首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
2.
3.
4.
5.
Nuclear extracts from maize endosperm were used to investigate protein-DNA interactions in the 5-upstream region of the Zc1 and Zc2 genes. These genes encode for zeins of apparent molecular mass (MWapp) 16 and 28 kDa, respectively, which accumulate in the endosperm during seed maturation. Binding assays revealed specific binding of a nuclear protein to three A/T-rich elements, 0.9–1.0 kbp upstream from the initiation codon. One of these elements (41 bp, 88% A/T), present in Zc1, contained a 13 nucleotide duplication. The other two (28 bp, 86% A/T; 42 bp alternating A-T) are consecutive elements in Zc2. Competition experiments strongly suggest that the three elements bind to the same protein. Protein-DNA interaction was detected in endosperm nuclear extracts of 8 to 21 days after pollination (DAP), as well as in 25 DAP embryos and in different tissues from plantlets. The protein factor has an MWapp of ca. 30 kDa. This factor has properties suggesting it is an HMG-like protein. These results are consistent with a growing accumulation of data for a number of genes indicating that A/T-rich elements, located at distal and proximal zones of the 5-flanking sequences, interact with HMG-like proteins.  相似文献   

6.
7.
Eukaryotic elongation factor 1A (eEF1A) appears to be a multifunctional protein because several biochemical activities have been described for this protein, in addition to its role in protein synthesis. In maize (Zea mays) endosperm, the synthesis of eEF1A is increased in o2 (opaque2) mutants, and its concentration is highly correlated with the protein-bound lysine content. To understand the basis of this relationship, we purified eEF1A isoforms from developing endosperm and investigated their accumulation and their functional and structural properties. Formation of three isoforms appears to be developmentally regulated and independent of the o2 mutation, although one isoform predominated in one high lysine o2 inbred. The purified proteins differ in their ability to bind F-actin in vitro, suggesting that they are functionally distinct. However, they share similar aminoacyl-tRNA-binding activities. Tandem mass spectrometry revealed that each isoform is composed of the four same gene products, which are modified posttranslationally by methylation and phosphorylation. The chemical differences that account for their different actin-binding activities could not be determined.  相似文献   

8.
9.

Background

eEF1A2 is a protein translation factor involved in protein synthesis, which possesses important function roles in cancer development. This study aims at investigating the expression pattern of eEF1A2 in prostate cancer and its potential role in prostate cancer development.

Methods

We examined the expression level of eEF1A2 in 30 pairs of prostate cancer tissues by using RT-PCR and immunohistochemical staining (IHC). Then we applied siRNA specifically targeting eEF1A2 to down-regulate its expression in DU-145 and PC-3 cells. Flow cytometer was used to explore apoptosis and Western-blot was used to detect the pathway proteins of apoptosis.

Results

Our results showed that the expression level of eEF1A2 in prostate cancer tissues was significantly higher compared to their corresponding normal tissues. Reduction of eEF1A2 expression in DU-145 and PC-3 cells led to a dramatic inhibition of proliferation accompanied with enhanced apoptosis rate. Western blot revealed that apoptosis pathway proteins (caspase3, BAD, BAX, PUMA) were significantly up-regulated after suppression of eEF1A2. More importantly, the levels of eEF1A2 and caspase3 were inversely correlated in prostate cancer tissues.

Conclusion

Our data suggests that eEF1A2 plays an important role in prostate cancer development, especially in inhibiting apoptosis. So eEF1A2 might serve as a potential therapeutic target in prostate cancer.  相似文献   

10.
The protein synthesis elongation factor 1A (eEF1A) is a multifunctional protein in eukaryotic cells. In maize (Zea mays L.) endosperm eEF1A co-localizes with actin around protein bodies, and its accumulation is highly correlated with the protein-bound lysine (Lys) content. We purified eEF1A from maize kernels by ammonium sulfate precipitation, ion-exchange, and chromatofocusing. The identify of the purified protein was confirmed by microsequencing of an endoproteinase glutamic acid-C fragment and by its ability to bundle actin. Using purified eEF1A as a standard, we found that this protein contributes 0.4% of the total protein in W64A+ endosperm and approximately 1% of the protein in W64Ao2. Because eEF1A contains 10% Lys, it accounts for 2.2% of the total Lys in W64A+ and 2.3% of the Lys in W64Ao2. However, its concentration predicts 90% of the Lys found in endosperm proteins of both genotypes, indicating that eEF1A is a key component of the group of proteins that determines the nutritional quality of the grain. This notion is further supported by the fact that in floury2, another high-Lys mutant, the content of eEF1A increases with the dosage of the floury2 gene. These data provide the biochemical basis for further investigation of the relationship between eEF1A content and the nutritional quality of cereals.  相似文献   

11.
12.
Wang X  Woo YM  Kim CS  Larkins BA 《Plant physiology》2001,125(3):1271-1282
The nutritional value of maize (Zea mays) seed is most limited by its protein quality because its storage proteins are devoid of the essential amino acid lysine (Lys). The Lys content of the kernel can be significantly increased by the opaque-2 mutation, which reduces zein synthesis and increases accumulation of proteins that contain Lys. Elongation factor 1alpha (eEF1A) is one of these proteins, and its concentration is highly correlated with the Lys content of the endosperm. We investigated the genetic regulation of eEF1A and the basis for its relationship with other Lys-containing proteins by analyzing the progeny of a cross between a high (Oh51Ao2) and a low (Oh545o2) eEF1A maize inbred. We identified 83 simple sequence repeat loci that are polymorphic between these inbreds; the markers are broadly distributed over the genome (1,402 cM) with an average interval of 17 cM. Genotypic analysis of the F(2) progeny revealed two significant quantitative trait loci that account for 25% of the variance for eEF1A content. One of these is on the short arm of chromosome 4 and is linked with a cluster of 22-kD alpha-zein coding sequences; the other quantitative trait locus is on the long arm of chromosome 7. The content of alpha-zein and gamma-zein was measured in pools of high- and low-eEF1A individuals obtained from this cross, and a higher level of alpha-zein was found to cosegregate with high eEF1A content. Allelic variation at the 22-kD alpha-zein locus may contribute to the difference of eEF1A content between Oh51Ao2 and Oh545o2 by increasing the surface area of protein bodies in the endosperm and creating a more extensive network of cytoskeletal proteins.  相似文献   

13.
C. R. Lending 《Protoplasma》1996,195(1-4):68-77
Summary The seed storage proteins of maize (Zea mays L.) are synthesized during endosperm development on membrane-bound polyribosomes. Protein body formation in normal genotypes occurs via a sequential deposition of the various types of zeins, and leads to the formation of spherical structures with a diameter of about l m. In the endosperm mutantopaque-2 the level of one zein class is reduced; these kernels exhibit an opaque phenotype instead of the vitreous phenotype displayed in normal genotypes, presumably due to the decrease in total zein protein at the time of desiccation. Previous microscopic examination ofopaque-2 protein bodies at 22 DAP (days after pollination) showed that the protein bodies were morphologically similar to those of normal genotypes. However, the endosperm ofopaque-2 maize at 14 DAP contains tubular arrays within the rough endoplasmic reticulum. These tubular arrays are tightly associated with the developing protein bodies. Long strands of tubules, sometimes 10 m in length, are observed in the endosperm, and partially formed protein bodies often seem to be forming directly from these tubular arrays. No immunostaining is associated with this tubular material when any of the anti-zein antibodies are used.Abbreviations BSA bovine serum albumin - DAP days after pollination - IgG immunoglobulin G Dedicated to Professor Eldon H. Newcomb in recognition of his contributions to cell biology  相似文献   

14.
Summary The sequences of the genes coding for a hydroxyproline-rich glycoprotein from two varieties of maize (Zea mays, Ac1503 and W22), a teosinte (Zea diploperennis) and sorghum (Sorghum vulgare) have been obtained and compared. Distinct patterns of variability have been observed along their sequences. The 500 by region immediately upstream of the TATA box is highly conserved in theZea species and contains stretches of sequences also found in the sorghum gene. Further upstream, significant rearrangements are observed, even between the two maize varieties. These observations allow definition of a 5 region, which is common to the four genes and is probably essential for their expression. The 3 end shows variability, mostly due to small duplications and single nucleotide substitutions. There is an intron present in this region showing a high degree of sequence conservation among the four genes analyzed. The coding region is the most divergent, but variability arises from duplications of fragments coding for similar protein blocks and from single nucleotide substitutions. These results indicate that a number of distinct mechanisms (probably point mutation, transposon insertion and excision, homologous recombination and unequal crossing-over) are active in the production of sequence variability in maize and related species. They are revealed in different parts of the gene, probably as the result of the different types of functional constraints acting on them, and of the specific nature of the sequence in each region.The sequences reported in this paper have been deposited in the EMBL/GenBank Database (Bolt, Beranek, and Newman Laboratories, Cambridge, Mass., and EMBL, Heidelberg), accession nos. M36635 (maize Ac1503), X63134 (maize W22), X64173 (teosinte) and X56010 (sorghum)  相似文献   

15.
16.
Lou X  Zhu J  Zhang Q  Zang R  Chen Y  Yu Z  Zhao Y 《Genetica》2005,124(2-3):291-300
Some kernel traits of agronomical importance in maize are affected by the opaque-2 (o2) gene and background polygenes, which express in different genetic systems such as embryo, endosperm, cytoplasm and maternal plant. A genetic model for seed quantitative traits with the o2 gene effects and polygenic effects as well as their GE interactions was used for protein content, lysine content, oil content and kernel density in maize. The results suggested that the o2 gene was involved in the traits investigated but the effects of the o2 gene were distinctive on various traits. The effects of the o2 gene were large on lysine content and protein content while minor on oil content. There was a substantially wide quantitative variation from polygenes expressing in different genetic systems for the traits evaluated. Significant GE interactions of the o2 gene and background polygenes declared that not only the main effects but also specific expressions depending on environments were responsible for variation of the traits studied. There seemed to have strong maternal heterosis and slight embryo heterosis for kernel density.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号