首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Uptake system of silicon in different plant species   总被引:15,自引:0,他引:15  
The accumulation of silicon (Si) in the shoots varies considerably among plant species, but the mechanism responsible for this variation is poorly understood. The uptake system of Si was investigated in terms of the radial transport from the external solution to the root cortical cells and the release of Si from the cortical cells to the xylem in rice, cucumber, and tomato, which differ greatly in shoot Si concentration. Symplasmic solutions of the root tips were extracted by centrifugation. The concentrations of Si in the root-cell symplast in all species were higher than that in the external solution, although the concentration in rice was 3- and 5-fold higher than that in cucumber and tomato, respectively. A kinetic study showed that the radial transport of Si was mediated by a transporter with a K(m) value of 0.15 mM in all species, but with different V(max) values in the order of rice>cucumber>tomato. In the presence of the metabolic inhibitor 2,4-dinitrophenol, and at low temperature, the Si concentration in the root-cell symplast decreased to a level similar to that of the apoplasmic solution. These results suggest that both transporter-mediated transport and passive diffusion of Si are involved in the radial transport of Si and that the transporter-mediated transport is an energy-dependent process. The Si concentration of xylem sap in rice was 20- and 100-fold higher than that in cucumber and tomato, respectively. In contrast to rice, the Si concentration in the xylem sap was lower than that in the external solution in cucumber and tomato. A kinetic study showed that xylem loading of Si was also mediated by a kind of transporter in rice, but by passive diffusion in cucumber and tomato. These results indicate that a higher density of transporter for radial transport and the presence of a transporter for xylem loading are responsible for the high Si accumulation in rice.  相似文献   

2.
The supplementation of monosilicic acid [Si(OH)4] to the root growing medium is known to protect plants from toxic levels of iron (Fe), copper (Cu) and manganese (Mn), but also to mitigate deficiency of Fe and Mn. However, the physicochemical bases of these alleviating mechanisms are not fully understood. Here we applied low-T electron paramagnetic resonance (EPR) spectroscopy to examine the formation of complexes of Si(OH)4 with Mn2+, Fe3+, and Cu2+ in water and in xylem sap of cucumber (Cucumis sativus L.) grown without or with supply of Si(OH)4. EPR, which is also useful in establishing the redox state of these metals, was combined with measurements of total concentrations of metals in xylem sap by inductive coupled plasma. Our results show that Si(OH)4 forms coordination bonds with all three metals. The strongest interactions of Si(OH)4 appear to be with Cu2+ (1/1 stoichiometry) which might lead to Cu precipitation. In line with this in vitro findings, Si(OH)4 supply to cucumber resulted in dramatically lower concentration of this metal in the xylem sap. Further, it was demonstrated that Si(OH)4 supplementation causes pro-reductive changes that contribute to the maintenance of Fe and, in particular, Mn in the xylem sap in bioavailable 2+ form. Our results shed more light on the intertwined reactions between Si(OH)4 and transition metals in plant fluids (e.g. xylem sap).  相似文献   

3.
To identify the chemical forms of aluminum (Al) transported from roots to shoots of tea plants (C. sinensis L.), 27Al-nuclear magnetic resonance and 19F NMR spectroscopy were used to analyze xylem sap.The concentration of Al in collected xylem sap was 0.29 mM, twice as high as that of F. Catechins were not detected in xylem sap. The concentration of malic acid in xylem sap was higher than that of citric acid, whereas the concentration of oxalic acid was negligible.There were two signals in the 27Al NMR spectra of xylem sap, a larger signal at 11 ppm and a smaller one at −1.5 ppm. The former signal was consistent with the peak for an Al-citrate model solution, suggesting that an Al-citrate complex was present in xylem sap. Although the latter signal at −1.5 ppm was thought to indicate the presence of an Al-F complex (at 1.7 ppm) in xylem sap, there was only one signal at −122 ppm in the 19F NMR spectrum of xylem sap, indicating that the main F complex in xylem sap was F.These results indicate that Al might be translocated as a complex with citrate, while Al-malate, Al-oxalate and Al-F complexes are not major Al complexes in xylem sap of tea plants.  相似文献   

4.
Sodium chloride reduces the growth of rice seedlings, which accumulate excessive concentrations of sodium and chloride ions in their leaves. In this paper, we describe how silicon decreases transpirational bypass flow and ion concentrations in the xylem sap in rice (Oryza sativa L.) seedlings growing under NaCl stress. Salt (50 mM NaCl) reduced the growth of shoots and roots: adding silicate (3 mM) to the saline culture solution improved the growth of the shoots, but not roots. The improvement of shoot growth in the presence of silicate was correlated with reduced sodium concentration in the shoot. The net transport rate of Na from the root to shoot (expressed per unit of root mass) was also decreased by added silicate. There was, however, no effect of silicate on the net transport of potassium. Furthermore, in salt-stressed plants, silicate did not decrease the transpiration, and even increased it in seedlings pre-treated with silicate for 7 d prior to salt treatment, indicating that the reduction of sodium uptake by silicate was not simply through a reduction in volume flow from root to shoot. Experiments using trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS), an apoplastic tracer, showed that silicate dramatically decreased transpirational bypass flow in rice (from about 4.2 to 0.8%), while the apparent sodium concentration in the xylem, which was estimated indirectly from the flux data, decreased from 6.2 to 2.8 mM. Direct measurements of the concentration of sodium in xylem sap sampled using Philaenus spumarius confirmed that the apparent reduction was not a consequence of sodium recycling. X-ray microanalysis showed that silicon was deposited in the outer part of the root and in the endodermis, being more obvious in the latter than in the former. The results suggest that silicon deposition in the exodermis and endodermis reduced sodium uptake in rice (Oryza sativa L.) seedlings under NaCl stress through a reduction in apoplastic transport across the root.  相似文献   

5.
Rice (Oryza sativa L. cv Oochikara) is a typical silicon-accumulating plant, but the mechanism responsible for the high silicon uptake by the roots is poorly understood. We characterized the silicon uptake system in rice roots by using a low-silicon rice mutant (lsi1) and wild-type rice. A kinetic study showed that the concentration of silicon in the root symplastic solution increased with increasing silicon concentrations in the external solution but saturated at a higher concentration in both lines. There were no differences in the silicon concentration of the symplastic solution between the wild-type rice and the mutant. The form of soluble silicon in the root, xylem, and leaf identified by (29)Si-NMR was also the same in the two lines. However, the concentration of silicon in the xylem sap was much higher in the wild type than in the mutant. These results indicate that at least two transporters are involved in silicon transport from the external solution to the xylem and that the low-silicon rice mutant is defective in loading silicon into xylem rather than silicon uptake from external solution to cortical cells. To map the responsible gene, we performed a bulked segregant analysis by using both microsatellite and expressed sequence tag-based PCR markers. As a result, the gene was mapped to chromosome 2, flanked by microsatellite marker RM5303 and expressed sequence tag-based PCR marker E60168.  相似文献   

6.
Summary. 1. P.spwnarius nymphs selected young, upper leaves of Xanthium strumarium plants, which have a relatively high amino acid concentration in the xylem sap.
2. Nymphs selected or rejected a host leaf as a feeding site after a test ingestion of plant sap.
3. Nymphs fed on detached leaves kept with their petioles in a solution of amino acids, in preference to leaves with petioles in a solution containing no amino acids.
4. Nymphs caged on leaves with relatively high amino acid concentrations in the xylem sap suffered a lower mortality after 7 days than nymphs caged on leaves with low amino acid concentrations in the xylem sap.
5. Mean excretory rate increased with the increase in the amino acid concentration in the xylem sap for third and fourth instar nymphs, and adults, but not in fifth instars.  相似文献   

7.
A rice mutant defective in Si uptake   总被引:2,自引:0,他引:2  
Ma JF  Tamai K  Ichii M  Wu GF 《Plant physiology》2002,130(4):2111-2117
Rice (Oryza sativa) accumulates silicon (Si) in the tops to levels up to 10.0% of shoot dry weight, but the mechanism responsible for high Si uptake by rice roots is not understood. We isolated a rice mutant (GR1) that is defective in active Si uptake by screening M(2) seeds (64,000) of rice cv Oochikara that were treated with 10(-3) M sodium azide for 6 h at 25 degrees C. There were no phenotypic differences between wild type (WT) and GR1 except that the leaf blade of GR1 remained droopy when Si was supplied. Uptake experiments showed that Si uptake by GR1 was significantly lower than that by WT at both low and high Si concentrations. However, there was no difference in the uptake of other nutrients such as phosphorus and potassium. Si concentration in the xylem sap of WT was 33-fold that of the external solution, but that of GR1 was 3-fold higher than the external solution at 0.15 mM Si. Si uptake by WT was inhibited by metabolic inhibitors including NaCN and 2,4-dinitrophenol and by low temperature, whereas Si uptake by GR1 was not inhibited by these agents. These results suggest that an active transport system for Si uptake is disrupted in GR1. Analysis of F(2) populations between GR1 and WT showed that roots with high Si uptake and roots with low Si uptake segregated at a 3:1 ratio, suggesting that GR1 is a recessive mutant of Si uptake.  相似文献   

8.
The chemical speciation of silicon in xylem exudate from wheat (Triticum aestivum L.) was examined by 29Si NMR spectroscopy. Wheat plants were grown to maturity in silicon‐free nutrient medium, and then transferred to a solution containing 0.02 mm 29Si‐enriched silicic acid. After 30 min the shoots were excised and xylem exudate was collected. Within 10 min the Si concentration of the xylem exudate reached values greatly in excess of that of the starting nutrient solution, eventually reaching levels as high as 8 mm . Silicon‐29 nuclear magnetic resonance spectra indicated the existence of only two Si‐containing species in the xylem exudate, mono and disilicic acid (H4SiO4o and (HO)3Si(µ‐O)Si(OH)3o) in a ratio of approximately 7 : 1. Significantly, there was no evidence of organosilicate complexes. Nevertheless, the efficiency by which the plant concentrates aqueous silicon indicates active mechanisms of silicon transport across root cell membranes.  相似文献   

9.
Summary The uptake of monosilicic acid by crimson clover (Trifolium incarnatum L.) was investigated using solution cultures in which the level ranged from 0.4 to 60 ppm SiO2, and soils in which the level in solution ranged from 7 to 67 ppm SiO2. With increasing levels of silica in the external solution there were systematic increases in uptake, but the quantities of silica in the tops were always less than those which were theoretically carried to the roots in the mass flow of water. The silica content of the roots was higher than in the corresponding tops and seemed to be largely associated with the epidermis. These findings and the observation that the concentration of monosilicic acid in the xylem sap is lower than that in the external solution, are regarded as evidence that the plant excludes a proportion of the monosilicic acid from the transpiration stream. This exclusion is attributed to a barrier in the root through which monosilicic acid passes at a slower rate than water.The distribution of silica among the parts of the tops was unaffected by the level of monosilicic acid in the external solution and, in turn, by the quantity which entered the tops. The chemistry of silica and the pattern of its distribution in the tops suggest that the monosilicic acid which has moved across the root then moves concomitantly with water in the transpiration stream and that silica is deposited in greatest quantities in those parts from which water is lost in greatest quantities.  相似文献   

10.
Ma JF  Hiradate S 《Planta》2000,211(3):355-360
 The forms of Al for uptake by the roots and translocation from the root to the shoot were investigated in a buckwheat (Fagopyrum esculentum Moench, cv. Jianxi) that accumulates Al in its leaves. The Al concentration in the xylem sap was 15-fold higher in the plants exposed to AlCl3 than in those exposed to an Al-oxalate (1:3) complex, suggesting that the roots take up Al in the ionic form. The Al concentration in the xylem sap was 4-fold higher than that in the external solution after a 1-h exposure to AlCl3 solution and 10-fold higher after a 2-h exposure. The Al concentration in the xylem sap increased with increasing Al concentration in the external solution. The Al uptake was not affected by a respiratory inhibitor, hydroxylamine, but significantly inhibited by the addition of La. These results suggest that Al uptake by the root is a passive process, and La3+ competes for the binding sites for Al3+ on the plasma membrane. The form of Al in the xylem sap was identified by 27Al-nuclear magnetic resonance analysis. The chemical shift of 27Al in the xylem sap was around 10.9 ppm, which is consistent with that of the Al-citrate complex. Furthermore, the dominant organic acid in the xylem sap was citric acid, indicating that Al was translocated in the form of Al-citrate complex. Because Al is present as Al-oxalate (1:3) in the root, the present data show that ligand exchange from oxalate to citrate occurs before Al is released to xylem. Received: 10 December 1999 / Accepted: 3 February 2000  相似文献   

11.
水稻土施硅对土壤-水稻系统中镉的降低效果   总被引:7,自引:0,他引:7  
水稻中镉的积累造成人类健康的风险,增加水稻硅素能减轻镉中毒症状,降低稻米镉积累,但是硅对重金属的作用机理尚不清楚。主要研究了在中度和高度镉污染的土壤中,通过施用固态和液态的富硅物质对土壤-水稻系统中镉的吸收和转运的影响,探明决定镉和硅在根与芽的质外体和共质体中的作用机理。试验结果表明:(1)在中度和高度污染的土壤中,镉在土壤-作物系统中的转移和积累情况是不同的,可以通过富硅物质中的单硅酸与镉离子的相互作用,增加镉在硅物质表面的吸附来减少镉在土壤中的流动;(2)富硅物质可以降低水稻根和芽中镉的积累,在高度镉污染的情况下,施用硅可以使镉大量积累在水稻根及其共质体中,并降低根及其共质体中镉的转换和积累;(3)新鲜土壤中水萃取态的单硅酸含量与镉在土壤-作物系统中的流动性、转运以及积累等主要参数密切相关。  相似文献   

12.
Wan X  Zwiazek JJ 《Plant physiology》1999,121(3):939-946
HgCl(2) (0.1 mM) reduced pressure-induced water flux and root hydraulic conductivity in the roots of 1-year-old aspen (Populus tremuloides Michx.) seedlings by about 50%. The inhibition was reversed with 50 mM mercaptoethanol. Mercurial treatment reduced the activation energy of water transport in the roots from 10.82 +/- 0.700 kcal mol(-1) to 6.67 +/- 0.193 kcal mol(-1) when measured over the 4 degrees C to 25 degrees C temperature range. An increase in rhodamine B concentration in the xylem sap of mercury-treated roots suggested a decrease in the symplastic transport of water. However, the apoplastic pathway in both control and mercury-treated roots constituted only a small fraction of the total root water transport. Electrical conductivity and osmotic potentials of the expressed xylem sap suggested that 0.1 mM HgCl(2) and temperature changes over the 4 degrees C to 25 degrees C range did not induce cell membrane leakage. The 0.1 mM HgCl(2) solution applied as a root drench severely reduced stomatal conductance in intact plants, and this reduction was partly reversed by 50 mM mercaptoethanol. In excised shoots, 0.1 mM HgCl(2) did not affect stomatal conductance, suggesting that the signal that triggered stomatal closure originated in the roots. We suggest that mercury-sensitive processes in aspen roots play a significant role in regulating plant water balance by their effects on root hydraulic conductivity.  相似文献   

13.
We report here that NO(3)(-) in the xylem exerts positive feedback on its loading into the xylem through a change in the voltage dependence of the Quickly Activating Anion Conductance, X-QUAC. Properties of this conductance were investigated on xylem-parenchyma protoplasts prepared from roots of Hordeum vulgare by applying the patch-clamp technique. Chord conductances were minimal around -40 mV and increased with plasma membrane depolarisation as well as with hyperpolarisation. Two gates with opposite voltage dependences were postulated. When 30 mM Cl- in the bath was replaced by NO(3)(-), a shift in the midpoint potential of the depolarisation-activated gate by about -60 mV from 43 to -16 mV occurred (K(m) = 3.4 mM). No such effect was seen when chloride was replaced by malate. Addition of 10 mM NO(3)(-)to the pipette solution and reduction of [Cl-] from 124 to 4 mM (to simulate cytoplasmic concentrations) did not interfere with the voltage dependence of X-QUAC activation, nor was it affected by changes in external [K+]. If only the NO(3)(-) effect on gating was considered, an increase of the NO(3)(-) concentration in the xylem sap to 5 mM would result in an enhancement of NO(3)(-) efflux by about 30%. Although the driving force for NO(3)(-) efflux would be reduced simultaneously, NO(3)(-) efflux into the xylem through X-QUAC would be maintained with high NO(3)(-) concentrations in the xylem sap; a situation which occurs for instance during the night.  相似文献   

14.
The effects of iron deficiency on the composition of the xylem sap and leaf apoplastic fluid have been characterized in sugar beet (Beta vulgaris Monohil hybrid). pH was estimated from direct measurements in apoplastic fluid and xylem sap obtained by centrifugation and by fluorescence of leaves incubated with 5-carboxyfluorescein and fluorescein isothiocyanate-dextran. Iron deficiency caused a slight decrease in the pH of the leaf apoplast (from 6.3 down to 5.9) and xylem sap (from 6.0 down to 5.7) of sugar beet. Major organic acids found in leaf apoplastic fluid and xylem sap were malate and citrate. Total organic acid concentration in control plants was 4.3 mM in apoplastic fluid and 9.4 mM in xylem sap and increased to 12.2 and 50.4 mM, respectively, in iron-deficient plants. Inorganic cation and anion concentrations also changed with iron deficiency both in apoplastic fluid and xylem sap. Iron decreased with iron deficiency from 5.5 to 2.5 microM in apoplastic fluid and xylem sap. Major predicted iron species in both compartments were [FeCitOH](-1) in the controls and [FeCit(2)](-3) in the iron-deficient plants. Data suggest the existence of an influx of organic acids from the roots to the leaves via xylem, probably associated to an anaplerotic carbon dioxide fixation by roots.  相似文献   

15.
The aluminium tolerance of several tree species was studied in a cloud forest in Northern Venezuela, growing on a very acid soil and rich in soluble Al. The Al-accumulator species (>1000 ppm in leaves) were compared to non-accumulator ones in relation to total Al concentration in xylem sap, pH and Al concentration in vacuoles, and rhizosphere alkalinization capacity. The Al3+ concentration in the soil solution and the xylem sap were also measured. The results show that in the Al-accumulator plant Richeria grandis, xylem sap is relatively rich in Al and about 35% of it is present in ionic form. In the non-accumulator plant studied (Guapira olfersiana) there is no Al detectable in xylem sap. The pH of vacuolar sap of several Al-accumulator species studied was very acidic and ranged between 2.6–4.8, but the presence of Al in vacuoles was not correlated with the acidity of the vacuolar sap. Both Al-accumulator and non accumulator plants had the capacity to reduce acidity of the rhizosphere and increased the pH of the nutrient solution by one unit within the first 24 hours. Trees growing in natural, high acidity-high Al3+ environment show a series of tolerance mechanisms, such as deposition of Al in vacuoles, Al chelation and rhizosphere alkalinization. These partially ameliorate the toxic effects of this element, but they probably impose a high ecological cost in terms of photosynthate allocation and growth rate.  相似文献   

16.
Phloem-sap feeders (Hemiptera) occasionally consume the dilute sap of xylem, a behaviour that has previously been associated with replenishing water balance following dehydration. However, a recent study reported that non-dehydrated aphids ingested xylem sap. Here, we tested the hypothesis that the consumption of xylem sap, which has a low osmolality, is a general response to osmotic stresses other than dehydration. Alate aphids were subjected to different treatments and subsequently transferred onto a plant, where electrical penetration graph (EPG) was used to estimate durations of passive phloem sap consumption and active sucking of xylem sap. The proportion of time aphids fed on xylem sap (i.e., time spent feeding on xylem sap/total time spent feeding on phloem plus xylem sap) was used as a proxy of the solute concentration of the uptake. The proportion of time alate aphids fed on xylem sap increased: (1) with the time spent imbibing an artificial diet containing a solution of sucrose, which is highly concentrated in phloem sap and is mainly responsible for the high osmotic potential of phloem sap; (2) with the osmotic potential of the artificial diet, when osmotic potential excess was not related to sucrose concentration; and (3) when aphids were deprived of primary symbionts, a condition previously shown to lead to a higher haemolymph osmotic potential. All our results converge to support the hypothesis that xylem sap consumption contributes to the regulation of the osmotic potential in phloem-sap feeders.  相似文献   

17.
Control of Sodium Transport in Sunflower Roots   总被引:1,自引:0,他引:1  
Electrochemical potential differences (driving forces) for sodiumdistributed between the outside solution and the exuding sapof water-culture-grown sunflower plants (Helianthus annuius)have been determined. The results indicated that sodium wasmoving from the outside solution to the xylem against the electrochemicalpotential gradient at external concentrations below approximately0.30 mM Na. At higher external concentrations sodium appearedto be actively excluded from the xylem. An electrical potential difference between the exuding sap andthe external solution of approximately 30 mV was observed. Itwas unaffected by the external sodium concentration. Use ofa short-circuiting technique indicated that the trans-root potentialresides at the plasmalemma of the cortical cells. Driving forces on sodium distributed between the external solutionand the root and between the xylem sap and the root were calculated.They indicated that the root is able to accumulate sodium activelyboth from the external solution and the xylem sap. It is concludedthat sodium transport to the xylem in this species is controlledby the balance of these two opposing forces.  相似文献   

18.
Hydroponic-grown seedlings of aspen (Populus tremuloides Michx.) were used to investigate how low root temperatures (5°C) affect stomatal conductance and water relations. An isohydric manner of the stomatal behaviour was found with the seedlings when their roots were subjected to the low temperature. Stomatal conductance rapidly and dramatically reduced in response to the low root temperature, while the xylem water potential did not significantly alter. Under the low root temperature, pH value of the xylem sap increased from 6.15 to 6.72 within the initial 4 h, while abscisic acid (ABA) concentration increased by the eighth hour of treatment. K+ concentration of the xylem sap significantly decreased within the 8th h and then reversed by the 24th h. The ion change was accompanied by a decrease and then an increase in the electrical conductivity, and an increase and then a decrease in the osmotic potential. The tempo of physiological responses to the low root temperature suggests that the rapid pH change of the xylem sap was the initial factor which triggered stomatal closure in low temperature-treated seedlings, and that the role of the more slowly accumulating ABA was likely to reinforce the stomatal closure. Xylem sap from the seedlings subjected low root temperature affected stomatal aperture on leaf discs when they were floated on the sap solution. The stomatal aperture correlated (P = 0.006) with the changed pattern of [K+] in the sap while the range of pH or ABA found in the xylem sap did not influence stomatal aperture of leaf discs in solution. The effect of xylem sap on stomatal aperture on leaf discs was different from on stomatal conductance in the intact seedlings. Comparison was made with previous study with the soil-grown seedlings.  相似文献   

19.
Arabidopsis halleri is a Cd hyperaccumulator; however, the mechanismsinvolved in the root to shoot translocation of Cd are not wellunderstood. In this study, we characterized Cd transfer fromthe root medium to xylem in this species. Arabidopsis halleriaccumulated 1,500 mg kg–1 Cd in the shoot without growthinhibition. A time-course experiment showed that the releaseof Cd into the xylem was very rapid; by 2 h exposure to Cd,Cd concentration in the xylem sap was 5-fold higher than thatin the external solution. The concentration of Cd in the xylemsap increased linearly with increasing Cd concentration in theexternal solution. Cd transfer to the xylem was completely inhibitedby the metabolic inhibitor carbonyl cyanide 3-chlorophenylhydrazone(CCCP). Cd concentration in the xylem sap was decreased by increasingthe concentration of external Zn, but enhanced by Fe deficiencytreatment. Analysis with 113Cd-nuclear magnetic resonance (NMR)showed that the chemical shift of 113Cd in the xylem sap wasthe same as that of Cd(NO3)2. Metal speciation with Geochem-PCalso showed that Cd occurred mainly in the free ionic form inthe xylem sap. These results suggest that Cd transfer from theroot medium to the xylem in A. halleri is an energy-dependentprocess that is partly shared with Zn and/or Fe transport. Furthermore,Cd is translocated from roots to shoots in inorganic forms.  相似文献   

20.
In higher plants, the xylem vessels functionally connect the roots with the above-ground organs. The xylem sap transports various organic compounds, such as proteins and amino acids. We examined drought and rewatering-inducible changes in the amino acid composition of root xylem sap collected from Cucurbita maxima roots. The major free amino acids in C . maxima root xylem sap were methylglycine (MeGly; sarcosine) and glutamine (Gln), but MeGly was not detected in the xylem sap of cucumber. MeGly is an intermediate compound in the metabolism of trimethylglycine (TMG; betaine), but its physiological effects in plants are unknown. Drought and rewatering treatment resulted in an increase in the concentration of MeGly in root xylem sap to 2.5 m M . After flowering, the MeGly concentration in the xylem sap dropped significantly, whereas the concentration of Gln decreased only after fruit ripening. One milli molar MeGly inhibited the formation of adventitious roots and their elongation in C . maxima , but glycine, dimethylglycine, or TMG had no effect. Similar effects and the inhibition of stem elongation were observed in shoot cuttings of cucumber and Phaseolus angularis . These observations seem to imply a possible involvement of xylem sap MeGly in the physiological responses of C . maxima plants to drought stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号