首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The actin cytoskeleton has been implicated in regulating plant gravitropism. However, its precise role in this process remains uncertain. We have shown previously that disruption of the actin cytoskeleton with Latrunculin B (Lat B) strongly promoted gravitropism in maize roots. These effects were most evident on a clinostat as curvature that would exceed 90 degrees despite short periods of horizontal stimulation. To probe further the cellular mechanisms underlying these enhanced gravity responses, we extended our studies to roots of Arabidopsis. Similar to our observations in other plant species, Lat B enhanced the response of Arabidopsis roots to gravity. Lat B (100 nm) and a stimulation time of 5-10 min were sufficient to induce enhanced bending responses during clinorotation. Lat B (100 nm) disrupted the fine actin filament network in different regions of the root and altered the dynamics of amyloplasts in the columella but did not inhibit the gravity-induced alkalinization of the columella cytoplasm. However, the duration of the alkalinization response during continuous gravistimulation was extended in Lat B-treated roots. Indirect visualization of auxin redistribution using the DR5:beta-glucuronidase (DR5:GUS) auxin-responsive reporter showed that the enhanced curvature of Lat B-treated roots during clinorotation was accompanied by a persistent lateral auxin gradient. Blocking the gravity-induced alkalinization of the columella cytoplasm with caged protons reduced Lat B-induced curvature and the development of the lateral auxin gradient. Our data indicate that the actin cytoskeleton is unnecessary for the initial perception of gravity but likely acts to downregulate gravitropism by continuously resetting the gravitropic-signaling system.  相似文献   

2.
Adenosine kinase (ADK) is a key enzyme that regulates intra- and extracellular levels of adenosine, thereby modulating methyltransferase reactions, production of polyamines and secondary compounds, and cell signaling in animals. Unfortunately, little is known about ADK's contribution to the regulation of plant growth and development. Here, we show that ADK is a modulator of root cap morphogenesis and gravitropism. Upon gravistimulation, soluble ADK levels and activity increase in the root tip. Mutation in one of two Arabidopsis (Arabidopsis thaliana) ADK genes, ADK1, results in cap morphogenesis defects, along with alterations in root sensitivity to gravistimulation and slower kinetics of root gravitropic curvature. The kinetics defect can be partially rescued by adding spermine to the growth medium, whereas the defects in cap morphogenesis and gravitropic sensitivity cannot. The root morphogenesis and gravitropism defects of adk1-1 are accompanied by altered expression of the PIN3 auxin efflux facilitator in the cap and decreased expression of the auxin-responsive DR5-GUS reporter. Furthermore, PIN3 fails to relocalize to the bottom membrane of statocytes upon gravistimulation. Consequently, adk1-1 roots cannot develop a lateral auxin gradient across the cap, necessary for the curvature response. Interestingly, adk1-1 does not affect gravity-induced cytoplasmic alkalinization of the root statocytes, suggesting either that ADK1 functions between cytoplasmic alkalinization and PIN3 relocalization in a linear pathway or that the pH and PIN3-relocalization responses to gravistimulation belong to distinct branches of the pathway. Our data are consistent with a role for ADK and the S-adenosyl-L-methionine pathway in the control of root gravitropism and cap morphogenesis.  相似文献   

3.
Terfestatin A (TrfA), terphenyl-beta-glucoside, was isolated from Streptomyces sp. F40 in a forward screen for compounds that inhibit the expression of auxin-inducible genes in Arabidopsis (Arabidopsis thaliana). TrfA specifically and competitively inhibited the expression of primary auxin-inducible genes in Arabidopsis roots, but did not affect the expression of genes regulated by other plant hormones such as abscisic acid and cytokinin. TrfA also blocked the auxin-enhanced degradation of auxin/indole-3-acetic acid (Aux/IAA) repressor proteins without affecting the auxin-stimulated interaction between Aux/IAAs and the F-box protein TIR1. TrfA treatment antagonized auxin responses in roots, including primary root inhibition, lateral root initiation, root hair promotion, and root gravitropism, but had only limited effects on shoot auxin responses. Taken together, these results indicate that TrfA acts as a modulator of Aux/IAA stability and thus provides a new tool for dissecting auxin signaling.  相似文献   

4.
Polar auxin transport, mediated by two distinct plasma membrane-localized auxin influx and efflux carrier proteins/complexes, plays an important role in many plant growth and developmental processes including tropic responses to gravity and light, development of lateral roots and patterning in embryogenesis. We have previously shown that the Arabidopsis AGRAVITROPIC 1/PIN2 gene encodes an auxin efflux component regulating root gravitropism and basipetal auxin transport. However, the regulatory mechanism underlying the function of AGR1/PIN2 is largely unknown. Recently, protein phosphorylation and dephosphorylation mediated by protein kinases and phosphatases, respectively, have been implicated in regulating polar auxin transport and root gravitropism. Here, we examined the effects of chemical inhibitors of protein phosphatases on root gravitropism and basipetal auxin transport, as well as the expression pattern of AGR1/PIN2 gene and the localization of AGR1/PIN2 protein. We also examined the effects of inhibitors of vesicle trafficking and protein kinases. Our data suggest that protein phosphatases, sensitive to cantharidin and okadaic acid, are likely involved in regulating AGR1/PIN2-mediated root basipetal auxin transport and gravitropism, as well as auxin response in the root central elongation zone (CEZ). BFA-sensitive vesicle trafficking may be required for the cycling of AGR1/PIN2 between plasma membrane and the BFA compartment, but not for the AGR1/PIN2-mediated root basipetal auxin transport and auxin response in CEZ cells.  相似文献   

5.
向地性是决定植物根系空间构型的主要因素之一,对植物锚定和水分养分吸收至关重要。除了重力,根系向地性还受土壤环境因子影响。本文采用琼脂培养方法,研究了铵对拟南芥主根向地性反应的影响及相关作用途径。结果表明:短期内,不同浓度(NH4)2SO4均显著抑制主根向地性弯曲,但随着时间的延长,根尖向地性角度逐渐变小。而等(NH4)2SO4浓度的NaCl对主根向地性抑制效应较小,不同浓度的甘露醇不阻碍主根向地性弯曲。纽织化学染色结果显示铵处理12h以内,Col-0根尖没有淀粉体的快速降解过程,并且铵对淀粉体缺失突变体pgm—1主根向地性的影响同Col-0相似。铵处理部分恢复生长素转运载体突变体auxl-22和eir1-1主根向地性缺失。这些结果表明,铵对拟南芥主根向地性的影响独立于根尖淀粉体参与的重力感应途径。  相似文献   

6.
The plant hormone abscisic acid (ABA) plays a role in root gravitropism and has led to an intense debate over whether ABA acts similar to auxin by translating the gravitational signal into directional root growth. While tremendous advances have been made in the past two decades in establishing the role of auxin in root gravitropism, little progress has been made in characterizing the role of ABA in this response. In fact, roots of plants that have undetectable levels of ABA and that display a normal gravitropic response have raised some serious doubts about whether ABA plays any role in root gravitropism. Here, we show strong evidence that ABA plays a role opposite to that of auxin and that it is a negative regulator of the gravitropic response of Arabidopsis roots.  相似文献   

7.
Sites and regulation of auxin biosynthesis in Arabidopsis roots   总被引:1,自引:0,他引:1       下载免费PDF全文
Auxin has been shown to be important for many aspects of root development, including initiation and emergence of lateral roots, patterning of the root apical meristem, gravitropism, and root elongation. Auxin biosynthesis occurs in both aerial portions of the plant and in roots; thus, the auxin required for root development could come from either source, or both. To monitor putative internal sites of auxin synthesis in the root, a method for measuring indole-3-acetic acid (IAA) biosynthesis with tissue resolution was developed. We monitored IAA synthesis in 0.5- to 2-mm sections of Arabidopsis thaliana roots and were able to identify an important auxin source in the meristematic region of the primary root tip as well as in the tips of emerged lateral roots. Lower but significant synthesis capacity was observed in tissues upward from the tip, showing that the root contains multiple auxin sources. Root-localized IAA synthesis was diminished in a cyp79B2 cyp79B3 double knockout, suggesting an important role for Trp-dependent IAA synthesis pathways in the root. We present a model for how the primary root is supplied with auxin during early seedling development.  相似文献   

8.
Re-orientation of Arabidopsis seedlings induces a rapid, asymmetric release of the growth regulator auxin from gravity-sensing columella cells at the root apex. The resulting lateral auxin gradient is hypothesized to drive differential cell expansion in elongation-zone tissues. We mapped those root tissues that function to transport or respond to auxin during a gravitropic response. Targeted expression of the auxin influx facilitator AUX1 demonstrated that root gravitropism requires auxin to be transported via the lateral root cap to all elongating epidermal cells. A three-dimensional model of the root elongation zone predicted that AUX1 causes the majority of auxin to accumulate in the epidermis. Selectively disrupting the auxin responsiveness of expanding epidermal cells by expressing a mutant form of the AUX/IAA17 protein, axr3-1, abolished root gravitropism. We conclude that gravitropic curvature in Arabidopsis roots is primarily driven by the differential expansion of epidermal cells in response to an influx-carrier-dependent auxin gradient.  相似文献   

9.
Using an auxanometer and time-lapse cinematography we have studied the timing of abscisic acid (ABA) effects on elongation, gravitropic curvature, and hydrogen-ion efflux in several cultivars of maize (Zea mays L.). The effect of high concentrations (e.g. 0.1 mM) of ABA on root elongation is triphasic, including 1) a period of promotion lasting approximately 12 h, 2) a subsequent period of increasing inhibition lasting approximately 12h, and 3) gradual recovery to a rate within approximately 80% of the control rate. With lower concentrations of ABA (e.g. 0.1 μM) only the transient promotive phase is seen. Abscisic acid enhances ethylene biosynthesis in roots of maize but suppression of ethylene biosynthesis does not prevent the long-term inhibitory action of ABA on growth. Application of ABA (0.1 mM) to the upper surface of horizontally placed roots accelerates positive gravitropism. Application of ABA to the lower surface retards gravitropism and in some cases causes the roots to curve upward against the direction of gravity. These observations are consistent with our finding that the initial effect of ABA on root elongation is stimulatory. Since root gravitropism is rapid enough to be completed within the stimulatory phase of ABA action, the data argue against hypotheses of gravitropism based upon accumulation of ABA to inhibitory levels on the lower side of a hirizontal root.  相似文献   

10.
Roots display positive hydrotropism in response to moisture gradient. Hydrotropism regulates the directional growth by interaction with other growth movements. Using the seedlings of pea, cucumber, maize and wheat, we have revealed that the root cap perceives the moisture gradient and that auxin and calcium are involved in hydrotropism. However, molecular mechanisms for stimulus perception or signal transduction in hydrotropism are still remained unrevealed. To dissect the molecular mechanism underlying hydrotropism in seedling roots, we established a method for screening Arabidopsis mutants defective in root hydrotropism. Among about 20,000 M2 seedlings of Arabidopsis plants treated with EMS, we successfully obtained 12 mutants of which root hydrotropism was reduced to various extents. We named them root hydrotropism (rhy) and examined their gravitropism, phototropism, waving response and elongation growth as well as hydrotropism in roots. Roots of rhy1 mutant showed ahydrotropic response although the other responses and elongation growth of rhy1 mutant were normal. Roots of rhy2 and rhy3 mutants showed a reduced hydrotropism and abnormal responses in gravitropism, phototropism or waving pattern. Genetic analysis of the progeny produced by the backcross of rhy1 mutant to wild type suggested that rhy1 was a recessive mutation. We also examined the map position of the rhy1 locus.  相似文献   

11.
Gravity plays a fundamental role in plant growth and development, yet the molecular details of gravitropism is not fully understood. Here, we report the effects of PD98059, a specific inhibitor of mitogen-activated protein (MAP) kinase kinase, on the gravitropism of primary roots of maize. Unilateral application of PD98059 to horizontal roots led to different gravitropic growth. Placing PD98059-containing agar on the upper side of the root tips accelerated gravitropic curvature, whereas placing the agar on the lower side inhibited gravitropic curvature. However, no effect was detected when asymmetric application of PD98059 to vertical roots. Global application of maize primary root with PD98059 suppressed root gravitropism. Furthermore, the effects of H2O2 on horizontal root gravitropism and vertical root bending were compromised by pretreatment with PD98059. These results suggest an involvement of MAP kinase pathway(s) in gravitropism of maize roots.  相似文献   

12.
Lateral roots are crucial for the plasticity of root responses to environmental conditions in soil. The bacterivorous microfauna has been shown to increase root branching and to foster auxin producing soil bacteria. However, information on modifications of plant internal auxin content by soil bacteria and bacterivores is missing. Therefore, the effects of a rhizosphere bacterial community and a common soil amoeba (Acanthamoeba castellanii) on root branching and on auxin (indole-3-acetic acid) metabolism in Lepidium sativum and Arabidopsis thaliana were investigated. In a first experimental series, bacteria increased conjugated auxin concentrations in L. sativum shoots, but did not alter free bioactive auxin content nor root branching. In contrast, in presence of soil bacteria plus amoebae free auxin concentrations in shoots and root branching increased, demonstrating that effects of bacteria on auxin metabolism in plants were strongly modified by the bacterivorous amoebae. In a second experiment, A. thaliana reporter plants for auxin (DR5) and cytokinin (ARR5) responded similarly with increased root branching in the presence of amoebae. Surprisingly, in reporter plants cytokinin but not auxin responses were detectable, accompanied by higher soil nitrate concentrations in the presence of amoebae. Likely, increased nitrate concentrations in the rhizosphere led to an accumulation of cytokinin and interactions with free auxin in plants and finally to increased root growth in the presence of amoebae. Altogether, the results show that mutual control mechanisms exist between plant hormone metabolism and microbial signalling, and that effects on hormonal concentrations of plants by free-living bacteria are strongly influenced by bacterial grazers like amoebae.  相似文献   

13.
A root gravitropism mutant was isolated from the DuPont Arabidopsis thaliana T-DNA insertional mutagenesis collection. This mutant has reduced root gravitropism, hence the name rgrl. Roots of rgrl are shorter than those of wild-type, and they have reduced lateral root formation. In addition, roots of rgrl coil clockwise on inclined agar plates, unlike wild-type roots which grow in a wavy pattern. The rgrl mutant has increased resistance, as measured by root elongation, to exogenously applied auxins (6-fold to indole-3-acetic acid, 3-fold to 2,4-dichlorophenoxyacetic acid, and 2-fold to napthyleneacetic acid). It is also resistant to polar auxin transport inhibitors (2-fold to triiodobenzoic acid and 3- to 5-fold lo napthyleneacetic acid). The rgrl mutant does not appear to be resistant to other plant hormone classes. When grown in the presence of 10?2 M 2.4-dichlorophenoxyacetic acid, rgrl roots have fewer root hairs than wild type. All these rgrl phenotypes are Mendelian recessives. Complementation tests indicate that rgrl is not allelic to previously characterized agravitropic or auxin-resistant mutants. The rgrl locus was mapped using visible markers to 1.4 ± 0.6 map units from the CHI locus at 1–65.4. The rgrl mutation and the T-DNA cosegregate, suggesting that rgrl was caused by insertional gene inactivation.  相似文献   

14.
Growth and development of the axr1 mutants of Arabidopsis.   总被引:25,自引:5,他引:20       下载免费PDF全文
C Lincoln  J H Britton    M Estelle 《The Plant cell》1990,2(11):1071-1080
We have recovered eight new auxin-resistant lines of Arabidopsis that carry mutations in the AXR1 gene. These eight lines, together with the 12 lines described in a previous report, define at least five different axr1 alleles. All of the mutant lines have a similar phenotype. Defects include decreases in plant height, root gravitropism, hypocotyl elongation, and fertility. Mutant line axr1-3 is less resistant to auxin than the other mutant lines and has less severe morphological abnormalities. This correlation suggests that the morphological defects are a consequence of a defect in auxin action. To determine whether the altered morphology of mutant plants is associated with changes in cell size or tissue organization, tissue sections were examined using scanning electron microscopy. No clear differences in cell size were observed between wild-type and mutant tissues. However, the vascular bundles of mutant stems were found to be less well differentiated than those in wild-type stems. The auxin sensitivity of rosette-stage plants was determined by spraying plants with auxin solutions. Mutant rosettes were found to be significantly less sensitive to exogenously applied auxin than wild-type rosettes, indicating that the AXR1 gene functions in aerial portions of the plant. Our studies suggest that the AXR1 gene is required for auxin action in most, if not all, tissues of the plant and plays an important role in plant development. Linkage studies indicate that the gene is located on chromosome 1 approximately 2 centiMorgans from the closest restriction fragment length polymorphism.  相似文献   

15.
Polar transport of the plant hormone auxin controls many aspects of plant growth and development. A number of synthetic compounds have been shown to block the process of auxin transport by inhibition of the auxin efflux carrier complex. These synthetic auxin transport inhibitors may act by mimicking endogenous molecules. Flavonoids, a class of secondary plant metabolic compounds, have been suggested to be auxin transport inhibitors based on their in vitro activity. The hypothesis that flavonoids regulate auxin transport in vivo was tested in Arabidopsis by comparing wild-type (WT) and transparent testa (tt4) plants with a mutation in the gene encoding the first enzyme in flavonoid biosynthesis, chalcone synthase. In a comparison between tt4 and WT plants, phenotypic differences were observed, including three times as many secondary inflorescence stems, reduced plant height, decreased stem diameter, and increased secondary root development. Growth of WT Arabidopsis plants on naringenin, a biosynthetic precursor to those flavonoids with auxin transport inhibitor activity in vitro, leads to a reduction in root growth and gravitropism, similar to the effects of synthetic auxin transport inhibitors. Analyses of auxin transport in the inflorescence and hypocotyl of independent tt4 alleles indicate that auxin transport is elevated in plants with a tt4 mutation. In hypocotyls of tt4, this elevated transport is reversed when flavonoids are synthesized by growth of plants on the flavonoid precursor, naringenin. These results are consistent with a role for flavonoids as endogenous regulators of auxin transport.  相似文献   

16.
The plant root system is highly sensitive to nutrient availability and distribution in the soil. For instance, root elongation is inhibited when grown in high nitrate concentrations. To decipher the mechanism underlying the nitrate-induced inhibition of root elongation, the involvement of the plant hormone auxin in nitrate-dependent root elongation of maize was investigated. Root growth, nitrogen and nitrate concentrations, and indole-3-acetic acid (IAA) concentrations in roots and in phloem exudates of maize grown under varying nitrate concentrations were analyzed. Total N and nitrate concentrations in shoots and roots increased and elongation of primary, seminal and crown roots were inhibited with increasing external nitrate from 0.05 to 5 mM. High nitrate-inhibited root growth resulted primarily from the reduced cell elongation and not from changes in meristem length. IAA concentrations in phloem exudates reduced with higher nitrate supply. Inhibition of root growth by high nitrate was closely related to the reduction of IAA levels in roots, especially in the sections close to root tips. Exogenous NAA and IAA restored primary root growth in high nitrate concentrations. It is concluded that the inhibitory effect of high nitrate concentrations on root growth may be partly attributed to the decrease in auxin concentrations of roots.  相似文献   

17.
Low phosphorus availability stimulates root hair elongation in many plants, which may have adaptive significance in soil phosphorus acquisition. We investigated the effect of low phosphorus on the elongation of Arabidopsis thaliana root hairs. Arabidopsis thaliana plants were grown in plant culture containing high (1000 mmol m?3) or low (1 mmol m?3) phosphorus concentrations, and root hair elongation was analysed by image analysis. After 15d of growth, low-phosphorus plants developed root hairs averaging 0.9 mm in length while high-phosphorus plants of the same age developed root hairs averaging 0.3 mm in length. Increased root hair length in low-phosphorus plants was a result of both increased growth duration and increased growth rate. Root hair length decreased logarithmically in response to increasing phosphorus concentration. Local changes in phosphorus availability influenced root hair growth regardless of the phosphorus status of the plant. Low phosphorus stimulated root hair elongation in the hairless axr2 mutant, exogenously applied IAA stimulated root hair elongation in wild-type high-phosphorus plants and the auxin antagonist CM PA inhibited root hair elongation in low-phosphorus plants. These results indicate that auxin may be involved in the low-phosphorus response in root hairs.  相似文献   

18.
19.
Serotonin (5-hydroxytryptamine) is a well-known neurotransmitter in mammals and is widely distributed in plants. This compound is synthesized from tryptophan and shares structural similarity with IAA. To date, little is known about the morphological, physiological and molecular responses of plants to serotonin. In this study, we characterized the effects of serotonin on growth and development in Arabidopsis thaliana seedlings. Gas chromatography-mass spectrometry (GC-MS) analysis showed that plants are able to take up serotonin from the growth medium, which coincided with greatly stimulated lateral root development at concentrations from 10 to 160 μM. In contrast, higher doses of serotonin repressed lateral root growth, primary root growth and root hair development, but stimulated adventitious root formation. To investigate the role of serotonin in modulating auxin responses, we performed experiments using transgenic Arabidopsis lines expressing the auxin-responsive marker constructs DR5:uidA, BA3:uidA and HS::AXR3NT-GUS, as well as a variety of Arabidopsis mutants defective at the AUX1, AXR1, AXR2 and AXR4 auxin-related loci. We found that serotonin strongly inhibited both DR5:uidA and BA3:uidA gene expression in primary and adventitious roots and in lateral root primordia. This compound also abolished the effects of IAA or naphthaleneacetic acid on auxin-regulated developmental and genetic responses, indicating an anti-auxin activity in the plant. Mutant analysis further showed that lateral root induction elicited by serotonin was independent of the AUX1 and AXR4 loci but required AXR1 and AXR2. Our results show that serotonin regulates root development probably by acting as a natural auxin inhibitor.  相似文献   

20.
Artemisinin, an antimalarial secondary metabolite produced in Artemisia species, also has been recognized as an allelochemical that inhibits the growth of several plant species. However, the phytotoxicity mechanism of artemisinin is not exhaustively deciphered up to now. In this research, the effects of artemisinin on Arabidopsis thaliana root gravitropic curvature and development were characterized. Exogenously applied artemisinin disturb the root gravitropic responses, inhibited the elongation of primary and lateral roots and root hairs in a concentration-dependent fashion, and prevented the formation of lateral roots and root hairs. Moreover, the number of starch grain and the distribution range of auxin in the root tip was reduced by artemisinin, and the redistribution of auxin was less sensitive to gravity stimulus when treated with artemisinin than that of control. The expression of auxin transporter PIN2 was partially suppressed by artemisinin. Together, the results demonstrated that the effects of artemisinin on root gravitropism and root system development were largely dependent on the reduction of starch grain and auxin levels, as well as the disordered lateral auxin redistribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号