首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
莱氏衣原体膜上Mg~(2+)-ATPase用DOC溶解后,经Sepharose-6B和DEAE-CelluloseDE-52离子交换柱,得到了部分纯化的Mg~(2+)ATPase,并将此ATPase与不同极性头部的磷脂和膜糖脂重组,研究了不同的极性头部的磷脂和膜糖脂对ATPase活性的影响。此酶的活性不依赖酸性磷脂,PG、DPG、大豆磷脂等明显抑制酶活性,中性磷脂DMPC、PE、PC则能增加酶活性,其中尤以非双层脂PE的作用最为明显。从莱氏衣原体膜上提取的糖脂(MGDG,DGDG)单独和ATPase重组时,酶活性增加并不明显,当MGDG和DGDG以等比例混合时,能大大地增加酶活性。这表明Mg~(2+)-ATPase的活性很大程度上与磷脂的表面电荷及磷脂的组成相关。  相似文献   

2.
Purified myometrium cells plasma membrane Ca2+, Mg(2+)-ATPase was reconstitute in liposomes in functionally active state by the method of cholate dialysis: it showed ATP-hydrolase activity increased by 0.8 microM A23187 average 4 times and it showed Mg2+, ATP-dependent Ca(2+)-transporting activity. Reconstituted system transported Ca2+ at an initial rate of 114.4 +/- 16.3 nmol.min-1.mg-1 with the stoichiometry Ca2+: ATP = 1: (3.2-3.7). Calmodulin increased by 30% the initial rate of Ca(2+)-accumulation by the proteoliposomes with reconstituted Ca2+, Mg(2+)-ATPase; 0.1 mM orthovanadate decreased by 80% Ca(2+)-accumulation by this system. Ca2+, Mg(2+)-ATPase reconstituted in liposomes is just Ca(2+)-transporting ATPase of the plasma membrane. Obtained enzyme preparate can be utilised for study of the properties of this important energy-dependent Ca(2+)-transporting system of smooth muscle cell.  相似文献   

3.
Antibodies directed against the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase [(Ca2+ + Mg2+)-dependent ATPase] from pig erythrocytes and from smooth muscle of pig stomach (antral part) were raised in rabbits. Both the IgGs against the erythrocyte (Ca2+ + Mg2+)-ATPase and against the smooth-muscle (Ca2+ + Mg2+)-ATPase inhibited the activity of the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase from smooth muscle. Up to 85% of the total (Ca2+ + Mg2+)-ATPase activity in a preparation of KCl-extracted smooth-muscle membranes was inhibited by these antibodies. The (Ca2+ + Mg2+)-ATPase activity and the Ca2+ uptake in a plasma-membrane-enriched fraction from this smooth muscle were inhibited to the same extent, whereas in an endoplasmic-reticulum-enriched membrane fraction the (Ca2+ + Mg2+)-ATPase activity was inhibited by only 25% and no effect was observed on the oxalate-stimulated Ca2+ uptake. This supports the hypothesis that, in pig stomach smooth muscle, two separate types of Ca2+-transport ATPase exist: a calmodulin-binding ATPase located in the plasma membrane and a calmodulin-independent one present in the endoplasmic reticulum. The antibodies did not affect the stimulation of the (Ca2+ + Mg2+)-ATPase activity by calmodulin.  相似文献   

4.
The effect of cholesterol incorporation and depletion of the cardiac sarcolemmal sacs on (Ca2+ + Mg2+)-ATPase activity was examined. Cholesterol incorporation to the sarcolemmal sacs was achieved utilizing an in vivo and an in vitro procedure. Cholesterol depleted membranes were obtained in vitro after incubation of the sarcolemmal sacs with inactivated plasma. Arrhenius plots of the (Ca2+ + Mg2+)-ATPase activity showed a triphasic curve when the assays were carried out using a temperature range between 0 and 40 degrees C. The sarcolemmal (Ca2+ + Mg2+)-ATPase activity was shown to be inversely proportional to the cholesterol concentration of the membranes, showing a low ATPase activity with a high cholesterol content and a high ATPase activity when the cholesterol concentration was low. Although the (Ca2+ + Mg2+)-ATPase activity was found to be inhibited in the cholesterol incorporated sarcolemmal sacs, the withdrawal of small amounts of cholesterol from the membranes produced an important stimulatory effect. Changes in (Ca2+ + Mg2+)-ATPase activity due to variation in the membrane cholesterol concentration were shown to be reversible. Our results indicate the possibility of a slow exchange of cholesterol between the tightly bound lipid surrounding the (Ca2+ + Mg2+)-ATPase and the bulk lipid of the sarcolemma.  相似文献   

5.
Monolayers of porcine kidney cells (LLC-PK) were grown in a series of Nu-Serum-supplemented media containing different Mg(2+) concentrations (480, 250, 25, 6.3 or 2.6 microM) to study the effect of Mg(2+) depletion on cellular phospholipid changes and the consequent effect on the membrane permeability to Ca(2+). Cells grown on 6.3 or 2.6 microM Mg(2+) showed a decrease in PE, PS, Sph, PI and an increase of PC. These changes were attributed mainly to the decreased rate of Sph synthesis through the transfer of phosphocholine from PC to ceramide, or due to the increase of PE N-methylation as found in Mg(2+)-deficient cells. The (45)Ca uptake was increased in cells grown on 25.0 microM Mg(2+), while it was decreased in cells grown on 6.3 or 2.6 microM Mg(2+). These changes in Ca(2+) uptake were related to changes of cellular phospholipids and fatty acids which affect adenylate cyclase activity in the membrane, as well as the membrane fluidity.  相似文献   

6.
Fluorescence energy transfer has been used to study the interaction of various phospholipids with the erythrocyte (Ca2+ + Mg2+)-ATPase. The fluorescence energy transfer between tryptophan residues of the (Ca2+ + Mg2+)-ATPase purified from erythrocytes and pyrene-labelled analogues of phosphatidylcholine (Pyr-PC), phosphatidylinositol (Pyr-PI), phosphatidylinositol 4-phosphate (Pyr-PIP), phosphatidylinositol 4,5-bisphosphate (Pyr-PIP2), phosphatidylglycerol (Pyr-PG) and phosphatidic acid (Pyr-PA) was measured. A positive correlation was found between the number of negative charges on the phospholipids (PIP2 greater than PIP greater than PA greater than PI = PG greater than PC) and the potency of their pyrene-labelled analogues to act as quantum acceptors in fluorescence energy transfer from the tryptophan residues of the (Ca2+ + Mg2+)-ATPase. This is the first time that a physical interaction between PIP/PIP2 and an intrinsic membrane protein has been demonstrated. The dependence of the energy transfer on the number of negative charges of the phospholipids closely resembles the previously demonstrated charge dependence of the enzymatic activity of the (Ca2+ + Mg2+)-ATPase (Missiaen, L., Raeymaekers, L., Wuytack, F., Vrolix, M., Desmet, H. and Casteels, R. (1989) Biochem. J. 263, 687-694). It is concluded that the stimulation of the (Ca2+ + Mg2+)-ATPase activity by negatively charged phospholipids is based on a binding of these lipids to the (Ca2+ + Mg2+)-ATPase and that the negative charges are a major modulatory factor for this interaction.  相似文献   

7.
Fluoroaluminate, known modulator of G-proteins, inhibits ATP-hydrolase activity of purified solubilized Ca2+, Mg(2+)-ATPase from myometrium cell plasma membranes and Ca(2+)-transporting activity of this enzyme reconstituted into azolectin liposomes: 10 mM NaF plus 10 microM AlCl3 inhibited the primary activity by 95% and--by 81%. Inhibition of purified both solubilized and reconstituted Ca2+, Mg(2+)-ATPases by fluoroaluminate evidences for the possibility of direct interaction AlF4- with this enzyme without involvement of G-protein. The sensitivity to fluoroaluminate of sarcolemmal Ca2+, Mg(2+)-ATPase from myometrium is similar to that of Ca2+, Mg(2+)-ATPase from stomach smooth muscle.  相似文献   

8.
The (Na+ +K+)-activated, Mg2+-dependent ATPase from rabbit kidney outer medulla was prepared in a partially inactivated, soluble form depleted of endogenous phospholipids, using deoxycholate. This preparation was reactivated 10 to 50-fold by sonicated liposomes of phosphatidylserine, but not by non-sonicated phosphatidylserine liposomes or sonicated phosphatidylcholine liposomes. The reconstituted enzyme resembled native membrane preparations of (Na+ +K+)-ATPase in its pH optimum being around 7.0, showing optimal activity at Mg2+:ATP mol ratios of approximately 1 and a Km value for ATP of 0.4 mM. Arrhenius plots of this reactivated activity at a constant pH of 7.0 and an Mg2+: ATP mol ratio of 1:1 showed a discontinuity (sharp change of slope) at 17 degrees C, with activation energy (Ea) values of 13-15 kcal/mol above this temperature and 30-35 kcal below it. A further discontinuity was also found at 8.0 degrees C and the Ea below this was very high (greater than 100 kcal/mol). Increased Mg2+ concentrations at Mg2+:ATP ratios in excess of 1:1 inhibited the (Na+ +K+)-ATPase activity and also abolished the discontinuities in the Arrhenius plots. The addition of cholesterol to phosphatidylserine at a 1:1 mol ratio partially inhibited (Na+ +K+)-ATPase reactivation. Arrhenius plots under these conditions showed a single discontinuity at 20 degrees C and Ea values of 22 and 68 kcal/mol above and below this temperature respectively. The ouabain-insensitive Mg2+-ATPase normally showed a linear Arrhenius plot with an Ea of 8 kcal/mol. The cholesterol-phosphatidylserine mixed liposomes stimulated the Mg2+-ATPase activity, which now also showed a discontinuity at 20 degrees C with, however, an increased value of 14 kcal/mol above this temperature and 6 kcal/mol below. Kinetic studies showed that cholesterol had no significant effect on the Km values for ATP. Since both cholesterol and Mg2+ are known to alter the effects of temperature on the fluidity of phospholipids, the above results are discussed in this context.  相似文献   

9.
1. When complete hydrolysis of glycerophosphlipids and sphingomyelin in the outer membrane leaflet is brought about by treatment of intact red blood cells with phospholipase A2 and sphingomyelinase C, the (Ca2+ + Mg2+)-ATPase activity is not affected. 2. Complete hydrolysis of sphingomyelin, by treatment of leaky ghosts with spingomyelinase C, does not lead to an inactivation of the (Ca2+ + Mg2+)-ATPase. 3. Treatment of ghosts with phospholipase A2 (from either procine pancreas of Naja naja venom), under conditions causing an essentially complete hydrolysis of the total glycerophospholipid fraction of the membrane, results in inactivation of the (Ca2+ + Mg2+)-ATPase by some 80--85%. The residual activity is lost when the produced lyso-compounds (and fatty acids) are removed by subsequent treatment of the ghosts with bovine serum albumin. 4. The degree of inactivation of the (Ca2+ + Mg2+)-ATPase, caused by treatment of ghosts with phospholipase C, is directly proportional to the percentage by which the glycerophospholipid fraction in the inner membrane layer is degraded. 5. After essentially complete inactivation of the (Ca2+ + Mg2+)-ATPase by treatment of ghosts with phospholipase C from Bacillus cereus, the enzyme is reactivated by the addition of any of the glycerophospholipids, phosphatidylserine, phosphatidylcholine, phosphatidylethanolamine or lysophosphatidylcholine, but not by addition of sphingomyeline, free fatty acids or the detergent Triton X-100. 6. It is concluded that only the glycerophospholipids in the human erythrocyte membrane are involved in the maintenance of the (Ca2+ + Mg2+)-ATPase activity, and in particular that fraction of these phospholipids located in the inner half of the membrane.  相似文献   

10.
The action of sodium nitroprusside, nitrite-anions and hydrogen peroxide on Ca2+, Mg(2+)-ATPase and Mg(2+)-ATPase (Ca(2+)-independent) enzymatic activity in myometrium sarcolemma fraction is investigated. It is established, that 0.1 mM sodium nitroprusside and 10(-8)-10(-5) M nitrite-anions essentially reduce Ca2+, Mg(2+)-ATPase activity whereas Mg(2+)-ATPase proved to be absolutely resistant to them. At rather high concentration of nitrite-anions (0.1 mM) appreciable stimulation of Ca2+, Mg(2+)-ATPase was observed. Hydrogen peroxide (10(-8)-10(-4)), depending on the concentration suppressed both enzymes activity. However, Ca2+, Mg(2+)-ATPase proved to be more sensitive to the action of H2O2 (seeming K(i) = 0.42 +/- 0.1 microM), than Mg(2+)-ATPase (seeming K(i) = 3.1 +/- 0.9 microM). At presence of 1 mM ditiothreitole (a reducer of SH groups of the membrane surface) action of investigated substances considerably decreased. Reagents on carboxic- (dicyclogexilcarbodiimid) and amino- groups of the membrane (trinitrobenzolsulfonic acid) inhibited both Ca2+, Mg(2+)-ATPase, and Mg(2+)-ATPase activity in membrane fractions. In the presence of noted reagents sodium nitroprusside and nitrite-anions action was not almost shown. Hence, nitrogen oxide, nitrite-anions and hydrogen peroxide suppress Ca2+, Mg(2+)-ATPase and Mg(2+)-ATPase (only hydrogen peroxide) activity in the plasmatic membrane of myometrium cells, and this action can be connected with direct updating of superficial chemical groups of the membrane.  相似文献   

11.
Studies were undertaken to determine whether factors which affect insulin secretion may exert their effects by altering the activity of an islet-cell plasma membrane Ca2+ extrusion pump. The insulin secretagogue, D-glucose, and a variety of phosphorylated hexoses, glucose 6-P, glucose 1,6-P, fructose 6-P, and fructose 2,6-P, were evaluated for their effect on an islet-cell plasma membrane (Ca2+ + Mg2+)-ATPase and were found to be ineffective in altering enzyme activity. D-Glucose also did not alter the rate of ATP-dependent Ca2+ uptake into plasma membrane vesicles. Similarly, cAMP, the catalytic subunit of cAMP-dependent protein kinase, arachidonic acid, or prostaglandin E2 did not affect either the plasma membrane (Ca2+ + Mg2+)-ATPase or the rate of ATP-dependent Ca2+ uptake into plasma membrane vesicles. Whereas previous studies have suggested that D-glucose and/or cAMP may inhibit ATPase activities in islets, these results indicate that the agents, i.e., D-glucose and cAMP, which stimulate and/or potentiate insulin secretion from the islet cell, do not modify Ca2+ fluxes by directly regulating the islet-cell plasma membrane (Ca2+ + Mg2+)-ATPase. In contrast, the acidic phospholipids, phosphatidic acid and phosphatidylserine, stimulated the enzyme activity in a concentration-dependent manner whereas phosphatidylcholine had only a minimal effect. The diacylglycerol, dilinolein, stimulated the (Ca2+ + Mg2+)-ATPase activity in the presence of phosphatidylserine, but not in the absence of phospholipids. These effects were independent of phospholipid-stimulated protein phosphorylation in the islet-cell plasma membrane under the conditions of the ATPase assay.  相似文献   

12.
At least two reaction steps are involved in the activation of purified plasma membrane Ca(2+)-transport ATPase by negatively charged phospholipids depending on the type of phospholipids (Lehotsky et al. 1992). The effect of negatively charged phospholipids on Ca(2+)-stimulated ATPase (cycling activity) was compared with that of p-nitrophenylphosphatase (E2-form activity) catalyzed by Ca(2+)-pump. PIP like PS, activated Ca(2+)-ATPase activity by modifying ATP activation curve with increasing Vmax of the high affinity site. Ca(2+)-ATPase activity reconstituted in PC was stimulated by DMSO(10%) by a factor of 1.36. The activity stimulation by DMSO was only weak in PS and activity was inhibited in PIP. Also, phosphatase activity catalyzed by Ca(2+)-pump was strongly stimulated by DMSO and was differentially affected by phospholipid head group. Positively charged neomycin (5 mmol/l) had no effect on Ca(2+)-ATPase activity reactivated in PC or PS, but the stimulatory action of PIP was suppressed. Relative stimulation of phosphatase activity by PS was not influenced. Both hydrolytic activities catalyzed by Ca(2+)-transport ATPase were differentially affected by organic solvents and polycations with respect to the kind of the phospholipid.  相似文献   

13.
(Ca2+ + Mg2+)-ATPase activity of red cells and their isolated membranes was investigated in the presence of various Ca2+ concentrations and cytoplasmic activator protein. Red cell ATPase activity was high at low Ca2+ concentrations, and low at moderate and high concentrations of Ca2+. In the case of isolated membranes, both low and moderate ca2+ concentrations produced higher (Ca2+ + Mg2+)-ATPase activity than high Ca2+ concentration. Membrane-free hemolysate containing soluble activator of (Ca2+ + Mg2+)-ATPase produced a significant increase in (Ca2+ + Mg2+)-ATPase activity only at low ca2+ concentration. Regardless of Ca2+ and activator concentrations, the enzyme activity in the membrane was lower than lysed red cells. The low level of (Ca2+ + Mg2+)-ATPase activity seen at high Ca2+ concentration can be augmented by lowering the Ca2+ concentration of EGTA in the assay medium. However, once the membrane was exposed to a high Ca2+ concentration, the activator could no longer exert it maximum stimulation at the low Ca2+ concentration brought about by addition of EGTA. This loss of activation was not attributable to the Ca2+-induced denaturation of activator protein but rather related to the alteration of (Ca2+ + Mg2+)-ATPase states in the membrane. On the basis of these data, it is suggested that only a small portion of (Ca2+ + Mg2+)-ATPase activity of isolated membranes can be stimulated by the soluble activator and that (ca2+ + Mg2+)ATPase most likely exists in various states depending upon ca2+ concentration and the presence of activator. The enzyme state exhibiting the high degree of stimulation by activator may undergo irreversible damage in the presence of high Ca2+ concentrations.  相似文献   

14.
The effect of phosphorylation by cyclic GMP-dependent protein kinase (G-kinase) on the activity of the plasmalemmal Ca2+-transport ATPase was studied on isolated plasma membranes and on the ATPase purified from pig erythrocytes and from the smooth muscle of pig stomach and pig aorta. Incubation with G-kinase resulted, in both smooth-muscle preparations, but not in the erythrocyte ATPase, in a higher Ca2+ affinity and in an increase in the maximal rate of Ca2+ uptake. Cyclic AMP-dependent protein kinase (A-kinase) did not exert such an effect. The stimulation of the (Ca2+ + Mg2+)-dependent ATPase activity of the purified Ca2+ pump reconstituted in liposomes depended on the phospholipid used for reconstitution. The stimulation of the (Ca2+ + Mg2+)-ATPase activity by G-kinase was only observed in the presence of phosphatidylinositol (PI). G-kinase, but not A-kinase, stimulated the phosphorylation of PI to phosphatidylinositol phosphate (PIP) in a preparation of (Ca2+ + Mg2+)-ATPase obtained by calmodulin affinity chromatography from smooth muscle, but not in a similar preparation from erythrocytes. Adenosine inhibited both the phosphorylation of PI and the stimulation of the (Ca2+ + Mg2+)-ATPase by G-kinase. In the absence of G-kinase the (Ca2+ + Mg2+)-ATPase was stimulated by the addition of PIP, but not by PI. In contrast with previous results of Furukawa & Nakamura [(1987) J. Biochem (Tokyo) 101, 287-290], no convincing evidence for a phosphorylation of the (Ca2+ + Mg2+)-ATPase was found. Evidence is presented showing that the apparent phosphorylation occurs in a contaminant protein, possibly myosin light-chain kinase. It is proposed that G-kinase stimulates the plasmalemmal Ca2+ pump of smooth-muscle cells indirectly via the phosphorylation of an associated PI kinase.  相似文献   

15.
It is shown, that for correct definition of "basal" Ca(2+)-independent Mg(2+)-dependent ATPase ac-activity (10-13 mmol Pi/hour on 1 mg of protein) in a fraction of uterus smooth muscle cell plasma membranes is necessary to use in medium without calcium of an incubation not only EGTA and digitonin--of the factor of infringement in activity by this subcellular structure, but inhibitors of others Mg(2+)-dependent ATP-hydrolyse enzymatic systems localized as in plasma membrane (Na+, K(+)-ATPase) and in others subcellular frames, first of all, in mitochondria (Mg(2+)-ATPase) and endoplasmic reticulum (transport Ca2+, Mg(2+)-ATPase). In the case of a sacolemal fraction of a smooth muscle the contribution of others Mg(2+)-dependent ATP-hydrolyse systems in a common enzymatic hydrolysis ATP, which unconnected to functioning "basal" Ca(2+)-independent Mg(2+)-dependent ATPase, is very appreciable and achieves 35%. The researches, carried out in the frameworks of definition of initial velocity of enzymatic reaction, have enabled to define its some properties--cationic and anionic specificity, and also sensitivity to action of some inhibitors. It has appeared, that the "basal" Ca(2+)-independent Mg(2+)-dependent ATP-hydrolyse reaction is nonspecific rather both in relation to cations of divalent metals Me2+, and cations of monovalent metals and anions, which were utilized for support of ionic strength. The cations La--antagonist of cations Ca--practically did not influence enzymatic activity. The non-specific inhibitors transport of ATPases--p-chloromercuribenzoate, o-vanadate and eosine Y with a various degree of efficiency inhibited "basal" Ca(2+)-independent Mg(2+)-dependent ATP-hydrolyse reaction. On the basis of the analysis of the own and literary data the conclusion is made that "basal" Ca(2+)-independent Mg(2+)-dependent ATPase of a smooth muscle cell plasma membrane is considerably less sensitive to action of nonspecific inhibitors of the Ca(2+)-transporting systems, than these systems.  相似文献   

16.
Membrane adenosine triphosphatase activities in rat pancreas   总被引:3,自引:0,他引:3  
The membrane ATPase activities present in rat pancreas were studied to investigate the possible role of ATPase enzymes in HCO3(-) secretion in the pancreas. It was found that all the HCO3(-)-sensitive (anion-sensitive) ATPase activity was accountable as pancreatic mitochondrial ATPase, thus supporting the view that a distinct plasma membrane 'bicarbonate-ATPase' is not involved in HCO3(-) secretion in pancreas. A remarkably high Mg+- and CA2+-requiring ATPase activity (30 mumol ATP hydrolysed/min per mg) was found in the plasma membrane fraction (rho = 1.10-1.13). This activity has been characterized in some detail. It is inhibited by p-fluorosulfonylbenzoyladenosine, an affinity label analogue of ATP and the analogue appears to label covalently a protein of Mr approximately 35 000. The (Ca2+ + Mg2+)-ATPase activity did not form a 'phosphorylated-intermediate' and was vanadate-insensitive. These and other tests have served to demonstrate that the (Ca2+ + Mg2+)-ATPase activity is different in properties from (Na+ + K+)-ATPase, Ca2+-ATPase, (H+ + K+)-ATPase or mitochondrial H+-ATPase. Apart from the (Ca2+ + Mg2+)-ATPase of plasma membrane and mitochondrial ATPase, the only other membrane ATPase activities noted were (Na+ + K+)-ATPase, which occurred in the same fractions as the (Ca2+ + Mg2+)-AtPase at rho = 1.10-1.13 and was of surprisingly low activity, and an ATPase activity in light membrane fractions (rho - 1.08-1.09) derived from zymogen granule membranes. At this time, therefore, there is no obvious candidate for an ATPase activity at the luminal surface of pancreatic cells which is directly involved in ion transport, but the results presented here direct attention to the high activity (Ca2+ + Mg2+)-ATPase in the plasma membrane fraction.  相似文献   

17.
The in vivo effect of vitamin D on (Ca2+ + Mg2+)-ATPase activity was examined in a plasma membrane fraction of rat circulating mononuclear cells (MPM). Although there was no significant difference in the ATPase activities in red blood cell ghosts, (Ca2+ + Mg2+)-ATPase activity in MPM was significantly higher (p less than 0.05) in long-term vitamin D3-replete rats (100 IU/day for 6 months) than that in vitamin D-deplete rats (for 6 months). In rats maintained on vitamin D-deficient diets for 5-7 weeks, in vivo administration of either vitamin D3, 2,000 IU orally, 5 days prior to killing or 1,25-dihydroxyvitamin D3, 2.4 nmol, intraperitoneally, 24 h prior to killing failed to show any significant effect on (Ca2+ + Mg2+)-ATPase activity in MPM. (Ca2+ + Mg2+)-ATPase activity in MPM from rats maintained on vitamin D-deficient diet with high calcium content (1.8%) was significantly higher (p less than 0.05) than that from rats maintained on vitamin D-deficient diet with low calcium content (0.3%). Moreover, in vitro addition of vitamin D3 metabolites did not show any effect on (Ca2+ + Mg2+)-ATPase activity in MPM. These data suggest that decreased (Ca2+ + Mg2+)-ATPase activity in MPM from long-term vitamin D-deplete rats resulted from an adaptation to low extracellular calcium rather than vitamin D depletion.  相似文献   

18.
The functional confirmation of availability of Ca2+ transport initially-active systems in the embryo cells of loach Misgurnus fossilis L. has been obtained. Using thapsigargin, the specific inhibitor of endoplasmic reticulum of Ca2+, Mg(2+)-ATPase, this enzyme activity was divided into thapsigargin-sensitive (actually endoplasmic reticulum Ca2+, Mg(2+)-ATPase) and thapsigargin-insensitive (plasma membrane Ca2+, Mg(2+)-ATPase) constituents. The Ca(2+)-independent Mg(2+)-dependent ATPase activity makes above 39.7% of the common Ca2+, Mg(2+)-ATPase activity of embryo loach. The periodic changes of Ca2+, Mg(2+)-ATPase activity (except for the changes of plasma membrane Ca2+, Mg(2+)-ATPase activity) were found out, which coincide with periodic [Ca2+]i oscillations during the synchronous divisions of loach blastomers embryos.  相似文献   

19.
It was shown that organic solvents (dioxane, acetone, ethanol, dimethylsulfoxide) at concentrations of < 10% suppress the activity of transport Ca2+, Mg(2+)-ATPase solubilized from plasmatic membranes of smooth muscle cells and Mg(2+)-ATP-dependent accumulation of Ca2+ ions in inverted membrane vesicles. It was found that one of the reasons for the inhibition of enzymatic and transport activity of Ca2+, Mg(2+)-ATPase by the action of these solvents is an increase in the attractive force between oppositely charged active center of the enzyme and the product (products) of the ATP-hydrolase reaction, which is induced by a decrease in the dielectric permeability of incubation medium.  相似文献   

20.
Isolated membrane vesicles from pig stomach smooth muscle (antral part) were subfractionated by a density gradient procedure modified in order to obtain an efficient extraction of extrinsic proteins. By using this method in combination with digitonin-treatment, an endoplasmic reticulum fraction contaminated with maximally 10 to 20% of plasma membranes was isolated, together with a plasma membrane fraction containing at most 30% endoplasmic reticulum. The endoplasmic reticulum and plasma membrane fractions differed in protein composition, reaction to digitonin, binding of wheat germ agglutinin, activities of marker enzymes and in the characteristics of the Ca2+ uptake. The Ca2+ uptake by the endoplasmic reticulum was much more stimulated by oxalate than the uptake by plasma membranes. Both fractions showed a (Ca2+ + Mg2+)-ATPase activity, but the largest amount of this enzyme was present in the plasma membranes. The study of the phosphorylated intermediates of the (Ca2+ + Mg2+)-ATPase by polyacrylamide gel electrophoresis revealed two phosphoproteins one of 130 kDa and one of 100 kDa (Wuytack, F., Raeymaekers, L., De Schutter, G. and Casteels, R. (1982) Biochim. Biophys. Acta 693, 45-52). The 130 kDa enzyme was predominant in the fraction enriched in plasma membrane whereas the distribution of the 100 kDa polypeptide correlated with the endoplasmic reticulum markers. The 130 kDa ATPase was the main 125I-calmodulin binding protein detected on nitrocellulose blots of proteins separated by gel electrophoresis. The (Ca2+ + Mg2+)-ATPase activity of the plasma membranes was higher than the (Na+ + K+)-ATPase activity, suggesting that the Ca2+ extrusion from these cells depends much more on the activity of the (Ca2+ + Mg2+)-ATPase than on Na+-Ca2+ exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号