首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Middle Devonian conodonts from the Si Phai section in NE Vietnam are described. The section ranges from the Middle Devonian ensensis to timorensis conodont zones to the Late Devonian rhomboidea conodont Zone. A rich overall assemblage is described, including 27 taxa of species or subspecies rank and 11 taxa described in an open nomenclature. Among the dominant Polygnathus forms, four new taxa are described: Polygnathus linguiformis saharicus subsp. nov., Polygnathus linguiformis vietnamicus subsp. nov., Polygnathus rhenanus siphai subsp. nov., and Polygnathus xylus bacbo subsp. nov. Conodont assemblages are attributed to polygnathid, polygnathid-klapperinid, and klapperinid conodont biofacies representing hemipelagic to pelagic environments. The klapperinid biofacies, unreported in the previous literature, are here attributed to offshore areas of the external shelf. The taxonomic compositions of the studied conodont assemblages, as well as their CAI characteristics (CAI 4–5), suggest a palaeogeographic affinity of the studied strata to the Chinese Devonian Guangxi Basin, and the South China Terrane in general. Furthermore, the conodont biofacies and the palaeogeographic distribution of the fauna are discussed.  相似文献   

2.
Summary At the Devonian/Carboniferous boundary, major climatic and oceanographic changes influenced sedimentation on carbonate platforms and in peri-platfrom asreas. Three deep-water carbonate successions in Moravia, which were selected to represent different paleotectonic settings, have been studied with the aim of testing the influence of eustatic, climatic and tectonic controls on sedimentation and conodont paleoecology and taphonomy. On the slopes of the wide carbonate platforms of the Moravian Karst Development (Lesní lom and Grygov sections), an exemplary highstand shedding systems developed in the upper Famennian (expansa Zone), marked by a pronounced thickness of their respective calciturbidite successions and an abundance of shallow-water skeletal grains.Palamatolepis— andBispathodus-dominated conodont assemblages contain an admixture ofPolygnathus representing a transported, near-shore component. The eustatic sea-level fall in the praesulcata Zone and the lowstand conditions at the D/C boundary resulted in a decline of carbonate platform production and condensed deposition or nondeposition. In the Lesní lom section, a condensed sequence of turrbiditic calcarenites and shales (Middle praesulcata—lowermost sulcata Zone) was followed by lime mud calciturbidites (sulcata and duplicata Zones). In the conodont assemblages, the first event in the Lower praesulcata Zone was associated with the reduction of ‘mesopelagic’Palmatopic and a bloom of epipelagicPolygnathus communis. The second event in the Middle praesulcata Zone corresponds to the onset of polygnathidprotogranthodid biofacies, indicating a carbonate slope environment. In the Grygov section, a pronounced thickening and upward-coarsening succession of tubiditic calcilutites through calcarenites and intraclast breccias, with poor palmatolepid-bispathodid connodont assemblages (expansa Zone), indicates a progradation of the calciturbidite system associated with sea-level highstand. After a break in sedimentation, covering the interval from the Lower praseulcata to the base of Lower crenulata Zone, thick-bedded, fine-grained calciturbidites were deposited in the Lower crenulata Zone, and are associated with poor, mixed assemblages where siphonodellids and polygnathids predominate. At the isosticha-Upper crenulata/Lower typicus boundary, coasre grained, turbiditic calcarenites and breccias rich in clastic quartz grains and mixed conodont assemblages with reworked Frasnian and Famennian conodonts indicate a deep erosion of the source area, presumably due totectonic uplift (relative lowstand). In the Jesenec section, on the flanks of the volcanic seamount (the Drahany Development), a deep-water Upper Famennian condensed succession of calciturbidites and presumably winnowed pelagic limestones is marked by conodont assemblages of palmatolepid-bispathodid biofacies. More proximal calciturbidites with mixed deep-water and shallowwater conodonts prograde at the top of the Upper Famennian succession (Middle to Upper expansa Zone). A striking hiatus, covering the interval from the Early preaesulcata to the base of Lower crenulata Zone, resulted from extreme condensation and submarine bottom current erosion due to sea-level lowstand in the late Famennian and early Tournaisian. The renewed middle Tournaisian calciturbidite sedimentation with strong evidence of erosion at the source area indicates global eustatic rise and tectonic uplift of the Drahany Development seamounts (relative lowstand). The earlier occurrence of the uplift in the Jesenec area, relative to the Grygov section, shows the advance of tectonic processes over time in the Moravian-Silesian basin (orogenic polarity) as a consequence of Variscan orogenic movements.  相似文献   

3.
《Palaeoworld》2021,30(4):677-688
The Hongguleleng Formation, the highest and most important Devonian marine carbonate horizon in western Junggar, contains an endemic shallow-water IcriodusPolygnathus conodont fauna with rare palmatolepids and other genera. The conodont faunas from the Bulongguoer and the Wulankeshun sections are similar, with high abundance (about 40%) of endemic taxa (13 taxa), indicating isolation of the Junggar Basin during early Famennian. Non-endemic species in the faunas suggest that the Lower Member of the Hongguleleng Formation is assignable to the Pa. rhomboidea Zone to the Pa. marginifera marginifera Zone of early Famennian, not including the Frasnian–Famennian boundary. The Upper Member may be of late Famennian–early Tournaisian in age on the basis of our preliminary faunal analysis.  相似文献   

4.
Cluster analysis of conodont faunas from each of 17 Lower‐lower Upper Devonian zones and subzones (data as reported by Klapper and Johnson, 1980) reveal changing patterns of provinciality.

Provinciality, expressed by a differentiation into western Laurussian and proto‐Tethyan biogeographic regions, is moderate in the lower Lochkovian but is low or absent in the upper Lochkovian‐lower Pragian. Provincialism returns in the Pragian and reaches its maximum development during the Emsian. Most Australian faunas are distinct from those of western Laurussia and the proto‐Tethys. Conodont faunas from suspect terranes of western North America display no unusual biogeographic affinities. Provincialism declines during the Eifelian and is only weakly developed in Givetian‐lower Frasnian faunas.

Changing global sea level during the Devonian may explain the development of Devonian conodont provinciality. As proposed by Klapper and Johnson (1980), low provinciality is associated with low stands of sea level. Endemic faunas develop in isolated epeiric seas during intermediate stages of sea level rise. High stands of sea level ultimately drown barriers to faunal exchange and prompt a return to low provinciality conditions.  相似文献   

5.
Summary Compositional variations and grain-size properties of both carbonate constituents and conodonts as an alternative component group were used for interpreting the processes governing the deposition of upper Famennian and middle Tournaisian calciturbidites in Moravia, Czech Republic. Both the composition and grain-size properties of conodont element associations showed to be markedly dependant on facies type of their host sediment. Upper Devonian calciturbidite successions deposited on flanks of wide, Moravian-Silesian carbonate platform are composed mainly of echinoderm-and peloid-rich wacke/packstones and intraclastic float/rudstones (fine-grained calciturbidites, “normal” calciturbidites with Tab Bouma sequences, debris-flow breccias) with abundance of shelf-and shelf margin conodont taxa and epipelagic and “mesopelagic” conodonts. Upper Devonian calciturbidites deposited on slopes of volcanic sea-mounts are composed of echinoderm-and peloid-rich wacke/packstones and float/rudstones with increased proportion of intraclasts and volcanigenic lithoclasts (fine-grained calciturbidites, normal calciturbidites), yeilding abundant conodont associations with higher proportion of “mesopelagic” taxa compared to the platform-flank examples. Middle Tournaisian calciturbidite succession composed of crinoid-, peloid-, intraclast-and lithoclast-rich lime mudstones, wacke/packstones and float/rudstones (normal calciturbidites and debris-flow breccias) yielded conodont element associations rich in shelt-and shelf-margin taxa, “mesopelagic” conodonts and reworked Middle-and Upper Devonian conodonts. In general, the ratio of shelf-and shelf margin conodont taxa to “mesopelagic” taxa is distinctly lower in finegrained calciturbidites than it is in normal calciturbidites and debris-flow breccias. Grain-size properties (mean grain size and sorting) and percentage of fragmented conodont elements, too, are markedly dependant on the facies type: in fine-grained calciturbidites the values of mean grain-size and fragmentation are low and the sorting is good to very good whereas in normal calciturbidites and debris-flow breccias the values of mean grain-size and fragmentation are distinctly higher and the sorting is poorer. The interdependence of facies type and composition and grain-size properties of conodont element associations in gravity-flow deposits is explained as resultant from hydrodynamic sorting during turbidity current flow and final deposition of the bed. Compositional variations observed in our sections may thus be attributed to facies variability (coarsening-and thickening-upward trends) rather than to sea-level fluctuations (highstand shedding of carbonate platforms). On the other hand, significant enrichment in reworked conodont taxa in middle Tournaisian normal calciturbidites compared to scarcity and/or absence of such conodonts in essentially identical facies of upper Famennian age indicate sea-level to be the major control governing such compositional variations, with low relative sea-level stand in middle Tournaisian and high relative sea-level stand in upper Famennian. Thorough analysis of conodont evolution, palaeoecology and taphonomy, with emphasis on understanding the processes of deposition of their host rock, are recommended for any biostratigraphic and biofacies study to be done in carbonate sediments deposited under strong hydrodynamic regimes, such as calciturbidites, temperstites, debris-flow deposits, shelf-edge oolitic sands, tidal-channel facies etc.  相似文献   

6.
Trends in generic diversity of successive conodont communities are analysed in sections of different environmental settings across the Frasnian–Famennian (F–F) boundary in the stratotype area, Montagne Noire, France. The evolution of conodont biofacies and abundances matches the overall pattern already observed in many sections elsewhere in the world and supports the interpretation of an important eustatic sea-level fall during the Upper Kellwasser event. The change from late Frasnian deep-water palmatolepid–polygnathid biofacies to shallower-water polygnathid-icriodid biofacies during the Upper Kellwasser event occurred in all sections studied. The shallowing trend culminated at the end of the Kellwasser Event as indicated by the substantial increase of formerly poorly represented icriodids, whereas palmatolepids concomi-tantly diminished. This event occurred earlier on oxygenated outer platform submarine rises than in oxygen-depleted depressions. The sudden sea-level fall prior to the Frasnian–Famennian boundary was followed, at the beginning of the Famennian, by a deepening trend when palmatolepids dominated again. These changes in conodont generic associations and abundances occurred rapidly and synchronously. As a result, the stratigraphic resolution obtained with the evolution of biofacies is higher: it permits not only a more accurate location of the base of the Upper Kellwasser event in environments where it cannot be distinguished lithologically, but it also allows the recognition of intrazonal gaps.  相似文献   

7.
8.
Abstract: Microconchid tubeworms (Tentaculita) encrusting brachiopod shells have been investigated from the upper Frasnian – lower Famennian (Upper Devonian) deposits of the Central Devonian Field, Russia. The condition of microconchids and associated encrusting taxa is reported for the first time from the early Famennian recovery interval (crepida Chron) following the Frasnian–Famennian mass extinction. Two species, one new (Palaeoconchus variabilis sp. nov.) and the second one in open nomenclature (Palaeoconchus sp.), are described. Compared to lower Famennian specimens, they seem to be preferentially grouped on the anterior parts of the brachiopod host shells, which are interpreted as the most suitable sites away from the sea‐bottom and sediment. During the late Frasnian (Late rhenana Chron), microconchids, outnumbered by cornulitids and as abundant as foraminifers, were also associated with trepostome bryozoans, tabulates, rugose corals and various problematic encrusters. During the early Famennian recovery interval encompassing the crepida Chron, microconchids greatly outnumbered all associated encrusters, including the previously dominant cornulitids, while foraminifers, tabulates and rugose corals vanished. Early Famennian microconchids, represented by the single, albeit very abundant, species Palaeoconchus variabilis sp. nov., were opportunists that rapidly colonised the environment during the ongoing transgression following the regression‐driven biotic crisis in the area of the Central Devonian Field. In comparison to their late Frasnian predecessors and even other Middle Devonian specimens, no size reduction (the so‐called Lilliput effect) of early Famennian microconchid tubes was observed. It is probable that microconchids either rapidly attained their ‘normal’ sizes or they did not suffer any dwarfism following the Frasnian–Famennian event.  相似文献   

9.
The Devonian marine and non marine deposits were widely distributed in East Yunnan, where rich marine faunas and floras were present. The Middle and early Upper Devonian miospores of Eastern Yunnan were also abundant and usually well- preserved. The present paper provides both analysis of qualitative and quantitative composition development of Middle and early Upper Devonian spore assemblage in Eastern Yunnan, and a palynological zonatlon containing four successive assemblage zones: 1.Zone of Calyptosporites velatus-Rhabdosporites langii (VL); 2. Zone of Archaeozonotriletes variabilis-Calyptosporites proteus (VP); 3. Zone of Geminospora lemurata-Cristatisporites triangulatus (LT); 4. Zone of Archaeoperisaccus ovalis-Lagenicula bullosum (OB). The Middle and early Upper Devonian spore assemblages of Eastern Yunnan may be compared with those in South China and West Qinling. The spore zonation possesses stratigraphical dating of the Devonian megafloras of the region, particularly those from the Middle and Upper Devonian. The proposed spore zonation is closely compared with that erected for the Middle and early Upper Devonian of Old Sandstone Continent and adjacent Region. Based on palynological data, the reconstruction of Paleogeography and Paleoecology are discussed.  相似文献   

10.
《Palaeoworld》2016,25(4):639-646
Additional specimens of rhynchonellide brachiopods from the marly limestones in the Yidade Formation at the Panxi section in eastern Yunnan have been ascribed to the species “Paurorhynchasquamosa Wang, 1956 and “P.depressa Wang, 1956. The two species have been used frequently as index fossils for the Frasnian (Upper Devonian), but their taxonomic assignments are problematic because their internal structures remain unknown. In this study, detailed systematical examinations on both external characters and internal structures revealed by serial sections suggest that the two species are more appropriately assigned to the genus Hadrotatorhynchus Sartenaer, 1986. Based on the stratigraphical distributions of Hadrotatorhynchus and the conodonts in the upper unit of the Yidade Formation, the Hadrotatorhynchus-bearing horizons are re-considered as the uppermost Givetian (Middle Devonian) rather than Frasnian stage, although the precise position of the Middle/Upper Devonian boundary still depends on further investigations of high-resolution biostratigraphy.  相似文献   

11.
Abstract Archaeopteris macilenta is one of the most widespread plants in the Late Devonian. Based on fossils from the Frasnian Huangjiadeng Formation, Yichang District of Hubei Province, for the first time we study in detail the anatomy of this progymnosperm plant in South China. Ultimate axes are protostelic with three xylem sympodia and lack secondary tissue. Penultimate axes are eustelic, bearing eight sympodia and a thin band of secondary xylem. Radially symmetrical sympodia of mesarch primary xylem produce traces of appendages in a spiral arrangement. Archaeopteris macilenta and A. halliana (A. roemeriana) are dominant in the Frasnian and Famennian, respectively. Comparisons with these two species from other tectonic plates indicate consistent stelar architectures. Global spread, continuous occurrence, and identical anatomy during the Late Devonian indicate that Archaeopteris survived the Frasnian–Famennian extinction event. In this time, endemic genera and cosmopolitan taxa, including Archaeopteris, suggest the palaeogeographic isolation of South China and certain associations with other plates.  相似文献   

12.
The stratigraphic levels most favoured for the Middle-Upper Devonian boundary fall approximately within the range of the ammonoid Pharciceras lunulicosta Zone, i.e. from the Middle varcus Subzone to the base of the Lower asymmetricus Zone of the conodont scale. Spore data that are potentially useful for recognition of the boundary within this range have been correlated with conodont zones in marine facies in the Boulonnais region of France. A vast amount of information on spores from Middle-Upper Devonian boundary strata has accumulated in the European U.S.S.R., where the boundary is taken at a somewhat lower level. Late Givetian and early Frasnian continental strata of Melville Island in the Canadian Arctic contain species present in the Boulonnais or the European U.S.S.R., as well as species common to both regions. Diatomozonotriletes spp., Rhabdosporites langii, Samarisporites triangulatus, Contagisporites optivus, Archaeoperisaccus timanicus, Chelinospora concinna and Ancyrospora langii, among others, may be useful for correlating the boundary as eventually defined. The stratigraphic ranges of most of these taxa show only limited agreement interregionally at present, probably owing at least in part to problems of spore nomenclature and taxonomy, and an insufficiency of spore reference sequences keyed to faunal zones. Nevertheless, individual species of spores, and especially assemblages of species, have much potential for delimiting and correlating the Middle-Upper Devonian boundary in both marine and continental facies.  相似文献   

13.
Diverse conodont and silicified ostracod assemblages were found in the Spanish Pyrenees (Els Castells section), in the Frasnian/Famennian boundary beds (late rhenana and/or linguiformis to late triangularis zones), in strata below and above the well-known Kellwasser Extinction Event. Many of the ostracods studied here are conspicuous elements of the “Thuringian Mega-Assemblage”, and show maximum affinities with faunas from the southeastern Cantabrian Mountains (Spain), eastern Thuringia and the Harz (Germany). The composition of the faunas, however, is not uniform through the Els Castells section. A rather sharp break exists, roughly coinciding with the Frasnian/Famennian boundary. The break is characterized by the disappearance of many ostracods typical of the “Thuringian Mega-Assemblage”. This correlates with an important change in the conodont faunas related to the Kellwasser Event. The Frasnian (late rhenana and/or linguiformis zones) palmatolepid-polygnathid biofacies is followed in Famennian strata (middle and late triangularis zones) by a palmatolepid-icriodid biofacies. The icriodid maximum in the earliest Famennian rocks of the Pyrenees correlates with the “Icriodid Peak” described elsewhere. These changes depend on the age and palaeoenvironmental conditions.  相似文献   

14.
Summary Givetian to early Carboniferous sediments of South China are characterized by carbonates. Middle and Late Devonian strata are best developed in the Guilin area. Reefs and organic shoals are recorded by various lithofacies types indicating the existence of an extended carbonate platform and a change of the composition of reef communities in time. Starting in the late Devonian, stromatoporoids and corals were replaced by algae that subsequently played an important role together with stromatoporoids, receptaculitids and fasciculate rugose corals in reef communities. In Houshan, 5 km west of Guilin, a coral-bafflestone reef occurs in the Frasnian strata, situated near an offshore algal-stromatoporoid reef. The coral reef was formed in a back-reef area adjacent to the inner platform margin. The coral-bafflestone reef is unique among the late Devonian reefs of South China with regard to the biotic composition. The reef is composed of fasciculate colonies ofSmithiphyllum guilinense n. sp. embedded within in packstones and wackestones. The height of colonies reaches 1 m. The community is low-diverse. The species ofSmithiphyllum occurring in the Frasnian reef complexes of Guilin exhibit a distinct facies control:Smithiphyllum guilinense occurs in or near to margin facies and formed bafflestone, constituting a coral reef whereasSmithiphyllum occidentale Sorauf, 1972 andSmithiphyllum sp.—characterized by small colonies with thin corallites—are restricted to the back-reef and marginal slope facies. The bush-like coral colonies baffled sediments. Algae and stromatoporoids (mainlyStachyodes) are other reef biota. Reef-dwelling organisms are dominated by brachiopods. The reefs are composed from base to top of five lithofacies types: 1) cryptalgal micrite, 2) peloidal packstone, 3) stromatactis limestone, 4) coral-bafflestone, and 5) pseudopeloidal packstone. The reef complex can be subdivided into back-reef subfacies, reef flat and marginal subfacies, and marginal fore-slope subfacies. The Houshan coral-bafflestone reef is not a barrier reef but a coral patch reef located near the inner margin of a carbonate platform.  相似文献   

15.
One of the long-standing problems in North American graptolite biostratigraphy is the distinct differences in assemblages of post-Climacograptus bicornis age between the classical graptolite sequences in the New York - Quebec and Marathon, west Texas, regions. These have been attributed either to faunal provincialism or to the presence of a major hiatus between the Woods Hollow and Maravillas formations in Texas. New collections from the key Marathon Picnic Grounds section contain diagnostic Late Ordovician graptolites that confirm the existence of a major stratigraphic gap below the Maravillas Formation. The lower Maravillas Formation (Zone 13) has a Late Ordovician, low-diversity Pacific Province graptolite fauna that includes the biostratigraphically diagnostic species Climacograptus nevadensis, C. tubuliferus, Orthograptus fastigatus and Dicellograptus ornatus. Zone 13 graptolite assemblages from the Marathon region correlate with the C. tubuliferus to D. ornatus zones in the Trail Creek, Idaho, succession, the Ea4-Bo2 interval in Victoria, the O. fastigatus Zone in the Canadian Arctic Islands, the O. quadrimucronatus to D. ornatus zones of the Canadian Cordillera, and the D. complanatus to D. anceps zones in Scotland. The hiatus between the Woods Hollow and Maravillas formations spans an interval corresponding to at least the Eal Ea3 interval in Australia, the C. americanus to upper A. manitoulinensis zones in the New York - Quebec succession, and the D. clingani and P. linearis zones in Scotland. These results agree with the magnitude of the hiatus previously indicated by conodont biostratigraphy. Late Ordovician graptolite distribution patterns in North America can be explained by an extension of Cooper, Fortey & Lindholm's (1991; Lethaia 24) Lower Ordovician graptolite biofacies model into the Upper Ordovician, which incorporates both lateral water-mass specificity and depth stratification. Using this model, we recognize in Laurentia two separate biofacies among tropical-zone Late Ordovician Pacific Province graptolite faunas, a cosmopolitan Oceanic biofacies, and a cratonic Laurentian biofacies. The lower Maravillas Formation graptolite fauna is clearly part of the Oceanic biofacies, whereas the coeval Appalachian faunas represent the Laurentian biofacies. □Graptolites, Ordovician, biostratigraphy, Texas, biofacies, biogeography.  相似文献   

16.
Middle-Late Devonian Radiolarians are recorded for the first time in the southern Ural Mountains in Bashkortostan, in a section of Kariukmas Mountain (Upper Eifelian) and on the southern slope of Argagan Mountain (Middle Frasnian). The new Late Eifelian assemblage is composed of 17 species of 11 genera, and Middle Frasnian radiolarians comprise 13 species of 7 genera of spherical, discoidal, pylomate, and spiny radiolarians. A new species, Primaritripus kariukmasensis, sp. nov., is described. The prevalence of discoidal forms in the oryctocenosis suggests shallow marine conditions in the Late Eifelian and Middle Frasnian basins. Two new biostratons, the Upper Eifelian beds with Primaritripus kariukmasensis and Middle Frasnian beds with Primaritripus chuvashovi, are established based on radiolarians.  相似文献   

17.
The Moravo-Silesian Basin (MSB; eastern Czech Republic and southern Poland) hosted an extensive shallow-water carbonate platform in the Middle Devonian to Frasnian interval. The platform drowned in a stepwise fashion from the Palmatolepis hassi to the Pa. linguiformis zone. Three types of drowning successions were revealed from conodont biostratigraphy, facies, microfacies and gamma-ray spectrometry data: (A) drowning to periplatform turbidite setting; (B) drowning to (hemi)pelagic seamount setting and (C) drowning associated with the stratigraphical gap. In the lower Pa. hassi zone, rapid subsidence caused the platform to drown locally along the N–S to NW–SE trending faults (type A drowning). In the upper Pa. rhenana to the Pa. linguiformis zone, the drowning accelerated in the western part of the MSB due to locally higher subsidence rates combined with the Late Frasnian biotic crisis (type B). In the southern part of the basin, the platform emerged shortly before the Frasnian/Famennian (F/F) boundary and drowned in the Early to Late Famennian (type C). The primary cause of drowning was differential subsidence at the Laurussian passive margin. Eustatic sea-level fluctuations, if any, contributed only to a minor extent to the Late Frasnian drowning, but were effective in type C drowning during the Famennian. The drowning boundaries are associated with increased contents of K and Th, reflecting the deceleration of carbonate production. Uranium contents display isolated peaks that roughly correlate with the drowning boundaries or the stratigraphic gaps associated with the F/F boundary. The uranium contents are considered to reflect local depositional conditions and are not suitable for stratigraphic correlation. On the other hand, from the K and Th contents, we can infer Late Frasnian sea-level fluctuations with duration on the order of 1 Myr. These cyclic variations in K and Th contents proved to be useful in platform-to-basin stratigraphic correlation.  相似文献   

18.
弗拉期是了解泥盆纪弗拉-法门灭绝事件之前古代生物多样性的一个关键阶段.贵州南部的独山地区因其所具有的完整层序及丰富的底栖牛物化石成为我国主要泥盆系参考剖面之一.独山剖面弗拉期的石燕贝类腕足动物至少包括5种类型,其中4种在本文中为首次描述和图示.Conispirifer之前只发现于欧洲及北美的弗拉期地层中,目前也首次在华南独山剖面的同期地层中发现.大多先前从贵州南部其他地区弗拉期地层中描述的多种Cyrtospirifer可归于Cyrtospirifer subextensoides新种内.鉴于前人对Emanuella的模式种E.takwanensis 的内部构造描述的矛盾状况,本文暂把研究区具有抬离壳面的纤细铰窝、固着于壳面的主突起以及其前方下面为外铰板支撑的标本归于E.takwanensis.在华南弗拉期可初步识别出三个腕足动物群组合带:Yocrarhynchus-Phlogoiderhynchus动物群以小嘴贝类-无洞贝类-双腔贝类腕足动物为特征,其时代大致从弗拉阶底部至Pa.punctata带;之后为Cyrtospirifer动物群,以Cyrtospirifer的存在为特征,又可分为早晚两部分,前者(未命名)以conispiriferid类的Conispirifer和Pyramidaspirifer、弓石燕类、无洞贝类等为特征,其时代大致为Pa."hassi"带至下Pa.rhenana带;后者为Hunanotoechia动物群,以丰富的小嘴贝类-无洞贝类.弓石燕类腕足动物为特征,其时代大致为上Pa.rhenana带至Pa.1inguiformis带.  相似文献   

19.
The Middle Ordovician conodont genera that are suitable for palaeoenvironmental interpretations from the epicontinental Baltoscandian platform have been identified and evaluated to establish and describe conodont biofacies and their relationship to global cooling. The construction of biofacies was based on multivariate statistical analyses of more than 375 700 conodont specimens from 520 samples and 21 localities across Baltica. Three distinct, recurrent and laterally extensive conodont biofacies existed across the Baltoscandian platform of the Baltica continent during the Dapingian and early to middle Darriwilian stages (Middle Ordovician). A relatively shallow water conodont assemblage named the Baltoniodus–Microzarkodina Biofacies characterized the inner shelf localities in central Sweden, Estonia, Russia and Ukraine. In the distal shelf areas, patterns are more complex. Here, genera of the Periodon Biofacies characterized the shelf margin areas of the Scandinavian Caledonides facing the relatively warm Iapetus Ocean towards the north, whereas the Protopanderodus Biofacies dominated the distal shelf areas facing the cooler Tornquist Sea towards the south‐west. Although these three main biofacies continued to dominate during the succeeding Darriwilian stage, distinct changes in the distribution of biofacies took place during the transition from the Dapingian Stage to the Darriwilian. We argue that the biofacies change was triggered by a regressive event related to early Darriwilian cooling, and that the palaeoclimatological changes influenced the Baltic conodont faunas near the Tornquist Sea margin before those of the Iapetus margin (early vs middle Darriwilian).  相似文献   

20.
This paper presents a review and critical analysis of the literature on Devonian floras of the Iberian Peninsula. Although the known outcrops of Devonian strata in the Iberian Peninsula are marine, in some cases, a few fragmentary remains of vascular plants are associated with faunal remains. Records include largely specimens from the Lower Devonian of Barrancos (Alentejo, Portugal) and the Upper Devonian of Sierra de Hornachos in Badajoz province, southwest Spain; the remainder consists of drifted plant fragments from scattered sites in the Iberian Peninsula ranging in age from Lochkovian to Upper Devonian-Earliest Carboniferous. The vegetation inferred for the Lower Devonian of the Iberian Peninsula is mainly based on palynological data and corresponds to herbaceous types characterised by bryophytes, rhyniophytes (Horneophyton, Cooksonia, Rhynia), trimerophytes (Psilophyton, Pertica and Hostinella), primitive lycophytes (Drepanophycus) and incertae sedis such as Nothia and Chaleuria, all flora that developed near the coast in low-lying and, at least periodically, wet areas. In the Middle Devonian, two vegetation strata can be recognised: herbaceous (Psilophyton) and semi-arboreal (Cladoxylales). Although three levels of vegetation in the Upper Devonian, have been described from outcrops worldwide, the scarce available data from the Iberian Peninsula only indicate an arborescent lycopsid vegetation and species with uncertain botanical affinity such as Sphenopteridium keilhauii Nathorst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号