposed for mammalian U5 RNA on an experimental basis (1). Thus, this model is confirmed and is likely to be that of an ancestor U5 RNA. The 3' region of the U5 RNA molecule constitutes domain A, and is common to U1, U2, U4 and U5 RNAs (2). The characteristic nucleotide sequences of domain A are highly conserved throughout the phylogenetic evolution of U5 RNA suggesting that they are important elements in the function of the four small RNAs. Another region of high evolutionary conservation is the top part of the 5' side hairpin whose conserved sequence is specific to U5 RNA. It might participate in the particular function of U5 RNA.  相似文献   

2.
3.
Preparations of chicken, rat and human nuclear 5S RNA contain two sets of molecules. The set with the lowest electrophoretic mobility (5Sa) contains RNAs identical or closely related to ribosomal 5S RNA from the corresponding animal species. In HeLa cells and rat brain, we only detected an RNA identical to the ribosomal 5S RNA. In hen brain and liver, we found other species differing by a limited number of substitutions. The results suggest that mutated 5S genes may be expressed differently according to the cell type. The set with the highest mobility corresponds to U5 RNA. In both rat brain and HeLa cells, U5 RNA was found to be composed of 4 and 5 different molecules respectively (U5A, U5B1-4) differing by a small number of substitutions or insertions. In hen brain, no U5B was detected but U5A' differing from U5A by the absence of the 3'-terminal adenosine. All the U5 RNAs contain the same set of modified nucleotides. They also have the same secondary structure which consists of two hairpins joined together by a 17 nucleotide long single-stranded region. The 3' half of the molecule has a compact conformation. Together, the results suggest that U5 RNAs are transcribed from a multigene family and that mutated genes may be expressed as far as secondary structure is conserved. The conformation of U5 RNA is likely to be related to its function and it is of interest to mention that several similarities of structure are found between U5 and U1A RNA.  相似文献   

4.
5.
Maturation of mRNAs in trypanosomes involves trans splicing of the 5' end of the spliced leader RNA and the exons of polycistronic pre-mRNAs, requiring small nuclear ribonucleoproteins (snRNPs) as cofactors. We have mapped protein-binding sites in the U2 and U4/U6 snRNPs by a combination of RNase H protection analysis, native gel electrophoresis, and CsCl density gradient centrifugation. In the U2 snRNP, protein binding occurs primarily in the 3'-terminal domain; through U2 snRNP reconstitution and chemical modification-interference assays, we have identified discrete positions within stem-loop IV of Trypanosoma brucei U2 RNA that are essential for protein binding; significantly, some of these positions differ from the consensus sequence derived from cis-spliceosomal U2 RNAs. In the U4/U6 snRNP, the major protein-binding region is contained within the 3'-terminal half of U4 RNA. In sum, while the overall domain structure of the U2 and U4/U6 snRNPs is conserved between cis- and trans-splicing systems, our data suggest that there are also trans-spliceosomal specific determinants of RNA-protein binding.  相似文献   

6.
Nuclei, isolated from a number of plant species by either of two independent, newly developed methods, regularly contained a common set of low-molecular-mass RNAs. Partial characterization of these RNAs, based on cell fractionation, polyacrylamide gel electrophoretic and chemical sequencing techniques, as well as comparison with literature data, revealed that, in addition to tRNA, 5S RNA and 5.8S RNA, plant nuclei contain two families of low-molecular-mass RNAs, that are counterparts of vertebrate U1 and U5 RNAs respectively, and three individual low-molecular-mass RNA species. One of these may be related to vertebrate U6 RNA. The two others are true eukaryotic U2 and U3 RNAs, respectively, on the basis of the following lines of evidence obtained from analyses of broad bean nuclear RNAs. The 3'-end portion (121 nucleotides sequenced) of broad bean U2 RNA shows a nearly perfect sequence homology with that of authentic pea U2 RNA. Broad bean U3 RNA is localized in the nucleolus and its 3'-end portion (164 nucleotides sequenced) (a) shows sequence homology with that of both rat U3 RNA (48%) and Dictyostelium D2 RNA (39%), (b) has a secondary structure which fits perfectly that proposed for both rat U3 RNA and Dictyostelium D2 RNA, and (c) contains the specific sequence which, in a model based on the primary structure of rat U3 RNA, is supposed to be involved in the processing of eukaryotic 32S pre-ribosomal RNA. This is the first report on the occurrence in plants of nucleolar U3 RNA.  相似文献   

7.
The U3 snoRNA coding sequences from the genomic DNAs of Kluyveromyces delphensis and four variants of the Kluyveromyces marxianus species were cloned by PCR amplification. Nucleotide sequence analysis of the amplification products revealed a unique U3 snoRNA gene sequence in all the strains studied, except for K. marxianus var. fragilis. The K. marxianus U3 genes were intronless, whereas an intron similar to those of the Saccharomyces cerevisiae U3 genes was found in K. delphensis. Hence, U3 genes with and without intron are found in yeasts of the Saccharomycetoideae subfamily. The secondary structure of the K. delphensis pre-U3 snoRNA and of the K. marxianus mature snoRNAs were studied experimentally. They revealed a strong conservation in yeasts of (1) the architecture of U3 snoRNA introns, (2) the 5'-terminal domain of the mature snoRNA, and (3) the protein-anchoring regions of the U3 snoRNA 3' domain. In contrast, stem-loop structures 2, 3, and 4 of the 3' domain showed great variations in size, sequence, and structure. Using a genetic test, we show that, in spite of these variations, the Kluyveromyces U3 snoRNAs are functional in S. cerevisiae. We also show that S. cerevisiae U3A snoRNAs lacking the stem-loop structure 2 or 4 are functional. Hence, U3 snoRNA function can accommodate great variations of the RNA 3'-terminal domain.  相似文献   

8.
9.
水稻U2snRNA基因的分离及结构分析   总被引:1,自引:0,他引:1  
对水稻(Oryza sativa L.)基因文库中分离到的U2snRNA基因FDRGU2.3进行序列分析,其编码区与小麦(Triticum aestivum L、)、玉米(Zea mays L.)、豌豆(Pisum sativum L.)及拟南芥(Arabidopsis thaliana(L.)Heyhy.)等植物U2基因的同源性均大于80%,且5'端70个碱基高度保守。在基因编码区上游-70及-30区分别包含有植物UsnRNA基因特有的上游顺序元件(USE)及类TATA元件。同其它植物一样,水稻U2.3snRNA的二级结构也有保守的4个茎环区。其中环Ⅱ的结构与单子叶植物中的小麦和玉米相同,但与双子叶植物的豌豆和拟南芥存在明显差异。环Ⅳ的结构在单子叶和双子叶植物中亦有不同的变化。这些差异可能意味着单子叶和双子叶植物的剪接机构有所区别。  相似文献   

10.
cDNA cloning of U1, U2, U4 and U5 snRNA families expressed in pea nuclei.   总被引:7,自引:4,他引:3  
Differences observed between plant and animal pre-mRNA splicing may be the result of primary or secondary structure differences in small nuclear RNAs (snRNAs). A cDNA library of pea snRNAs was constructed from anti-trimethylguanosine (m3(2,2,7)G immunoprecipitated pea nuclear RNA. The cDNA library was screened using oligo-deoxyribonucleotide probes specific for the U1, U2, U4 and U5 snRNAs. cDNA clones representing U1, U2, U4 and U5 snRNAs expressed in seedling tissue have been isolated and sequenced. Comparison of the pea snRNA variants with other organisms suggest that functionally important primary sequences are conserved phylogenetically even though the overall sequences have diverged substantially. Structural variations in U1 snRNA occur in regions required for U1-specific protein binding. In light of this sequence analysis, it is clear that the dicot snRNA variants do not differ in sequences implicated in RNA:RNA interactions with pre-mRNA. Instead, sequence differences occur in regions implicated in the binding of small ribonucleoproteins (snRNPs) to snRNAs and may result in the formation of unique snRNP particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号