首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of host plant on population dynamics of an invasive pest, Tuta absoluta was studied on three economically important solanaceous crops. Experiments were conducted in laboratory (29 ± 0.5°C, 75 ± 5% RH and a photoperiod of 14:10 hr [L:D]) using tomato (Solanum lycopersicum L.), potato (Solanum tuberosum L.) and eggplant (Solanum melongena L.). Results indicated that intrinsic rate of increase (r), finite rate of increase (λ) and net reproductive rate (R0) were higher, and mean generation time (T) was the shortest on tomato. Results suggested that T. absoluta developed on all the three plants, and tomato plant was most preferred one. Results suggested that T. absoluta has a potential to become a serious pest on potato and even on eggplant under favourable conditions. We used the life tables of 0.025th and 0.975th percentiles of bootstraps to project the uncertainty of population growth, a new concept.  相似文献   

2.
Tagged Colorado potato beetles (CPB), Leptinotarsa decemlineata (Say), were released on potato plants, Solanum tuberosum L., and tracked using a portable harmonic radar system to determine the impact of host plant spatial distribution on the tendency of the pest to remain on the colonized host plant or patch. Results confirmed the long residency time on the host plant and showed that close connection of the plant to neighboring plants hastened dispersal between plants. Tracking walking CPB for over 6 h in small potato plots revealed that all types of mixed borders tested (potato/bare ground, potato/timothy and potato/woodland) acted as a strong barrier and retained beetles within the patch. In another experiment in potato patches surrounded by bare ground borders, tracked walking CPB displayed similar behaviour for up to four days. The distribution of turning angles in the CPB walking paths was not uniform and corresponded to beetles following the edge rows of potato patches in response to the crop border barrier or reversing their direction as they reached the end of a row and therefore a border. Patch size had no or little effect on beetle retention in the patch. The relative distribution of counts of tagged beetles detected among small (16 m2), medium (64 m2) and large size (256 m2) patches of potato four days after initial release remained similar to that of numbers released. Even though mixed crop borders were a strong barrier to walking CPB emigrating from potato patches, the departure rate of beetles over time was high. Results suggest that the effect of mixed borders is largely limited to dispersal by walking and does not apply to beetles leaving host patches by flight. The manipulation of crop borders and patch size seem to have limited potential for the management of CPB emigrating from potato fields.  相似文献   

3.
The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), is an infamous invasive species worldwide that aggressively attacks potato and other Solanaceae crops. CPB was first found in China in 1993 and has since spread across 2.77 × 105 km2 in Xinjiang Uygur Autonomous Region. To better understand genetic variation and migration patterns, we used seven polymorphic microsatellite loci to elucidate the genetic relationships and gene flow among 10 CPB populations across Xinjiang. (i) Overall low levels of genetic diversity were detected on the entire population in Xinjiang but most of the diversity was retained among populations during invasion. (ii) The mean pairwise FST was low (0.071 ± 0.043) among populations. The genetic differentiation was little (pairwise FST 0.038 ± 0.016) between the five interior populations (Wusu, Urumqi, Jimsar, Qitai and Mulei) and Tacheng population. The six populations might come from the same genetic group via Bayesian clustering and were closely related on a neighbor‐joining tree. Combining the history data, the five interior populations may have originated from Tacheng. (iii) Gene flow was frequent, especially among the five interior populations. Individuals from the interior populations could be assigned to Tacheng at higher probabilities (means 0.518 ± 0.127) than vice versa (means 0.328 ± 0.074), suggesting that the beetle population has spread from the border to the interior in Xinjiang.  相似文献   

4.
不同寄主植物对马铃薯甲虫的引诱作用   总被引:1,自引:0,他引:1  
随着马铃薯甲虫不断扩展其分布范围,其对寄主的适应性也在发生变化。在我国,马铃薯甲虫的主要寄主植物是马铃薯、茄子、番茄和天仙子。为进一步明确马铃薯甲虫对不同寄主植物的嗜食程度,研究了以上4种寄主植物对马铃薯甲虫的引诱作用,以及取食量的影响,同时进行了田间寄主选择性的调查。选择性试验结果表明:不同寄主植物对马铃薯甲虫的引诱作用差异显著,其中马铃薯、天仙子引诱作用显著高于茄子和番茄;取食量研究结果表明:马铃薯甲虫各龄期对不同寄主24 h取食量的大小依次为:马铃薯>茄子>天仙子>番茄;1—2龄幼虫取食量小,3—4龄幼虫及成虫暴食寄主叶片,是马铃薯甲虫造成危害的主要阶段。  相似文献   

5.
The Andean potato tuber moth, Symmetrischema tangolias (Gyen) [Lepidoptera, Gelechiidae], is an economically important pest of potato (Solanum tuberosum L.) in the mid‐elevated Andean region and an invasive pest of partially global importance. Determination of the pest's population life table parameters is essential for understanding population development and growth under a variety of climates and as part of a pest risk analysis. The development, mortality and reproduction were studied in two pest populations (from Peru and Ecuador) in which cohorts of each life stage were exposed to different constant temperatures ranging from 10°C to 28°C. Using the Insect Life Cycle Modeling software, nonlinear equations were fitted to the data and an overall phenology model established to simulate life table parameters based on temperature. The temperature‐dependent development curve was statistically well described for eggs by Ratkowsky's model and for larvae and pupae by Taylor's model. Variability in development time among individuals independent of temperature was significantly described by a log‐logistic model. Temperature effects on immature mortality were described using different nonlinear models. Optimal temperature for survival was between 14° and 17°C. Temperature effects on adult senescence and oviposition time were described by simple exponential models; within‐group variability was described by a Weibull distribution function. Fecundity per female due to temperature followed a nonlinear model indicating maximum reproduction at ~17°C. The established model revealed good convergence with historical life tables established at fluctuating temperatures. The results confirm that S. tangolias is more adapted to cooler temperature than the common potato tuber moth, Phthorimaea operculella (Zeller). S. tangolias develops at temperatures within the range of 8–28.8°C with a maximum finite rate of population increase (=1.053) at 21°C. The established process‐based physiological model can be used globally to simulate life table parameters for Stangolias based on temperature and should prove helpful for evaluating the potential establishment risk and in adjusting pest management programmes.  相似文献   

6.
7.
Abstract The potato tuberworm, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), is the most destructive pest of potato, Solanum tuberosum L. (Solanaceae), in tropical and subtropical regions in both field and storeroom situations. The modeling of temperature‐dependent development can be useful in forecasting occurrence and population dynamics of the pests. Published developmental parameters for this pest vary greatly for many reasons. We determined temperature‐dependent development of P. operculella at seven constant temperatures (16, 20, 24, 28, 32, 34 and 36 °C). Developmental period of whole immature stage (egg to the end of the pupal stage) varied from 75.5 days at 16 °C to 17 days at 32 °C. The population failed to survive at 36 °C. The observed data was modeled to determine mathematical functions for simulating P. operculella development in each stage of development and overall. Two linear models, ordinary linear regression and the Ikemoto linear model were used to describe the relationship between temperature and development rate of the different stages of P. operculella and estimating the thermal constant and lower temperature threshold. The lower temperature threshold (t) and thermal constant (k) of whole immature stage were estimated to be 11.6 °C and 338.5 DD by Ikemoto linear model, and the estimated parameters were not substantially different with those estimated by ordinary linear models. Different models provided a better fit to the various developmental stages. Of the eleven nonlinear models fitted, the Beriere‐1, Logan‐6 and Lactin‐1 model was found to be the best for modeling development rate of egg, larva and pupa of P. operculella, respectively. Phenological models based on these findings can be part of a decision‐support tool to improve the efficiency of pest management programs.  相似文献   

8.
Natural populations of Bactericera cockerelli (Sulc) (Hemiptera: Triozidae), also known as tomato/potato psyllid, were marked in potato [Solanum tuberosum L. (Solanaceae)] crops using Bacillus thuringiensis Berliner (Bt) to investigate the impact of dispersal on crop infestation and management of potential insecticide resistance in New Zealand. The technique was adapted from previous studies that used conventional spray applications of Bt to mark Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), and identified marked individuals with selective microbiological assays and identification of characteristic crystal inclusions. Initially, marking rates of B. cockerelli were improved by using ultra‐low volume applications of undiluted Bt, but this result was not consistent. Several other pests and natural enemies were also marked. In mark‐capture studies, marked B. cockerelli were captured over 3 days on yellow sticky traps in small trap plots of potatoes at 60, 120, 180, 250, and 350 m from the sprayed crop. Bactericera cockerelli flight activity occurred throughout daylight hours with evidence of bimodal diurnal peaks. Significantly greater numbers of B. cockerelli were captured in downwind traps. The combined dispersal curve derived from two mark‐capture experiments estimated a mean dispersal distance for B. cockerelli of 100 m in 3 days and indicated that 10% of the population dispersed further than ca. 250 m. Over the period of a growing season, this level of dispersal suggests that B. cockerelli can disperse throughout a vegetable‐growing region, with implications for crop infestation and management of potential insecticide resistance.  相似文献   

9.
Viral diseases non-persistently transmitted by aphids are of great economic importance in several annual crops. Transmission efficiency of these non-persistent phytoviruses is dependant on vector efficiency (i.e. vector intrinsic ability to transmit the virus) but also on the vector activity that implies the early steps of aphid host plant selection process (i.e. brief intracellular stylet punctures after landing) and to their interplant movement ability. In Europe, Macrosiphum euphorbiae (Thomas 1878) is considered as one of the most serious virus vectors on potato (Solanum tuberosum L. 1753). Nevertheless, several alate aphid species that do not colonise potato plants are trapped in potato crops. Therefore, we investigated, through laboratory experiments, vector activity of one potato colonising aphid, M. euphorbiae, and two non-colonising potato aphids, the bird cherry-oat aphid Rhopalosiphum padi (L. 1758) and the pea aphid Acyrthosiphon pisum (Harris 1776). A settling experiment was used to evaluate dispersal activity, and the electrical penetration graph (EPG) technique was used to investigate probing activity on potato plants. Results showed that M. euphorbiae exhibited a better vector activity than other two aphid species in terms of landing and probing. By contrast, interplant movements were only recorded on non-colonising aphids, suggesting a better vector activity than M. euphorbiae in terms of locomotive behaviour. These data confirm the involvement of A. pisum and R. padi in the spread of non-persistent viruses.  相似文献   

10.
Landscape structure, which can be manipulated in agricultural landscapes through crop rotation and modification of field edge habitats, can have important effects on connectivity among local populations of insects. Though crop rotation is known to influence the abundance of Colorado potato beetle (CPB; Leptinotarsa decemlineata Say) in potato (Solanum tuberosum L.) fields each year, whether crop rotation and intervening edge habitat also affect genetic variation among populations is unknown. We investigated the role of landscape configuration and composition in shaping patterns of genetic variation in CPB populations in the Columbia Basin of Oregon and Washington, and the Central Sands of Wisconsin, USA. We compared landscape structure and its potential suitability for dispersal, tested for effects of specific land cover types on genetic differentiation among CPB populations, and examined the relationship between crop rotation distances and genetic diversity. We found higher genetic differentiation between populations separated by low potato land cover, and lower genetic diversity in populations occupying areas with greater crop rotation distances. Importantly, these relationships were only observed in the Columbia Basin, and no other land cover types influenced CPB genetic variation. The lack of signal in Wisconsin may arise as a consequence of greater effective population size and less pronounced genetic drift. Our results suggest that the degree to which host plant land cover connectivity affects CPB genetic variation depends on population size and that power to detect landscape effects on genetic differentiation might be reduced in agricultural insect pest systems.  相似文献   

11.
Summary Transformation of potato (Solanum tuberosum L.) with cysteine proteinase inhibitor (PI) genes represents a potential way of controlling the major insect pest Colorado potato beetle (CPB; Leptinotarsa decemlineata Say). The present study describes the Agrobacterium-mediated transformation of potato (cv. Kennebec) with an oryzacystatin I (OCI) cDNA clone linked to a CaMV 35S promoter. The transgenic plants accumulated active OCI in potato leaves, as demonstrated by the papain-inhibitory activity of transgenic plant leaf extracts. In addition to their anti-papain activity, the extracts also caused a partial but significant inhibition of CPB digestive proteinases, similar to that observed with pure inhibitors. Recombinant OCI did not alter the activity of the major potato leaf endogenous proteinases, which seemed to be of the serine-type. Therefore we suggest that the OCI cDNA can be used for the production of CPB-resistant transgenic potato plants without interfering with endogenous proteinases of these plants.Abbreviations CPB Colorado potato beetle - E-64 trans-epoxy-succinyl-L-leucylamido (4-guanidino) butane - OCI oryzacystatin I - PI proteinase inhibitor - PMSF phenylmethylsulfonyl fluoride  相似文献   

12.
The potato cyst nematodes Globodera pallida and G. rostochiensis are economically important plant pathogens causing losses to UK potato harvests estimated at £50 m/ year. Implications of climate change on their future pest status have not been fully considered. Here, we report growth of female G. pallida and G. rostochiensis over the range 15 to 25°C. Females per plant and their fecundity declined progressively with temperatures above 17.5°C for G. pallida, whilst females per plant were optimal between 17.5 and 22.5°C for G. rostochiensis. Relative reproductive success with temperature was confirmed on two potato cultivars infected with either species at 15, 22.5 and 25°C. The reduced reproductive success of G. pallida at 22.5°C relative to 15°C was also recorded for a further seven host cultivars studied. The differences in optimal temperatures for reproductive success may relate to known differences in the altitude of their regions of origin in the Andes. Exposure of G. pallida to a diurnal temperature stress for one week during female growth significantly suppressed subsequent growth for one week at 17.5°C but had no effect on G. rostochiensis. However, after two weeks of recovery, female size was not significantly different from that for the control treatment. Future soil temperatures were simulated for medium‐ and high‐emission scenarios and combined with nematode growth data to project future implications of climate change for the two species. Increased soil temperatures associated with climate change may reduce the pest status of G. pallida but benefit G. rostochiensis especially in the southern United Kingdom. We conclude that plant breeders may be able to exploit the thermal limits of G. pallida by developing potato cultivars able to grow under future warm summer conditions. Existing widely deployed resistance to G. rostochiensis is an important characteristic to retain for new potato cultivars.  相似文献   

13.
为明确降水在中国新疆地区对马铃薯甲虫分布的影响,揭示制约马铃薯甲虫分布扩散的关键环境因子,为马铃薯甲虫的持续防控和综合治理提供理论依据。该研究结合新疆历史降水数据,对马铃薯甲虫现有分布区内的降水时空格局展开分析,比较了马铃薯甲虫危害程度与降水时空格局的关系。结果表明:马铃薯甲虫现主要分布于新疆年降水量在150 mm以上地区,早期定殖的地区降水量大于后期定殖区,其扩散方向为自西向东,同时年降水量也逐渐减少。马铃薯甲虫危害程度也随着经度增加而递减,早期发现马铃薯甲虫的地区受危害程度较重。降水量减少导致的水分缺乏对马铃薯甲虫的分布扩散具有一定的制约作用。  相似文献   

14.
Eggplant Solanum melongena L., is often colonized by two early season insect defoliators. The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), and flea beetles Epitrix spp., emerge from their overwintering sites in early spring and seek out emerging host plants such as eggplant. During the 2009 and 2010 growing season, field studies were conducted to investigate the impact of inter‐planting eggplant into a crimson clover (CC), Trifolium incarnatum L., winter cover crop on populations of flea beetles, CPB and their associated arthropod predators. The experiment consisted also of two levels of insecticide usage such as an application of azadirachtins plus pyrethrins followed by several applications of spinosad or no insecticide sprays as subplot treatments. During both study years, significantly fewer (adults, larvae and egg masses) were found on eggplant inter‐planted into CC than in bare‐ground (BG) eggplant plots. Although flea beetle abundance was greater in BG eggplant during 2010, they appeared to be less influenced by the presence of CC than were CPB. Additionally, there was no apparent impact of insecticide treatment on CPB populations on eggplant inter‐planted into CC. However, there was a decline in CPB following treatments with insecticides in BG eggplant plots. This suggests that a winter cover crop such as CC can be used to help manage CPB in eggplant, however, using this tactic in tandem with insecticide sprays may not result in greater CPB management.  相似文献   

15.
Determining soil carbon (C) responses to rising temperature is critical for projections of the feedbacks between terrestrial ecosystems, C cycle, and climate change. However, the direction and magnitude of this feedback remain highly uncertain due largely to our limited understanding of the spatial heterogeneity of soil C decomposition and its temperature sensitivity. Here we quantified C decomposition and its response to temperature change with an incubation study of soils from 203 sites across tropical to boreal forests in China spanning a wide range of latitudes (18°16′ to 51°37′N) and longitudes (81°01′ to 129°28′E). Mean annual temperature (MAT) and mean annual precipitation primarily explained the biogeographic variation in the decomposition rate and temperature sensitivity of soils: soil C decomposition rate decreased from warm and wet forests to cold and dry forests, while Q10‐MAT (standardized to the MAT of each site) values displayed the opposite pattern. In contrast, biological factors (i.e. plant productivity and soil bacterial diversity) and soil factors (e.g. clay, pH, and C availability of microbial biomass C and dissolved organic C) played relatively small roles in the biogeographic patterns. Moreover, no significant relationship was found between Q10‐MAT and soil C quality, challenging the current C quality–temperature hypothesis. Using a single, fixed Q10‐MAT value (the mean across all forests), as is usually done in model predictions, would bias the estimated soil CO2 emissions at a temperature increase of 3.0°C. This would lead to overestimation of emissions in warm biomes, underestimation in cold biomes, and likely significant overestimation of overall C release from soil to the atmosphere. Our results highlight that climate‐related biogeographic variation in soil C responses to temperature needs to be included in next‐generation C cycle models to improve predictions of C‐climate feedbacks.  相似文献   

16.
Considered responsible for one million deaths in Ireland and widespread famine in the European continent during the 1840s, late blight, caused by Phytophthora infestans, remains the most devastating disease of potato (Solanum tuberosum L.) with about 15%–30% annual yield loss in sub‐Saharan Africa, affecting mainly smallholder farmers. We show here that the transfer of three resistance (R) genes from wild relatives [RB, Rpi‐blb2 from Solanum bulbocastanum and Rpi‐vnt1.1 from S. venturii] into potato provided complete resistance in the field over several seasons. We observed that the stacking of the three R genes produced a high frequency of transgenic events with resistance to late blight. In the field, 13 resistant transgenic events with the 3R‐gene stack from the potato varieties ‘Desiree’ and ‘Victoria’ grew normally without showing pathogen damage and without any fungicide spray, whereas their non‐transgenic equivalent varieties were rapidly killed. Characteristics of the local pathogen population suggest that the resistance to late blight may be long‐lasting because it has low diversity, and essentially consists of the single lineage, 2_A1, which expresses the cognate avirulence effector genes. Yields of two transgenic events from ‘Desiree’ and ‘Victoria’ grown without fungicide to reflect small‐scale farm holders were estimated to be 29 and 45 t/ha respectively. This represents a three to four‐fold increase over the national average. Thus, these late blight resistant potato varieties, which are the farmers’ preferred varieties, could be rapidly adopted and bring significant income to smallholder farmers in sub‐Saharan Africa.  相似文献   

17.
The walking and flight dispersal of marked overwintered and summer Colorado potato beetles (CPB), Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), released in field box‐plots was monitored simultaneously in six habitats over a period of 4 days. The emigration out of plots by walking beetles was calculated from the catch in linear pitfall traps completely surrounding each box‐plot and emigration flight was estimated from the number of beetles missing from the plot or captured by the trap. Overwintered beetles dispersed sooner after release than summer beetles. Overall, the mean number of beetles retained by the habitat was significantly higher in the host habitat (potato) than in any non‐host habitat tested (soybean, pasture, bare ground, water, woodland). Unexpectedly, there was no or little difference in overall beetle retention between non‐host habitats except for higher retention in the water habitat. No difference in the ratio of flight over walking could be detected by the study between overwintered and summer CPB except in the water and woodland habitats. Twenty‐four hours after release, the highest ratios were obtained in the water and woodland habitats and the lowest in the bare‐ground habitat, but ratios were similar for all habitats, except water, after 96 h. As a population, under these experimental conditions, 96 h after release, it seems that CPB displayed a slight preference for flight over walking, with walking as a default mode. A fed and starved pre‐release treatment had no effect on dispersal rates or mode of dispersal. Essentially, our results showed that over a 96‐h period, northeastern North American CPB emigrated at similar rates from the various non‐host habitats encountered, except for water, using walking as much as flight. The host habitat retained CPB significantly longer than non‐host habitats but with a mode of dispersal ratio similar to that in non‐host habitats. The impact on dispersal of the various habitats encountered by CPB in the agro‐ecosystem was less important than expected suggesting that the interaction of environmental parameters is likely to have the most significant impact in determining dispersal rates and dispersal modes.  相似文献   

18.
《Journal of Asia》2014,17(3):213-220
The Colorado potato beetle (CPB, Leptinotarsa decemlineata Say), is a major pest of potatoes in Iran and many other parts of the world. Injury is caused when adults and larvae feed on the foliage and stems of potato plants, resulting in poor yields and/or plant death. Adult beetles can also vector plant diseases. Historically, the CPB been controlled using different insecticides, but it is currently resistant to nearly all classes of insecticides and remains a serious pest in many parts of the world. All of the resistance mechanisms reported in insects have been demonstrated in CPB. L. decemlineata invaded Iran in the early 1980s, probably through the importation of infested potatoes. It has caused significant damage to potato crops in affected areas, and it accordingly remains a major threat to Iranian potato production. Regrettably, no IPM programs have been developed for managing CPB infestations in Iran. Furthermore, there are no organized CPB resistance monitoring programs in Iran, and the recommended insecticides for CPB control, endosulfan and phosalon, have not changed in over 22 years. Anecdotal evidence from local farmers suggests a reduction in the efficacy of control of CPB by commonly used insecticides, probably due to the reduced susceptibility to these insecticides. Given the economic significance of L. decemlineata infestations, the increasing prevalence of resistance in this species, the rate of spread of infestations, and the extent of the area infested, there is an urgent need to develop effective and sustainable integrated pest management programs for CPB in Iran.  相似文献   

19.
Knowledge concerning the effects of several abiotic factors on the physiology of carrageenophytes is essential both in ecological and economic standpoints, to ensure their sufficient supply for the sustainability of seaweed‐based industries. This paper presents the photosynthetic characteristics of farmed carrageenophytes, E ucheuma denticulatum and K appaphycus alvarezii [brown (BRN) and green (GRN) color morphotypes] from Sulawesi Utara (Sulawesi Island), Indonesia, as determined by examining their photosynthetic response across different temperatures and irradiances using dissolved oxygen measurements and pulse‐amplitude modulated fluorometer. Net photosynthesis–irradiance ( P E ) curves at 26°C revealed that net photosynthetic rates of the three seaweeds gradually increased until the estimated saturation irradiances ( E k ) of 58 μmol photons m? 2 s?1 (49–68 μmol photons m? 2 s?1, 95% Bayesian prediction intervals; BPI) for E . denticulatum, and 158 and 143 μmol photons m? 2 s?1 (134–185 and 99–203 μmol photons m? 2 s?1, 95% BPI) for BRN and GRN K . alvarezii, respectively; and that no photoinhibition was observed at the highest irradiance of 1000 μmol photons m? 2 s?1. All seaweed samples exhibited photosynthetic tolerance to high PAR as shown by their recovery in maximum quantum yields (Fv / Fm ) following chronic exposures; as well as tolerance over a broad range of temperature, which is from 19 to 33°C for E . denticulatum, 20–29°C for BRN K . alvarezii, and 17–32°C for GRN K . alvarezii. Temperature responses of these carrageenophytes indicated that they were well‐adapted to the annual seawater temperatures in the cultivation site; however, they are also likely close to threshold levels for thermal inhibition, given the decline in Fv / Fm above 30°C.  相似文献   

20.
Eggplant mosaic virus, and its relationship to Andean potato latent virus   总被引:1,自引:0,他引:1  
Eggplant mosaic virus (EMV), obtained from Solanum melongena L. from Trinidad, is readily transmitted by inoculation of sap to several solanaceous and a few non-solanaceous plant species. Purified preparations of EMV contain isometric particles 30 nm in diameter, and with sedimentation co efficients of either 111 or 53 S. The particles have thirty-two major morphological subunits. EMV is closely serologically related to Andean potato latent virus and has a similar host range, but is more virulent. Also, whereas EMV accumulates fastest in Nicotiana clevelandii leaves at 20–24 °C, Andean potato latent virus accumulates fastest at 15 °C, and fails to attain a serologically detectable concentration at 24 °C. A few symptomatologically or serologically distinguishable strains of EMV were obtained. EMV has properties typical of viruses of the Andean potato latent subgroup of the turnip yellow mosaic group of viruses, and its present cryptogram is */*:*/*:S/S:S/Cl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号