首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simon AE  Howell SH 《The EMBO journal》1986,5(13):3423-3428
RNA C (355 bases), RNA D (194 bases) and RNA F (230 bases) are small, linear satellite RNAs of turnip crinkle virus (TCV) which have been cloned as cDNAs and sequenced in this study. These RNAs produce dramatically different disease symptoms in infected plants. RNA C is a virulent satellite that intensifies virus symptoms when co-inoculated with its helper virus in turnip plants, while RNA D and RNA F are avirulent. RNA D and RNA F, the avirulent satellites, are closely related to each other except that RNA F has a 36-base insert near its 3' end, not found in RNA D. The 189 bases at the 5' end of RNA C, the virulent satellite, are homologous to the entire sequence of RNA D. However, the 3' half of RNA C, is composed of 166 bases which are nearly identical to two regions at the 3' end of the TCV helper virus genome. Hence, the virulent satellite is a composite molecule with one domain at its 5' end homologous to the other avirulent satellites and another domain at its 3' end homologous to the helper virus genome. All four TCV RNAs, RNAs C, D and F and the helper virus genome have identical 7 bases at their 3' ends. The secondary structure of RNA C deduced from the sequence can be folded into two separate domains — the domain of helper virus genome homology and the domain homologous to other TCV satellite RNAs. Comparative sequences of several different RNA C clones reveal that this satellite is a population of molecules with sequence and length heterogeneity.  相似文献   

2.
Satellite RNAs usurp the replication machinery of their helper viruses, even though they bear little or no sequence similarity to the helper virus RNA. In Cereal yellow dwarf polerovirus serotype RPV (CYDV-RPV), the 322-nucleotide satellite RNA (satRPV RNA) accumulates to high levels in the presence of the CYDV-RPV helper virus. Rolling circle replication generates multimeric satRPV RNAs that self-cleave via a double-hammerhead ribozyme structure. Alternative folding inhibits formation of a hammerhead in monomeric satRPV RNA. Here we determine helper virus requirements and the effects of mutations and deletions in satRPV RNA on its replication in oat cells. Using in vivo selection of a satRPV RNA pool randomized at specific bases, we found that disruption of the base pairing necessary to form the non-self-cleaving conformation reduced satRPV RNA accumulation. Unlike other satellite RNAs, both the plus and minus strands proved to be equally infectious. Accordingly, very similar essential replication structures were identified in each strand. A different region is required only for encapsidation. The CYDV-RPV RNA-dependent RNA polymerase (open reading frames 1 and 2), when expressed from the nonhelper Barley yellow dwarf luteovirus, was capable of replicating satRPV RNA. Thus, the helper virus's polymerase is the sole determinant of the ability of a virus to replicate a rolling circle satellite RNA. We present a framework for functional domains in satRPV RNA with three types of function: (i) conformational control elements comprising an RNA switch, (ii) self-functional elements (hammerhead ribozymes), and (iii) cis-acting elements that interact with viral proteins.  相似文献   

3.
Adenovirus-associated satellite viruses interfere with the replication of their helper adenoviruses. According to a previous report, this interference is not mediated by interferon. A three-component system comprising simian adenovirus SV15 and satellites types 1 and 4 was studied to determine whether satellite viruses also interfere with one another. Satellite type 1 interfered with the replication of type 4 and vice versa. The degree of interference was directly proportional to the dose of interfering satellite. The events leading to mutual satellite interference were operative during the first 12 hr of replication, the period associated with active synthesis of viral deoxyribonucleic acid.  相似文献   

4.
To seek patterns of nucleotide usage in the three types of circular subviral RNA pathogens, trimer frequencies and nearest-neighbor biases were studied in 12 plant viroid sequences; five sequences of circular plant viral satellite RNAs; and the sequence of RNA from the human hepatitis delta agent. The viroids and RNA of the delta agent contain tracts of polypurines and polypyrimidines which make up substantial portions of their genomes. Such tracts are not common in the virusoids or in the satellite RNA of tobacco ringspot virus. Viroids, the delta hepatitis agent, and the circular satellite RNAs of certain plant viruses have several features in common: all have circular genomic RNA and replicate through an RNA to RNA rolling circle replication cycle. However, virusoids and related satellite RNAs are directly or indirectly dependent on their helper viruses for replication, while the delta agent and viroids are not. The difference in the pattern of nucleotide usage between the plant viral satellite RNAs on the one hand, and viroids and delta RNA on the other, may relate to this difference in replication strategy.  相似文献   

5.
Cucumber mosaic virus (CMV) is a tripartite RNA virus that can support the replication of satellite RNAs, small molecular parasites of the virus. Satellite RNAs can have a dramatic effect on the helper virus and the host plant in a manner specific to the helper, satellite, and host. Previously, we showed that the Sny-CMV strain is not able to support the replication of the WL1 satellite RNA in zucchini squash and that this phenotype maps to RNA 1. In the present study, we use recombinant cDNA clones of Fny- and Sny-CMV RNA 1 and a site-directed mutant of Fny-CMV RNA 1 to demonstrate that the inability to support WL1 satellite RNA maps to a single amino acid at residue 978 in the 1a protein, proximal to the helicase domain VI. Support of satellite RNA in whole plants and in protoplasts of zucchini squash is analyzed.  相似文献   

6.
Viral satellites are small RNAs that depend on the presence of the specific helper virus for replication and that can modulate viral disease expression. The in vivo subcellular location of the double-stranded (ds) form of different Cucumovirus-associated satellite RNAs, which accumulate in large quantities in infected tobacco plants, is reported here. Subcellular fractions were obtained by differential centrifugation and characterized by their specific nucleic acid content and by electron microscopy. Results indicate that the viral and satellite ds-RNAs copurify with a size-homogeneous vesicular fraction. A similar vesicular fraction was also isolated from healthy tobacco plants. The results suggest that the replication of satellite RNAs occurs in close association with these vesicles and are consistent with the hypothesis of the satellite dependence on the viral-coded replicase.  相似文献   

7.
Some RNA plant viruses contain satellite RNAs which are dependent upon their associated virus for replication and encapsidation. Some cucumber mosaic virus satellite RNAs induce chlorosis on any of several host plants, including either tobacco or tomato. The exchange of sequence domains between cDNA clones of chlorosis-inducing and non-pathogenic satellite RNAs delimited the chlorosis domain for both tobacco and tomato plants to the same region. Site-directed mutagenesis of one nucleotide (149) within this domain changed the host plant specificity for a chlorotic response to satellite RNA infection from tomato to tobacco. Within the chlorosis domain, three conserved nucleotides are either deleted or altered in all satellite RNAs that do not induce chlorosis. Deletion of one of these nucleotides (153) did not affect satellite RNA replication but rendered it non-pathogenic. Thus, two single nucleotides have been identified which play central roles in those interactions between the virus, its satellite RNA and the host plant, and together result in a specific disease state.  相似文献   

8.
9.
Satellite RNAs (sat-RNAs) are small molecular parasites associated with a number of plant RNA viruses. The cucumber mosaic virus (CMV) sat-RNAs are ca. 335 nucleotides and have evolved to produce a large number of closely related sat-RNAs. Different cucumoviruses can act as helper viruses in the amplification of CMV sat-RNAs. We have found that different helper viruses show a preference for a particular sat-RNA in a mixed infection. In this study the specificity of WL47 sat-RNA amplification by LS-CMV and of D4 sat-RNA amplification by tomato aspermy virus in mixed infections was examined. Recombinant cDNA clones of D4 sat-RNA and WL47 sat-RNA were used to map the sat-RNA sequences responsible for the helper virus selection of a specific sat-RNA for amplification.Correspondence to: M.J. Roossinck  相似文献   

10.
11.
两株黄瓜花叶病毒卫星RNA的竞争与共存研究   总被引:1,自引:0,他引:1  
金波  陈集双 《微生物学报》2005,45(2):209-212
通过体外转录方法 ,将大小分别为 36 9nt和 385nt的 2个黄瓜花叶病毒 (Cucumbermosaicvirus,CMV)的卫星RNAYi和Yns共同与不含卫星的辅助病毒株CMV_CNa进行假重组 ,接种CMV系统寄主心叶烟。结果表明 :在接种5d的接种叶上同时检测到卫星RNA_Yi和卫星RNA_Yns;在系统叶上 ,接种 5d和 10d亦可同时检测到 2株卫星 ;但接种 15d ,在系统叶组织中只检测到卫星RNA_Yi。再将接种 5d的接种叶扩大接种到几种不同的指示植物后 ,经dsRNA抽提 ,也只获得 1条与卫星RNA_Yi大小相符的条带。通过假重组病毒株中分别获得卫星RNA并测序 ,确定2个卫星RNA的序列没有变化。卫星RNA_Yns和Yi在辅助病毒CMV_CNa作用下 ,表现出明显的竞争性 ,它们在辅助病毒中不能形成稳定的共存关系。  相似文献   

12.
Virus satellites are widespread subcellular entities, present both in eukaryotic and in prokaryotic cells. Their modus vivendi involves parasitism of the life cycle of their inducing helper viruses, which assures their transmission to a new host. However, the evolutionary and ecological implications of satellites on helper viruses remain unclear. Here, using staphylococcal pathogenicity islands (SaPIs) as a model of virus satellites, we experimentally show that helper viruses rapidly evolve resistance to their virus satellites, preventing SaPI proliferation, and SaPIs in turn can readily evolve to overcome phage resistance. Genomic analyses of both these experimentally evolved strains as well as naturally occurring bacteriophages suggest that the SaPIs drive the coexistence of multiple alleles of the phage-coded SaPI inducing genes, as well as sometimes selecting for the absence of the SaPI depressing genes. We report similar (accidental) evolution of resistance to SaPIs in laboratory phages used for Staphylococcus aureus typing and also obtain the same qualitative results in both experimental evolution and phylogenetic studies of Enterococcus faecalis phages and their satellites viruses. In summary, our results suggest that helper and satellite viruses undergo rapid coevolution, which is likely to play a key role in the evolution and ecology of the viruses as well as their prokaryotic hosts.  相似文献   

13.

Background  

Viroids, satellite RNAs, satellites viruses and the human hepatitis delta virus form the 'brotherhood' of the smallest known infectious RNA agents, known as the subviral RNAs. For most of these species, it is generally accepted that characteristics such as cell movement, replication, host specificity and pathogenicity are encoded in their RNA sequences and their resulting RNA structures. Although many sequences are indexed in publicly available databases, these sequence annotation databases do not provide the advanced searches and data manipulation capability for identifying and characterizing subviral RNA motifs.  相似文献   

14.
Cis-acting RNA signals are required for replication of positive-strand viruses such as the picornaviruses. Although these generally have been mapped to the 5' and/or 3' termini of the viral genome, RNAs derived from human rhinovirus type 14 are unable to replicate unless they contain an internal cis-acting replication element (cre) located within the genome segment encoding the capsid proteins. Here, we show that the essential cre sequence is 83-96 nt in length and located between nt 2318-2413 of the genome. Using dicistronic RNAs in which translation of the P1 and P2-P3 segments of the polyprotein were functionally dissociated, we further demonstrate that translation of the cre sequence is not required for RNA replication. Thus, although it is located within a protein-coding segment of the genome, the cre functions as an RNA entity. Computer folds suggested that cre sequences could form a stable structure in either positive- or minus-strand RNA. However, an analysis of mutant RNAs containing multiple covariant and non-covariant nucleotide substitutions within these putative structures demonstrated that only the predicted positive-strand structure is essential for efficient RNA replication. The absence of detectable minus-strand synthesis from RNAs that lack the cre suggests that the cre is required for initiation of minus-strand RNA synthesis. Since a lethal 3' noncoding region mutation could be partially rescued by a compensating mutation within the cre, the cre appears to participate in a long-range RNA-RNA interaction required for this process. These data provide novel insight into the mechanisms of replication of a positive-strand RNA virus, as they define the involvement of an internally located RNA structure in the recognition of viral RNA by the viral replicase complex. Since internally located RNA replication signals have been shown to exist in several other positive-strand RNA virus families, these observations are potentially relevant to a wide array of related viruses.  相似文献   

15.
The RNAs of replication-defective murine and primate type C transforming viruses were analyzed for the presence of nucleotide sequences homologous to the genomes of their respective helper type C viruses by using DNAs complementary (cDNA) to either the 5'-terminal (cDNA5') or total (cDNAtotal) nucleotide sequences of the helper virus RNA. The defective viruses examined have previously been shown to vary in their ability to express helper viral gag gene proteins. With cDNAtotal as a probe, these transforming viruses were shown to vary in their representation of helper sequences (15 to 60% hybridization of cDNAtotal). In striking contrast, 5'-terminal-specific sequences of the helper virus were conserved in the RNAs of every transforming virus tested (is greater than 80% hybridization of cDNA5'). These findings suggest a critical role for these sequences in the life cycle of the defective transforming virus.  相似文献   

16.
Choi SH  Seo JK  Kwon SJ  Rao AL 《Journal of virology》2012,86(9):4823-4832
Satellite RNAs are the smallest infectious agents whose replication is thought to be completely dependent on their helper virus (HV). Here we report that, when expressed autonomously in the absence of HV, a variant of satellite RNA (satRNA) associated with Cucumber mosaic virus strain Q (Q-satRNA) has a propensity to localize in the nucleus and be transcribed, generating genomic and antigenomic multimeric forms. The involvement of the nuclear phase of Q-satRNA was further confirmed by confocal microscopy employing in vivo RNA-tagging and double-stranded-RNA-labeling assays. Sequence analyses revealed that the Q-satRNA multimers formed in the absence of HV, compared to when HV is present, are distinguished by the addition of a template-independent heptanucleotide motif at the monomer junctions within the multimers. Collectively, the involvement of a nuclear phase in the replication cycle of Q-satRNA not only provides a valid explanation for its persistent survival in the absence of HV but also suggests a possible evolutionary relationship to viroids that replicate in the nucleus.  相似文献   

17.
18.
T O Diener 《FASEB journal》1991,5(13):2808-2813
Contrary to earlier beliefs, viruses are not the smallest causative agents of infectious diseases. Single-stranded RNAs as small as 246 nucleotides exist in certain higher plants and cause more than a dozen crop diseases. These RNAs have been termed viroids. Despite their extremely limited information content, viroids replicate autonomously in susceptible cells--that is, they do not require helper functions from simultaneously replicating conventional viruses. Viroids are covalently closed circular molecules with a characteristic rodlike secondary structure in which short helical regions are interrupted by internal and bulge loops. Viroids are not translated; they are replicated by a host enzyme (or enzymes) (probably RNA polymerase II) via oligomeric RNA intermediates by a rolling circle mechanism. Viroidlike satellite RNAs resemble viroids in size and molecular structure, but are found within the capsids of specific helper viruses on which they depend for their own replication. These RNAs are of great interest to molecular biology for at least two reasons: 1) they are the smallest and simplest replicating molecules known, and 2) they may represent living fossils of precellular evolution in a hypothetical RNA world.  相似文献   

19.
ADENO-ASSOCIATED satellite viruses (ASV) are extremely defective in that they need a helper adenovirus to complete their replication cycle in susceptible cells1–3. Although the helper virus is usually not defective there have been reports of systems which are at least conditionally defective. Smith and Gehle4 found that a canine adenovirus, ICH, which did not seem to replicate in human amnion cells (essentially a non-permissive system) could be used to pass the satellite serially in these cells if the passage was reinfected each time with helper virus. Ito et al.5 reported that a temperature-sensitive mutant of human adenovirus type 31, ts 13, defective in viral DNA synthesis, could complement a cycle of satellite virus replication at the non-permissive temperature.  相似文献   

20.
RNA viruses have 5' and 3' untranslated regions (UTRs) that contain specific signals for RNA synthesis. The coronavirus genome is capped at the 5' end and has a 3' UTR that consists of 300 to 500 nucleotides (nt) plus a poly(A) tail. To further our understanding of coronavirus replication, we have begun to examine the involvement of host factors in this process for two group II viruses, bovine coronavirus (BCV) and mouse hepatitis coronavirus (MHV). Specific host protein interactions with the BCV 3' UTR [287 nt plus poly(A) tail] were identified using gel mobility shift assays. Competition with the MHV 3' UTR [301 nt plus poly(A) tail] suggests that the interactions are conserved for the two viruses. Proteins with molecular masses of 99, 95, and 73 kDa were detected in UV cross-linking experiments. Less heavily labeled proteins were also detected in the ranges of 40 to 50 and 30 kDa. The poly(A) tail was required for binding of the 73-kDa protein. Immunoprecipitation of UV-cross-linked proteins identified the 73-kDa protein as the cytoplasmic poly(A)-binding protein (PABP). Replication of the defective genomes BCV Drep and MHV MIDI-C, along with several mutants, was used to determine the importance of the poly(A) tail. Defective genomes with shortened poly(A) tails consisting of 5 or 10 A residues were replicated after transfection into helper virus-infected cells. BCV Drep RNA that lacked a poly(A) tail did not replicate, whereas replication of MHV MIDI-C RNA with a deleted tail was detected after several virus passages. All mutants exhibited delayed kinetics of replication. Detectable extension or addition of the poly(A) tail to the mutants correlated with the appearance of these RNAs in the replication assay. RNAs with shortened poly(A) tails exhibited less in vitro PABP binding, suggesting that decreased interactions with the protein may affect RNA replication. The data strongly indicate that the poly(A) tail is an important cis-acting signal for coronavirus replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号