首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Aim We examined changes in the species diversity and faunal composition of arctiid moths along a successional gradient at a fine spatial scale in one of the world's hot spots for moths, the Andean montane rain forest zone. We specifically aimed to discover whether moth groups with divergent life histories respond differentially to forest recovery. Location Southern Ecuador (province Zamora‐Chinchipe) along a gradient from early successional stages to mature forest understorey at elevations of 1800–2005 m a.s.l. Methods Moths were sampled with weak light traps at 21 sites representing three habitat categories (early and late succession, mature forest understorey), and were analysed at species level. Relative proportions were calculated from species numbers as well as from specimen numbers. Fisher's α was used as a measure of local diversity, and for ordination analyses non‐metric multidimensional scaling (NMDS) was carried out. Results Proportions of higher arctiid taxa changed distinctly along the successional gradient. Ctenuchini (wasp moths) contributed more strongly to ensembles in natural forest, whereas Lithosiinae (lichen moths) decreased numerically with forest recovery. Arctiid species diversity (measured as Fisher's α) was high in all habitats sampled. The three larger subordinated taxa contributed differentially to richness: Phaegopterini (tiger moths) were always the most diverse clade, followed by Ctenuchini and Lithosiinae. Local species diversity was higher in successional habitats than in forest understorey, and this was most pronounced for the Phaegopterini. Dominance of a few common species was higher, and the proportion of species represented as singletons was lower, than reported for many other tropical arthropod communities. NMDS revealed a significant segregation between ensembles from successional sites and from forest understorey for all larger subordinated taxa (Phaegopterini, Ctenuchini, Lithosiinae). Abandoned pastures held an impoverished, distinct fauna. Faunal segregation was more pronounced for rare species. Ordination axes reflected primarily the degree of habitat disturbance (openness of vegetation, distance of sites from mature forest) and, to a lesser extent, altitude, but not distance between sampling sites. Main conclusions Despite the geographical proximity of the 21 sites and the pronounced dispersal abilities of adult arctiid moths, local ecological processes were strong enough to allow differentiation between ensembles from mature forest and disturbed sites, even at the level of subfamilies and tribes. Differences in morphology and life‐history characteristics of higher arctiid taxa were reflected in their differential representation (proportions of species and individuals) at the sites, whereas patterns of alpha and beta diversity were concordant. However, concordance was too low to allow for reliable extrapolation, in terms of biodiversity indication, from one tribe or subfamily to the entire family Arctiidae. Phaegopterini (comprising more putative generalist feeders during the larval stages) benefited from habitat disturbance, whereas Ctenuchini (with host‐specialist larvae) were more strongly affiliated with forest habitats.  相似文献   

2.
Andean montane rain forests are among the most species‐rich terrestrial habitats. Little is known about their insect communities and how these respond to anthropogenic habitat alteration. We investigated exceptionally speciose ensembles of nocturnal tiger moths (Arctiidae) at 15 anthropogenically disturbed sites, which together depict a gradient of forest recovery and six closed‐forest understorey sites in southern Ecuador. At weak light traps we sampled 9211 arctiids, representing 287 species. Arctiid abundance and diversity were highest at advanced succession sites, where secondary scrub or young forest had re‐established, followed by early succession sites, and were lowest, but still high, in mature forest understorey. The proportion of rare species showed the reverse pattern. We ordinated moth samples by non‐metric multidimensional scaling using the chord‐normalized expected species shared index (CNESS) index at various levels of the sample size parameter m. A distinct segregation of arctiid ensembles at succession sites from those in mature forest consistently emerged only at high m‐values. Segregation between ensembles of early vs. late succession stages was also clear at high m values only, and was rather weak. Rare species were responsible for much of the faunal difference along the succession gradient, whereas many common arctiid species occurred in all sites. Matrix correlation tests as well as exploration of relationships between ordination axes and environmental variables revealed the degree of habitat openness, and to a lesser extent, elevation, as best predictors of faunal dissimilarity. Faunal differences were not related to geographical distances between sampling sites. Our results suggest that many of the more common tiger moths of Neotropical montane forests have a substantial recolonization potential at the small spatial scale of our study and accordingly occur also in landscape mosaics surrounding nature reserves. These species contribute to the unexpectedly high diversity of arctiid ensembles at disturbed sites, whereas the proportion of rare species declines outside mature forest.  相似文献   

3.
The Cleveland Metroparks Brecksville Reservation initiated an oak forest restoration in 1990, using thinning and burning to encourage regeneration of oak forest species. In 96 quadrats (81 treatment and 15 control), understory woody species were inventoried from 1992 to 2002, and canopy opening was quantified. Six years into the study, the entire reservation became heavily populated with white-tailed deer (Odocoileus virginianus) and gypsy moths (Lymantria dispar), complicating the restoration efforts. During data analysis, understory woody species were classified into oak forest type and nonoak forest type, and three distinct phases became evident (phase 1: 1992–1994 treatment effects only, phase 2: 1995–1999 period of invasion by deer and gypsy moths, and phase 3: 2000–2002 post-invasion period). Both oak forest and nonoak forest species increased in the treatment area over the control area. During phase 1, burning encouraged oak seedlings, and thinning reduced competition from nonoak species, suggesting a temporarily successful restoration attempt. The intense gypsy moth browse in phase 2 reduced the number of oak seedlings, creating conditions favorable to nonoak species. The quantity and diversity of seedlings increased as gypsy moths opened the canopy. Deer browsed most species, oak and nonoak, even when deer populations decreased and more species were available. Original treatment effects may have been continuing in phase 3; however, additional years of study are needed.  相似文献   

4.
Aim This study was conducted to investigate the potential of predicting alpha diversity and turnover rates of a highly diverse herbivorous insect family (Geometridae) based on vascular plant species richness and vegetation structure. Location The study was carried out on the south‐western slopes of Mount Kilimanjaro within a wide range of habitats between 1200 and 3150 m elevation. Methods The floristic and structural composition of the vegetation was recorded at 48 plots of 400 m2. Geometrid moths were sampled manually at light sources located at the plot centres. Principal components analysis, redundancy analysis and multiple linear regression were used to explore how alpha diversity and species turnover of geometrid moths are related to vegetation structure and plant species richness. Results Alpha diversity of geometrid moths was significantly correlated with species diversity patterns in the most common vascular plant families (R2 = 0.49) and with plant structural parameters (R2 = 0.22), but not with overall floristic diversity. Species turnover of geometrid moths was strongly linked to diversity changes in a range of plant families (40% explained variance), less strongly to changes in vegetation physiognomy (25%), and only weakly to overall floristic diversity (5%). Changes in elevation were a better predictor of both alpha diversity and species turnover of geometrid moths than any principal component extracted from the vegetation data. Main conclusions Vegetation composition, diversity and structure all showed significant correlations with the diversity and species composition of geometrid moth assemblages. Nevertheless, in most cases relationships were indirect, via environmental parameters such as temperature and humidity, which influenced both vegetation and moth fauna. Possible direct links between geometrid diversity and potential food plants were much weaker. The lack of a significant correlation between overall plant species richness and geometrid diversity indicates that tropical geometrid moths may not be very selective in their food plant choice. Accordingly, a clear correlation between floral diversity and herbivore species richness must be regarded as overly simplistic, and the diversity of vascular plants cannot universally be used as a suitable biodiversity indicator for diverse insect taxa at higher trophic levels.  相似文献   

5.
Abstract.  1. Auditory sensitivities and ultrasound avoidance behaviour of two exclusively diurnal moths were examined to test the prediction that total isolation from the predatory effects of echolocating bats will result in the regression of these sensory systems and/or the defences they evoke.
2. The silent geometrid, Trichodezia albovittata , possessed large ears with auditory neural thresholds similar to or better than those of a sympatric, exclusively nocturnal geometrid moth. Trichodezia albovittata readily responded with evasive flight to ultrasound and it is suggested that if this moth has become completely isolated from bats its ears are functionally vestigial, at least in the population studied here.
3. In contrast, while the sound-producing arctiid, Lycomorpha pholus , had low auditory sensitivity based on neural thresholds, it still responded with flight changes to ultrasound. It did not, however, produce sounds when stimulated ultrasonically. It is suggested that the ears of this moth are functionally vestigial for bat-detection purposes but may be used for short-distance social communication.  相似文献   

6.
The leaves of Caladium steudneriifolium (Araceae) of the understorey of a submontane rainforest in the Podocarpus National Park (South East Ecuador, 1,060 m a.s.l.) are plain green or patterned with whitish variegation. Of the 3,413 individual leaves randomly chosen and examined in April 2003, two-thirds were plain green, whereas one third were variegated (i.e., whitish due to absence of chloroplasts). Leaves of both morphs are frequently attacked by mining moth caterpillars. Our BLAST analysis based on Cytochrome-c-Oxidase-subunit-1 sequences suggests that the moth is possibly a member of the Pyraloidea or another microlepidopteran group. It was observed that the variegated leaf zones strongly resemble recent damages caused by mining larvae and therefore may mimic an attack by moth larvae. Infestation was significantly 4–12 times higher for green leaves than for variegated leaves. To test the hypothesis that variegation can be interpreted as mimicry to deter ovipositing moths, we first ruled out the possibility that variegation is a function of canopy density (i.e., that the moths might be attracted or deterred by factors unrelated to the plant). Then plain green leaves were artificially variegated and the number of mining larvae counted after 3 months. The results on infestation rate (7.88% of green leaves, 1.61% of the variegated leaves, 0.41% of white manipulated leaves and 9.12% of uncoloured manipulated leaves) suggest that ovipositing moths are deterred by the miner-infestation mimicry. Thus, variegation might be beneficial for the plants despite the implicated loss of photosynthetically active surface.  相似文献   

7.
Little is known about the importance of the forest overstorey relative to other factors in controlling the spatial variability in understorey species composition in near-natural temperate broadleaved forests. We addressed this question for the 19 ha ancient forest Suserup Skov (55°22′ N, 11°34′ E) in Denmark, one of the few old-growth temperate broadleaved forest remnants in north-western Europe, by inventorying understorey species composition and environmental conditions in 163 100 m2 plots. We use unconstrained and constrained ordinations, variation partitioning, and Indicator Species Analysis to provide a quantitative assessment of the importance of the forest overstorey in controlling understorey species composition. Comparison of the gradients extracted by unconstrained and constrained ordinations showed that the main gradients in understorey species composition in our old-growth temperate broadleaved forest remnant are not caused by variability in the forest overstorey, but are related to topography and soil, edge effects, and unknown broad-scale factors. Nevertheless, overstorey-related variables uniquely accounted for 15% of the total explained variation in understorey species composition, with the pure overstorey-related (Rpo), topography and soil (Rpt), edge and anthropogenic disturbance effects (Rpa), and spatial (Rps) variation fractions being of equal magnitude. The forward variable selection showed that among the overstorey-related variables understorey light availability and to a lesser extent vertical forest structure were most important for understorey species composition. No unique influence of overstorey tree species identity could be documented. There were many indicator species for high understorey light levels and canopy gap centres, but none for medium or low light or closed canopy. Hence, no understorey species behaved as obligate shade plants. Our study shows that, the forest overstorey has a weak control of understorey species composition in near-natural broadleaved forest, in contrast to results from natural and managed forests comprising both conifer and broadleaved species. Nevertheless, >20% of the understorey species found were indicators of high light conditions or canopy openings. Hence, variability in canopy structure and understorey light availability is important for maintaining understorey species diversity.  相似文献   

8.
Geometrid moths were investigated at 26 sites on 9 elevational levels along an elevational transect at Mt. Kilimanjaro (Tanzania), stretching from the fine‐grained mosaic of small agroforest plots with combined cultivation of trees, shrubs and crops at 1650 m through mountain rainforest to heathland at 3300 m. We sampled moths manually at light between 19 : 00 and 22 : 00 in the rainy seasons of March to May and October to January in the years 2000, 2001 and 2002. Along the transect, the composition of moth communities changed from a domination by Sterrhinae and Ennominae to a dominance of Larentiinae with increasing elevation. Overall, alpha diversity was very low compared to other tropical mountain regions. Fisher's alpha showed a maximum of 30 in the agroforest mosaic at 1650 m and decreased to values around 12 in the mountain rainforest. Communities of geometrid moths within the forest belt were significantly dissimilar from communities outside the forest. The diversity patterns on Mt. Kilimanjaro can be related to the young age, island‐like position and history of the mountain. These factors have led to the formation of a homogeneous upper mountain rainforest habitat which in turn houses homogeneous moth communities with a low diversity compared to habitats at lower elevations. Here, a heterogeneous habitat mosaic allowing the intrusion of savannah species into this former forest habitat may account for an increased diversity. In the heath zone above the forest, climatic conditions are very harsh, permitting only few specialists to thrive in this ericaceous woodland. Edge effects were discernible at the forest–heathland boundary where some moth species from heathland invaded the closed forest. At the boundary between agroforest and a forest mosaic of exotic Acacia and Eucalyptus forest plantations and natural mountain forest, diversity values remained low as the dominant species Chiasmia fuscataria accounted for far higher proportions than other dominant species in any of the other habitats.  相似文献   

9.
Aim This study investigates diversity patterns of vascular plants and plant‐feeding geometrid moths during montane rain forest regeneration in relation to the biogeographical and historical conditions of Mt Kilimanjaro. Location Investigations were undertaken on the south‐western slopes of Mt Kilimanjaro at altitudes between 2075 and 2265 m. Methods Thirteen plots were selected for this study. Four of these were situated in the middle of large clearings (> 1000 m2), three in secondary forest, two in mature forest remnants surrounded by secondary forest and four plots within continuous closed mature forest. Vascular plant species were recorded in an area of 20 × 20 m2. Geometrid moths were attracted using lamps placed inside reflective gauze cylinders. Results Ninety‐three species of vascular plants were recorded on the plots. Plant diversity increased in the course of forest regeneration from clearings and secondary forest to mature forest remnants and mature forest. This increase was visible in all vegetation strata as well as in the species number of Dicotyledoneae. The diversity of geometrid moths conversely decreased from early to late successional stages. A total of 2276 Geometridae representing 114 morphospecies were included in the study. Local values of Fisher's α varied from 10.3 to 18.3 on clearings and in secondary forest, whereas they remained below 8.0 in mature forest and mature forest remnants. There was a significant negative correlation between the diversity of Geometridae and the number of dicots, and of plant species in the shrub layer. Main conclusions Contrary to an expected positive correlation between the diversity of vascular plants and herbivorous geometrid moths, diversity patterns of these two groups are strongly diverging due to biogeographical and ecological factors differently affecting the two groups. The increase in plant diversity can chiefly be explained with an increase in epiphyte diversity which is related to the occurrence of suitable habitats in extensive moss layers on huge Ocotea usambarensis (Engl.) trees in the mature forest. The low diversity of geometrid moths in these forests may be connected to the isolation and relatively young age of the montane rain forests on Mt Kilimanjaro. Hence only a small number of moth species adapted to the cool and perhumid conditions within moist mature forest have so far immigrated into these habitats, and time was insufficient for the evolution of many new species.  相似文献   

10.
Question: How does typhoon‐related disturbance (more specifically, disturbance in the understorey due to tree‐fall and branch‐fall) affect different species mortality rates in a vertically well‐structured forest community? Location: Cool‐temperate, old‐growth forest in the Daisen Forest Reserve, Japan. Methods: We investigated the canopy dynamics and mortality rate trends of trees ≥5 cm diameter at breast height in a 4‐ha study plot, and analysed the effects of tree diameter and spatial structure on the mortality risks for major tree species in the understorey. Results: Significant differences were found in the mortality rates and proportions of injured dead stems between census periods, which were more pronounced in the understorey than in the canopy. Acer micranthum, which showed increased mortality during typhoon disturbance periods, had a clumped distribution. In contrast, Acer japonicum and Viburnum furcatum, which showed similar mortality rates between census periods, had a loosely clumped spatial distribution and a negative association with canopy trees, respectively. In the understorey stems of Acanthopanax sciadophylloides and Fagus crenata, whose spatial distribution patterns depended on canopy gaps, significant increases in mortality rates were observed only during severe typhoon‐related disturbance periods. Conclusions: The sensitivity of trees to typhoon‐related canopy disturbance is more pronounced in the lower layers of vertically structured forest communities. Differences in mortality patterns generated through the combined effects of spatial variation in disturbance regime and species‐specific spatial distribution patterns (spatial aggregation, association with canopy trees, and canopy gap dependency) contribute to the co‐existence of understorey species in forest communities that are subject to typhoon‐related disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号