首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An examination is made of five methods for obtaining values of the enthalpy of formation of a unit mass of living Escherichia coli K-12 cells. The values obtained by these methods ranged from -88.95 kJ to -99.55 kJ, the gross average being 96.01 kJ, per unit carbon formula weight equivalent of living, hydrated cells. Although theoretically the growth of this organism in a microcalorimeter should provide the best value, the value obtained by this method (-88.95 kJ per UCFW equivalent) is not in close agreement with those of the other four methods, the values from which form a cluster averaging -97.8 +/- 1.0 kJ (-23.4 +/- 0.2 kcal)/UCFW equivalent. Calculations using this value indicate that the enthalpy change accompanying anabolism (as this is represented) is zero, or very nearly so, and that the heat of growth is that from catabolism alone.  相似文献   

3.
The thermal inactivation of immobilized cholinesterase enzymes (ChE) in solid matrices where the protein unfolding is blocked was studied, thus enabling investigation of the kinetics of the inactivation process directly from the native structure to the inactivated state. The thermal inactivation of butyrylcholinesterase (BChE), recombinant human acetylcholinesterase (rHuAChE), and eel acetylcholinesterase (AChE) enzymes was studied in dry films composed of poly(vinyl pyrollidone) (PVP), bovine serum albumin (BSA) and trehalose at 60 degrees -120 degrees C. The kinetics follows a bi-exponential decay equation representing a combination of fast and slow processes. The activation enthalpy DeltaH(#) and the activation entropy DeltaS(#) for each of the three enzymes have been evaluated. The values of DeltaH(#) for the fast process and for the slow process of BChE are 33+/-3, and 28+/-2 kcal/mol, respectively, and the values of DeltaS(#) are 0.84+/-0.04, and -18.2+/-0.5 cal/deg, respectively. The appropriate value of DeltaH(#) for rHuAChE is 26+/-2 Kcal/mol, for both processes and the values of DeltaS(#) are -17.6+/-0.9, and -23.0+/-0.9 cal/deg, respectively. Similarly, the values of DeltaH(#) for eelAChE are 30+/-3, 31+/-1 kcal/mol, and the values of DeltaS(#) are -6.7+/-0.5, -9.1+/-0.2 cal/deg respectively.  相似文献   

4.
Vallone PM  Benight AS 《Biochemistry》2000,39(26):7835-7846
Effects of different end sequences on melting, circular dichroism spectra (CD), and enzyme binding properties were investigated for four 40 base pair, non-self-complementary duplex DNA oligomers. The center sequences of these oligoduplexes have either of two 22 base pair modules flanked on both sides by sequences differing in AT content. Temperature-induced melting transitions monitored by differential scanning calorimetry (DSC) and ultraviolet absorbance were measured for the six duplexes in buffered 115 mM Na(+) solutions. Values of the melting transition enthalpy, DeltaH(cal), and entropy, DeltaS(cal), were obtained directly from DSC experiments. Melting transition parameters, DeltaH(vH) and DeltaS(vH), were also estimated from a van't Hoff analysis of optical melting curves collected as a function of DNA concentration, assuming that the melting transition is two-state. Melting free energies (20 degrees C) evaluated from DSC melting experiments on the four duplex DNAs ranged from -52.2 to -77.5 kcal/mol. Free energies based on the van't Hoff analysis were -37.9 to -58.8 kcal/mol. Although the values are different, trends in the melting free energies of the four duplex DNAs as a function of sequence were identical in both DSC and optical analyses. Subject to several assumptions, values for the initiation free energy were estimated for each duplex, defined as DeltaG(int) = DeltaG(cal) - DeltaG(pred), where DeltaG(cal) is the experimental free energy at 20 degrees C determined from the experimentially measured values of the transition enthalpy, DeltaH(cal), and entropy, DeltaS(cal). The predicted free energy of the sequence, DeltaG(pred)(20 degrees C), is obtained using published nearest-neighbor sequence stability values. For three of the four duplexes, values of DeltaG(int) are essentially nil. In contrast, the duplex with 81.8% GC has a considerably higher estimate of DeltaG(int) = 7.1 kcal/mol. The CD spectra for the six duplexes collected over the wavelength range from 200 to 320 nm are also sequence-dependent. Factor analysis of the CD spectra by singular value decomposition revealed that the experimental CD spectra could be reconstructed from linear combinations of two minor and one major subspectra. Changes in the coefficients of the major subspectrum for different sequences reflect incremental sequence-dependent variations of the CD spectra. Equilibrium binding by BamHI restriction endonuclease to the 40 base pair DNAs whose central eight base pairs contain the recognition sequence for BamHI restriction enzyme bounded by A.T base pairs, 5'-A-GGATCC-A-3' was investigated. Binding assays were performed by titering BamHI against a constant concentration of each of the duplex DNA substrates, in the absence of Mg(2+), followed by analysis by gel retardation. Under the conditions employed, the enzyme binds but does not cleave the DNAs. Results of the assays revealed two binding modes with retarded gel mobilities. Binding isotherms for the fraction of bound DNA species versus enzyme concentration for each binding mode were constructed and analyzed with a simple two-step equilibrium binding model. This analysis provided semiquantitative estimates on the equilibrium binding constants for BamHI to the four DNAs. Values obtained for the binding constants varied only 7-fold and ranged from 6 x 10(-)(8) to 42 x 10(-)(8) M, with binding free energies from -8.6 to -9.7 (+/- 0.2) kcal/mol depending on the sequence that flanks the enzyme binding site. Unlike what was found earlier in binding studies of the 22 base pair duplexes that constitute the core modules of the present 40-mers [Riccelli, P. V., Vallone, P. M., Kashin, I., Faldasz, B. D., Lane, M. J., and Benight, A. S. (1999) Biochemistry 38, 11197-11208], no obvious relationship between binding and stability was found for these longer DNAs. Apparently, effects of flanking sequence stability on restriction enzyme binding may only be measurable in very short duplex deoxyoligonucl  相似文献   

5.
Trapp O  Schurig V 《Chirality》2002,14(6):465-470
The axially chiral allenes dimethyl-1,3-allenedicarboxylate 1 and diethyl-1,3-allenedicarboxylate 2 show characteristic plateau formation during enantioselective GC separation on the chiral stationary liquid phase Chirasil-beta-Dex. The elution profiles, obtained from temperature-dependent dynamic GC (DGC) experiments (1: 100-140 degrees C; 2: 110-150 degrees C) were evaluated with the recently derived approximation function (AF) k1(approx) = f(t(R)(A),t(R)(B),w(h)(A),h(plateau), N) to yield the enantiomerization rate constant directly k(1). These values were compared with those obtained by computer-aided simulation with ChromWin. The Eyring activation parameters of the experimental interconversion profiles were determined to be: DeltaG(#)(298.15 K) = 103.6 +/- 0.9 kJ mol(-1), DeltaH(#) = 44.7 +/- 0.4 kJ mol(-1), DeltaS(#) = -198 +/- 7 J K(1) mol(-1) for dimethyl-1,3-allenedicarboxylate 1, and DeltaG(#)(298.15 K) = 103.5 +/- 1.1 kJ mol(-1), DeltaH(#) = 44.7 +/- 0.5 kJ mol(-1), DeltaS(#) = -197 +/- 9 J K(-1) mol(-1) for diethyl-1,3-allenedicarboxylate 2. The approximation function (AF) presented here allows the fast determination of rate constants k(1) and activation barriers of enantiomerization DeltaG(#) from chromatographic parameters without extensive computer simulation.  相似文献   

6.
The ΔS of one unit carbon formula weight of Escherichia coli K-12 cells, when grown on succinic acid, was calculated to be ?80.13 J/deg. This value could then be used to calculate the entropy change accompanying the anabolism and metabolism of succinic acid to be 30.82 J/deg and 32.40 J/mol deg, respectively. The entropy of one unit carbon formula weight of dried E. Coli K-12 cells is calculated to be 94.40 J/deg, which when divided by the mass of these cells becomes 3.90 J/g deg. The corresponding entropy of succinic acid is 2.77 J/g deg, making it apparent that the entropy per unit mass of the cells is greater than that of the substrate. It might be thought that because the cells appear to be so much more complex than the substrate, the cells should have a lesser entropy per unit mass than the substrate. That this does not appear to be true leads to the conclusion that the macromolecular organization (informational content?) of the cells contributes only in a very minor way to the total physical entropy of cells. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
8.
Binding constant data K degrees (T) are commonly subjected to van't Hoff analysis to extract estimates of DeltaH degrees, DeltaS degrees, and DeltaCP degrees for the process in question. When such analyses employ unweighted least-squares fitting of lnK degrees to an appropriate function of the temperature T, they are tacitly assuming constant relative error in K degrees. When this assumption is correct, the statistical errors in DeltaG degrees, DeltaH degrees, DeltaS degrees, DeltaCP degrees, and the T-derivative of DeltaCP degrees (if determined) are all independent of the actual values of K degrees and can be computed from knowledge of just the T values at which K degrees is known and the percent error in K degrees. All of these statistical errors except that for the highest-order constant are functions of T, so they must normally be calculated using a form of the error propagation equation that is not widely known. However, this computation can be bypassed by defining DeltaH degrees as a polynomial in (T-T0), the coefficients of which thus become DeltaH degrees, DeltaCP degrees, and 1/2 dDeltaCP degrees/dT at T=T0. The errors in the key quantities can then be computed by just repeating the fit for different T0. Procedures for doing this are described for a representative data analysis program. Results of such calculations show that expanding the T range from 10-40 to 5-45 degrees C gives significant improvement in the precision of all quantities. DeltaG degrees is typically determined with standard error a factor of approximately 30 smaller than that for DeltaH degrees. Accordingly, the error in TDeltaS degrees is nearly identical to that in DeltaH degrees. For 4% error in K degrees, the T-derivative in DeltaCP degrees cannot be determined unless it is approximately 10 cal mol-1 K-2 or greater; and DeltaCP degrees must be approximately 50 cal mol-1 K-1. Since all errors scale with the data error and inversely with the square root of the number of data points, the present results for 4% error cover any other relative error and number of points, for the same approximate T structure of the data.  相似文献   

9.
Kleeb AC  Kast P  Hilvert D 《Biochemistry》2006,45(47):14101-14110
Prephenate dehydratase (PDT) is an important but poorly characterized enzyme that is involved in the production of L-phenylalanine. Multiple-sequence alignments and a phylogenetic tree suggest that the PDT family has a common structural fold. On the basis of its sequence, the PDT from the extreme thermophile Methanocaldococcus jannaschii (MjPDT) was chosen as a promising representative of this family for pursuing structural and functional studies. The corresponding pheA gene was cloned and expressed in Escherichia coli. It encodes a monofunctional and thermostable enzyme with an N-terminal catalytic domain and a C-terminal regulatory ACT domain. Biophysical characterization suggests a dimeric (62 kDa) protein with mixed alpha/beta secondary structure elements. MjPDT unfolds in a two-state manner (Tm = 94 degrees C), and its free energy of unfolding [DeltaGU(H2O)] is 32.0 kcal/mol. The purified enzyme catalyzes the conversion of prephenate to phenylpyruvate according to Michaelis-Menten kinetics (kcat = 12.3 s-1 and Km = 22 microM at 30 degrees C), and its activity is pH-independent over the range of pH 5-10. It is feedback-inhibited by L-phenylalanine (Ki = 0.5 microM), but not by L-tyrosine or L-tryptophan. Comparison of its activation parameters (DeltaH(++)= 15 kcal/mol and DeltaS(++)= -3 cal mol-1 K-1) with those for the spontaneous reaction (DeltaH(++) = 17 kcal/mol and DeltaS(++)= -28 cal mol-1 K-1) suggests that MjPDT functions largely as an entropy trap. By providing a highly preorganized microenvironment for the dehydration-decarboxylation sequence, the enzyme may avoid the extensive solvent reorganization that accompanies formation of the carbocationic intermediate in the uncatalyzed reaction.  相似文献   

10.
The kinetic and thermodynamic properties of ascorbate oxidase (AO) activity and stability of a Cucurbita maxima extract were investigated. Activity tests performed at 25 degrees C using initial ascorbic acid concentration in the range 50-750 M allowed estimating the Michaelis constant for this substrate (Km = 126 microM) and the maximum initial rate of ascorbic acid oxidation (A0,max = 1.57 mM min-1). The main thermodynamic parameters of the enzyme reaction (DeltaH* = 10.3 kJ mol-1; DeltaG* = 87.2 kJ mol-1; DeltaS* = -258 J mol-1 K-1) were estimated through activity tests performed at 25-48 C. Within such a temperature range, no decrease in the initial reaction rate was detected. The long-term thermostability of the raw extract was then investigated by means of residual activity tests carried out at 10-70 degrees C, which allowed estimating the thermodynamic parameters of the irreversible enzyme inactivation as well (DeltaH*D = 51.7 kJ mol-1; DeltaG*D = 103 kJ mol-1; S*D = -160 J mol-1 K-1). Taking into account the specific rate of AO inactivation determined at different temperatures, we also estimated the enzyme half-life (1047 min at 10 degrees C and 21.2 min at 70 degrees C) and predicted the integral activity of a continuous system using this enzyme preparation. This work should be considered as a preliminary attempt to characterize the AO activity of a C. maxima extract before its concentration by liquid-liquid extraction techniques.  相似文献   

11.
The thermodynamic and activation energies of the slow inhibition of almond beta-glucosidase with a series of azasugars were determined. The inhibitors studied were isofagomine ((3R,4R,5R)-3,4-dihydroxy-5-hydroxymethylpiperidine, 1), isogalactofagomine ((3R,4S,5R)-3,4-dihydroxy-5-hydroxymethylpiperidine, 2), (-)-1-azafagomine ((3R,4R,5R)-4,5-dihydroxy-3-hydroxymethylhexahydropyridazine, 3), 3-amino-3-deoxy-1-azafagomine (4) and 1-deoxynojirimycin (5). It was found that the binding of 1 to the enzyme has an activation enthalpy of 56.1 kJ/mol and an activation entropy of 25.8 J/molK. The dissociation of the enzyme-1 complex had an activation enthalpy of -2.5 kJ/mol and an activation entropy of -297 J/molK. It is suggested that the activation enthalpy of association is due to the breaking of bonds to water, while the large negative activation entropy of dissociation is due at least in part to the resolvation of the enzyme with water molecules. For the association of 1 DeltaH(0) is 58.6 kJ/mol and DeltaS(0) is 323.8 J/molK. Inhibitor 3 has an activation enthalpy of 39.3 kJ/mol and an activation entropy of -17.9 J/molK for binding to the enzyme, and an activation enthalpy of 40.8 kJ/mol and an activation entropy of -141.0 J/molK for dissociation of the enzyme-inhibitor complex. For the association of 3 DeltaH(0) is -1.5 kJ/mol and DeltaS(0) is 123.1 J/molK. Inhibitor 5 is not a slow inhibitor, but its DeltaH(0) and DeltaS(0) of association are -30 kJ/mol and -13.1 J/molK. The large difference in DeltaS(0) of association of the different inhibitors suggests that the anomeric nitrogen atom of inhibitors 1-4 is involved in an interaction that results in a large entropy increase.  相似文献   

12.
The peripheral subunit-binding domain (PSBD) of the dihydrolipoyl acetyltransferase (E2, EC 2.3.1.12) binds tightly but mutually exclusively to dihydrolipoyl dehydrogenase (E3, EC 1.8.1.4) and pyruvate decarboxylase (E1, EC 1.2.4.1) in the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. Isothermal titration calorimetry (ITC) experiments demonstrated that the enthalpies of binding (DeltaH degrees ) of both E3 and E1 with the PSBD varied with salt concentration, temperature, pH, and buffer composition. There is little significant difference in the free energies of binding (DeltaG degrees = -12.6 kcal/mol for E3 and = -12.9 kcal/mol for E1 at pH 7.4 and 25 degrees C). However, the association with E3 was characterized by a small, unfavorable enthalpy change (DeltaH degrees = +2.2 kcal/mol) and a large, positive entropy change (TDeltaS degrees = +14.8 kcal/mol), whereas that with E1 was accompanied by a favorable enthalpy change (DeltaH degrees = -8.4 kcal/mol) and a less positive entropy change (TDeltaS degrees = +4.5 kcal/mol). Values of DeltaC(p) of -316 cal/molK and -470 cal/molK were obtained for the binding of E3 and E1, respectively. The value for E3 was not compatible with the DeltaC(p) calculated from the nonpolar surface area buried in the crystal structure of the E3-PSBD complex. In this instance, a large negative DeltaC(p) is not indicative of a classical hydrophobic interaction. In differential scanning calorimetry experiments, the midpoint melting temperature (T(m)) of E3 increased from 91 degrees C to 97.1 degrees C when it was bound to PSBD, and that of E1 increased from 65.2 degrees C to 70.0 degrees C. These high T(m) values eliminate unfolding as a major source of the anomalous DeltaC(p) effects at the temperatures (10-37 degrees C) used for the ITC experiments.  相似文献   

13.
Ribonuclease was purified from Aspergillus niger SA-13-20 to homogeneity level by using (NH(4))(2)SO(4) precipitation, DEAE-cellulose anion-exchange chromatography, ultrafiltration and Sephacryl HR-200 chromatography. The molecular weight and isoelectric point of the enzyme was 40.1kDa and 5.3, respectively. The pH- and temperature-dependent kinetic parameters were determined. The RNase showed the strongest affinity with RNA as the substrate, and the highest catalytic efficiency for hydrolysis of the substrate at pH 3.5 and 65 degrees C. It exhibited Michaelis-Menten Kinetics with k(cat) of 118.1s(-1) and K(m) of 57.0 microg ml(-1), respectively. Thermodynamic parameters for catalysis and thermal denaturation were also determined. Activation energy (E(a)) for catalysis of A. niger SA-13-20 RNase was 50.31 kJ mol(-1) and free energy (DeltaG(#)), enthalpy (DeltaH(#)) and entropy (DeltaS(#)) of activation for catalysis of the enzyme at 65 degrees C were 69.76, 47.50 and -65.83 Jmol(-1)K(-1), respectively. Activation energy (E(a,d)) for denaturation of the enzyme was 200.53 kJ mol(-1) and free energy (DeltaG(d)(#)), enthalpy (DeltaH(d)(#)) and entropy (DeltaS(d)(#)) of activation for denaturation of the enzyme at 45 degrees C were 79.18 kJ mol(-1), 197.88 and 373.09 Jmol(-1)K(-1), respectively.  相似文献   

14.
A A Komissarov  S L Deutscher 《Biochemistry》1999,38(44):14631-14637
The recombinant anti-ssDNA Fab, DNA-1, and 16 heavy chain complementarity determining region 3 (HCDR3) mutant variants were selected for thermodynamic characterization of ssDNA binding. The affinity of Fab to (dT)(15) under different temperatures and cation concentrations was measured by equilibrium fluorescence quenching titration. Changes in the standard Gibbs free binding energy (DeltaG degrees ), enthalpy (DeltaH degrees ), entropy (DeltaS degrees ), and the number of ionic pairs (Z) formed upon interaction were determined. All Fab possessed an enthalpic nature of interaction with ssDNA, that was opposite to the previously reported entropically driven binding to dsDNA [Tanha, J., and Lee, J. S. (1997) Nucleic Acids Res. 25, 1442-1449]. The contribution of separate residues of HCDR3 to ssDNA interaction was investigated. Analysis of the changes in DeltaH degrees and TDeltaS degrees, induced by substitutions in HCDR3, revealed a complete entropy/enthalpy compensation. Mutations R98A and D108A at the ends of the HCDR3 loop produced increases in TDeltaS degrees ( )()by 10.4 and 15.9 kcal/mol, respectively. Substitution of proline for arginine at the top of HCDR3 resulted in a new electrostatic contact with (dT)(15). The observed linear correlation of Z and DeltaG degrees ( )()of nonelectrostatic interactions (DeltaG degrees (nonel)) at the anti-ssDNA combining site was used for the estimation of the specific DeltaG degrees (nonel) [-20 to -25 cal/(mol.A(2))], the average contact area (450-550 A(2)), the maximal Z (6-7), and the limit in affinity under standard cation concentrations [(0.5-1) x 10(8) M(-)(1)] for this family of Fab. Results suggested that rational engineering of HCDR3 could be utilized to control the affinity and likely the specificity of Ab-DNA interactions.  相似文献   

15.
Interaction kinetic and thermodynamic analyses provide information beyond that obtained in general inhibition studies, and may contribute to the design of improved inhibitors and increased understanding of molecular interactions. Thus, a biosensor-based method was used to characterize the interactions between HIV-1 protease and seven inhibitors, revealing distinguishing kinetic and thermodynamic characteristics for the inhibitors. Lopinavir had fast association and the highest affinity of the tested compounds, and the interaction kinetics were less temperature-dependent as compared with the other inhibitors. Amprenavir, indinavir and ritonavir showed non-linear temperature dependencies of the kinetics. The free energy, enthalpy and entropy (DeltaG, DeltaH, DeltaS) were determined, and the energetics of complex association (DeltaG(on), DeltaH(on), DeltaS(on)) and dissociation (DeltaG(off), DeltaH(off), DeltaS(off)) were resolved. In general, the energetics for the studied inhibitors was in the same range, with the negative free energy change (DeltaG < 0) due primarily to increased entropy (DeltaS > 0). Thus, the driving force of the interaction was increased degrees of freedom in the system (entropy) rather than the formation of bonds between the enzyme and inhibitor (enthalpy). Although the DeltaG(on) and DeltaG(off) were in the same range for all inhibitors, the enthalpy and entropy terms contributed differently to association and dissociation, distinguishing these phases energetically. Dissociation was accompanied by positive enthalpy (DeltaH(off) > 0) and negative entropy (DeltaS(off) < 0) changes, whereas association for all inhibitors except lopinavir had positive entropy changes (DeltaS(on) > 0), demonstrating unique energetic characteristics for lopinavir. This study indicates that this type of data will be useful for the characterization of target-ligand interactions and the development of new inhibitors of HIV-1 protease.  相似文献   

16.
Energetic basis of molecular recognition in a DNA aptamer   总被引:1,自引:0,他引:1  
The thermal stability and ligand binding properties of the L-argininamide-binding DNA aptamer (5'-GATCGAAACGTAGCGCCTTCGATC-3') were studied by spectroscopic and calorimetric methods. Differential calorimetric studies showed that the uncomplexed aptamer melted in a two-state reaction with a melting temperature T(m)=50.2+/-0.2 degrees C and a folding enthalpy DeltaH(0)(fold)=-49.0+/-2.1 kcal mol(-1). These values agree with values of T(m)=49.6 degrees C and DeltaH(0)(fold)=-51.2 kcal mol(-1) predicted for a simple hairpin structure. Melting of the uncomplexed aptamer was dependent upon salt concentration, but independent of strand concentration. The T(m) of aptamer melting was found to increase as L-argininamide concentrations increased. Analysis of circular dichroism titration data using a single-site binding model resulted in the determination of a binding free energy DeltaG(0)(bind)=-5.1 kcal mol(-1). Isothermal titration calorimetry studies revealed an exothermic binding reaction with DeltaH(0)(bind)=-8.7 kcal mol(-1). Combination of enthalpy and free energy produce an unfavorable entropy of -TDeltaS(0)=+3.6 kcal mol(-1). A molar heat capacity change of -116 cal mol(-1) K(-1) was determined from calorimetric measurements at four temperatures over the range of 15-40 degrees C. Molecular dynamics simulations were used to explore the structures of the unligated and ligated aptamer structures. From the calculated changes in solvent accessible surface areas of these structures a molar heat capacity change of -125 cal mol(-1) K(-1) was calculated, a value in excellent agreement with the experimental value. The thermodynamic signature, along with the coupled CD spectral changes, suggest that the binding of L-argininamide to its DNA aptamer is an induced-fit process in which the binding of the ligand is thermodynamically coupled to a conformational ordering of the nucleic acid.  相似文献   

17.
M Yang  D Liu  D W Bolen 《Biochemistry》1999,38(34):11216-11222
This work determines the ratio of DeltaH(vH) /DeltaH(cal) for staphylococcal nuclease (SN) denaturation in guanidine hydrochloride (GdnHCl) to test whether GdnHCl-induced denaturation is two-state. Heats of mixing of SN as a function of [GdnHCl] were determined at pH 7.0 and 25 degrees C. The resulting plot of DeltaH(mix) vs [GdnHCl] exhibits a sigmoid shaped curve with linear pre- and post-denaturational base lines. Extending the pre- and post-denaturational lines to zero [GdnHCl] gives a calorimetric DeltaH (DeltaH(cal)) of 24.1 +/- 1.0 kcal/mol, for SN denaturation in the limit of zero GdnHCl concentration. Guanidine hydrochloride-induced denaturation Gibbs energy changes in the limit of zero denaturant concentration (DeltaG degrees (N)(-)(D)) at pH 7. 0 were determined for SN from fluorescence measurements at fixed temperatures over the range from 15 to 35 degrees C. Analysis of the resulting temperature-dependent DeltaG degrees (N)(-)(D) data defines a van't Hoff denaturation enthalpy change (DeltaH(vH)) of 26. 4 +/- 2.8 kcal/mol. The model-dependent van't Hoff DeltaH(vH) divided by the model-independent DeltaH(cal) gives a ratio of 1.1 +/- 0.1 for DeltaH(vH)/DeltaH(cal), a result that rules out the presence of thermodynamically important intermediate states in the GdnHCl-induced denaturation of SN. The likelihood that GdnHCl-induced SN denaturation involves a special type of two-state denaturation, known as a variable two-state process, is discussed in terms of the thermodynamic implications of the process.  相似文献   

18.
In this paper, the binding characteristics of bovine serum albumin (BSA) and phenylfluorone (PF)-molybdenum (Mo(VI)) complex have been studied by fluorophotometry. The binding constants are calculated at different temperatures. The binding distance and the energy transfer efficiency between PF-Mo(VI) complex and protein are obtained on the basis of the theory of Forster energy transfer. DeltaH and DeltaS are calculated to be -7.11 kJ mol-1 and 70.30 J mol-1 K-1, which indicate that electrostatic force plays major role in the interaction of PF-Mo(VI) complex and BSA. The experimental results show that BSA and PF-Mo(VI) complex have strong interactions and the mechanism of quenching belongs to static quenching.  相似文献   

19.
The effect of temperature, pH, free [Mg(2+)], and ionic strength on the apparent equilibrium constant of arginine kinase (EC 2.7.3.3) was determined. At equilibrium, the apparent K' was defined as [see text] where each reactant represents the sum of all the ionic and metal complex species. The K' at pH 7.0, 1.0 mM free [Mg(2+)], and 0. 25 M ionic strength was 29.91 +/- 0.59, 33.44 +/- 0.46, 35.44 +/- 0. 71, 39.64 +/- 0.74, and 45.19 +/- 0.65 (n = 8) at 40, 33, 25, 15, and 5 degrees C, respectively. The standard apparent enthalpy (DeltaH degrees') is -8.19 kJ mol(-1), and the corresponding standard apparent entropy of the reaction (DeltaS degrees') is + 2. 2 J K(-1)mol(-1) in the direction of ATP formation at pH 7.0, free [Mg(2+)] =1.0 mM, ionic strength (I) =0.25 M at 25 degrees C. We further show that the magnitude of transformed Gibbs energy (DeltaG degrees ') of -8.89 kJ mol(-1) is mostly comprised of the enthalpy of the reaction, with 7.4% coming from the entropy TDeltaS degrees' term (+0.66 kJ mol(-1)). Our results are discussed in relation to the thermodynamic properties of its evolutionary successor, creatine kinase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号