首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Global climate change is expected to result in more frequent and intense droughts in the Mediterranean region. To understand forest response to severe drought, we used a mobile rainfall shelter to examine the impact of spring and autumn rainfall exclusion on stomatal (SL) and non‐stomatal (NSL) limitations of photosynthesis in a Quercus ilex ecosystem. Spring rainfall exclusion, carried out during increasing atmospheric demand and leaf development, had a larger impact on photosynthesis than autumn exclusion, conducted at a time of mature foliage and decreasing vapour pressure deficit. The relative importance of NSL increased with drought intensity. SL and NSL were equal once total limitation (TL) reached 60%, but NSL greatly exceeded SL during severe drought, with 76% NSL partitioned equally between mesophyll conductance (MCL) and biochemical (BL) limitations when TL reached 100%. Rainfall exclusion altered the relationship between leaf water potential and photosynthesis. In response to severe mid‐summer drought stress, An and Vcmax were 75% and 72% lower in the spring exclusion plot than in the control plot at the same pre‐dawn leaf water potential. Our results revealed changes in the relationship between photosynthetic parameters and water stress that are not currently included in drought parameterizations for modelling applications.  相似文献   

2.
It is still unknown whether the midday depression of photosynthesis under severe water stress, frequently observed in plants growing in a Mediterranean-type climate, is primarily a consequence of diffusional or non-diffusional limitations. We carried out combined measurements of gas exchanges and chlorophyll fluorescence in field-grown Arbutus unedo L. trees during late spring and mid summer, and a quantitative limitation analysis was performed to distinguish between the different limitations to photosynthesis, i.e., diffusional [D L = stomatal (S L) + mesophyll (MCL)] and non-diffusional (carboxylation capacity and electron transport, B L) limitations. Light-saturated assimilation at ambient CO2 (A max), stomatal conductance to water vapour (g sw) and maximum carboxylation rate (V cmax C i) showed a marked midday depression during both periods. The total limitations tended to increase during the day and were remarkably similar in June and July (50 and 48%, respectively); on a daily basis, D L was similar to B L (about 23%) in June; whereas, in July the former was predominant (38 and 4%, respectively). We concluded that the midday depression in photosynthesis was largely caused by diffusional limitations, with non-diffusional limitations playing a smaller role. Although stomatal closure was the main diffusional limitation, the decline in mesophyll conductance was not negligible during the hottest and driest period.  相似文献   

3.
A unique approach was used to evaluate stomatal and nonstomatal constraints to photosynthesis in 19 naturally occurring, deciduous tree species on xeric, mesic and wetmesic sites in central Pennsylvania, USA, during relatively wet (1990) and dry (1991) growing seasons. All species exhibited significantly decreased stomatal conductance to CO2 (gc) in 1991 compared to 1990. The mesic species had drought related decreases in photosynthesis (A) attributed primarily to increased absolute stomatal limitation to A (Lg), whereas in the wet-mesic species, the absolute mesophyll limitation (Lm) was at least as important as Lg in limiting A during drought. The xeric species maintained relatively high A during drought despite decreased gc. In the xeric and mesic species, Lm decreased and Lg increased during drought due to stomatal closure. From xeric to mesic to wet-mesic, the relative stomatal limitation (Ig) generally decreased faster, and relative mesophyll limitations to A increased faster, with increasing gc suggesting greater photosynthetic capacity (i.e. greater potential maximum A) with increasing drought tolerance rank of species. Few species exhibited a significant drought-related decrease in photosynthetic capacity. The results of this landscape-based study indicate that the interaction of stomatal and nonstomatal limitations of A vary in a manner consistent with species' drought tolerance and site conditions, and that nonstomatal constraints to A in field plants during a moderate, season-long drought were generally not as severe as reported in controlled studies.  相似文献   

4.
Water stress (WS) slows growth and photosynthesis (An), but most knowledge comes from short‐time studies that do not account for longer term acclimation processes that are especially relevant in tree species. Using two Eucalyptus species that contrast in drought tolerance, we induced moderate and severe water deficits by withholding water until stomatal conductance (gsw) decreased to two pre‐defined values for 24 d, WS was maintained at the target gsw for 29 d and then plants were re‐watered. Additionally, we developed new equations to simulate the effect on mesophyll conductance (gm) of accounting for the resistance to refixation of CO2. The diffusive limitations to CO2, dominated by the stomata, were the most important constraints to An. Full recovery of An was reached after re‐watering, characterized by quick recovery of gm and even higher biochemical capacity, in contrast to the slower recovery of gsw. The acclimation to long‐term WS led to decreased mesophyll and biochemical limitations, in contrast to studies in which stress was imposed more rapidly. Finally, we provide evidence that higher gm under WS contributes to higher intrinsic water‐use efficiency (iWUE) and reduces the leaf oxidative stress, highlighting the importance of gm as a target for breeding/genetic engineering.  相似文献   

5.
Lepechinia meyenii is a medicinal plant specialized in the biosynthesis of different types of antioxidants including the diterpenes carnosic (CA) acid and carnosol (CS). Herein we present the results of plant tissue culture approaches performed in this medicinal plant with particular emphasis on the generation and evaluation of a cell suspension system for CA and CS production. The effect of sucrose concentration, temperature, pH, and UV-light exposure was explored. In addition, diverse concentrations of microbial elicitors (salicylic acid, pyocyanin, Glucanex, and chitin), simulators of abiotic elicitors (polyethylene glycol and NaCl), and biosynthetic precursors (mevalonolactone, geranylgeraniol, and miltiradiene/abietatriene) were evaluated on batch cultures for 20 days. Miltiradiene/abietatriene obtainment was achieved through a metabolic engineering approach using a recombinant strain of Saccharomyces cerevisiae. Our results suggested that the maximum accumulation (Accmax) of CA and CS was mainly conferred to stimuli associated with oxidative stress such as UV-light exposure (Accmax, 6.2 mg L−1) polyethylene glycol (Accmax, 6.5 mg L−1) NaCl (Accmax, 5.9 mg L−1) which simulated drought and saline stress, respectively. Nevertheless the bacterial elicitor pyocyanin was also effective to increase the production of both diterpenes (Accmax, 6.4 mg L−1). Outstandingly, the incorporation of upstream biosynthetic precursors such as geranylgeraniol and miltiradiene/abietatriene, generated the best results with Accmax of 8.6 and 16.7 mg L−1, respectively. Optimized batch cultures containing 100 mg L−1 geranylgeraniol, 50 mg L−1 miltiradiene/abietatriene (95 : 5 %) and 5 g L−1 polyethylene glycol treated with 6 min UV light pulse during 30 days resulted in Accmax of 26.7 mg L−1 for CA and 17.3 mg L−1 for CS on days 18–24. This strategy allowed to increase seven folds the amounts of CA and CS in comparison with batch cultures without elicitation (Accmax, 4.3 mg L−1).  相似文献   

6.
There are conflicting opinions on the relative importance of photosynthetic limitations under salinity. Quantitative limitation analysis of photosynthesis provides insight into the contributions of different photosynthetic limitations, but it has only been applied under saturating light conditions. Using experimental data and modelling approaches, we examined the influence of light intensity on photosynthetic limitations and quantified the osmotic and ionic effects of salinity on stomatal (LS), mesophyll (LM), biochemical (LB) and light (LL) limitations in cucumber (Cucumis sativus L.) under different light intensities. Non‐linear dependencies of LS, LM and LL to light intensity were found. Osmotic effects on LS and LM increased with the salt concentration in the nutrient solution (Ss) and the magnitude of LM depended on light intensity. LS increased with the Na+ concentration in the leaf water (Sl) and its magnitude depended on Ss. Biochemical capacity declined linearly with Sl but, surprisingly, the relationship between LB and Sl was influenced by Ss. Our results suggest that (1) improvement of stomatal regulation under ionic stress would be the most effective way to alleviate salinity stress in cucumber and (2) osmotic stress may alleviate the ionic effects on LB but aggravate the ionic effects on LS.  相似文献   

7.
This study estimated the construction const (CC) and maintenance cost (MC) of leaf tissue on the basis of dry mass (CCMass, MCMass) and leaf area (CCArea, MCArea), as well as the maximum leaf gas exchange capacity, so as to examine leaf cost:benefit relationship in six dominant species of the ‘Bana’ vegetation. Minimum and maximum CCMass averaged 1.71 ± 0.03 and 1.78 ± 0.03 g glucose g−1. The CCMass showed a statistically significant positive correlation with crude fibre, and tended to decline as leaves were larger. Thus, smaller leaves tended to be built out of a more expensive material than that found in species bearing larger leaves. The average CCArea of the ‘Bana’ species was 376 ± 15 g glucose m−2. A robust correlation was found between CCArea with leaf dry mass to leaf area ratio, as well as with leaf thickness, but not with leaf density. MCMass (g glucose g−1 day−1) and MCArea (g glucose m−2 day−1) were positively correlated. Maximum and minimum MCMass increased significantly with protein and lipid content, respectively. Maximum carbon assimilation (A max) was positively correlated with CCArea. All the species operated at high stomatal conductance (g s) and C i/C a which suggested low short-term water use efficiency. Potential nitrogen use efficiency (PNUE = A max/N) averaged 35.4 ± 1.8 mmol CO2 mol−1 N. As the sclerophylly index (g crude fibre g−1 protein) increased, the ratio of CCArea to A max increased significantly. This result suggests a trade-off between investments in an expensive resistant sclerophyllous leaf which should maximize carbon gain in the long term.  相似文献   

8.
We investigated the hydraulic consequences of a major decrease in root‐to‐leaf area ratio (AR:AL) caused by nutrient amendments to 15‐year‐old Pinus taeda L. stands on sandy soil. In theory, such a reduction in AR:AL should compromise the trees’ ability to extract water from drying sand. Under equally high soil moisture, canopy stomatal conductance (GS) of fertilized trees (F) was 50% that of irrigated/fertilized trees (IF), irrigated trees (I), and untreated control trees (C). As predicted from theory, F trees also decreased their stomatal sensitivity to vapour pressure deficit by 50%. The lower GS in F was associated with 50% reduction in leaf‐specific hydraulic conductance (KL) compared with other treatments. The lower KL in F was in turn a result of a higher leaf area per sapwood area and a lower specific conductivity (conducting efficiency) of the plant and its root xylem. The root xylem of F trees was also 50% more resistant to cavitation than the other treatments. A transport model predicted that the lower AR:AL in IF trees resulted in a considerably restricted ability to extract water during drought. However, this deficiency was not exposed because irrigation minimized drought. In contrast, the lower AR:AL in F trees caused only a limited restriction in water extraction during drought owing to the more cavitation resistant root xylem in this treatment. In both fertilized treatments, approximate safety margins from predicted hydraulic failure were minimal suggesting increased vulnerability to drought‐induced dieback compared with non‐fertilized trees. However, IF trees are likely to be so affected even under a mild drought if irrigation is withheld.  相似文献   

9.
Trees drought responses could be developed in the short- or in the long-term, aiming at sustaining carbon fixation and water use efficiency (WUE). The objective of this study was to examine short- and long-term adjustments occurring in different size Pinus ponderosa Dougl. ex P. & C. Laws trees in response to seasonal drought when they are growing under different competition level. The following variables were studied: branch and stem hydraulic conductivity, canopy and stomatal conductance (gc, gs), transpiration (E), photosynthesis (A max), wood δ13C (as a proxy of intrinsic WUE), leaf to sapwood area ratio (A L:A s) and growth in the biggest (B) and the smallest (S) trees of high (H) and low (L) density stands. A L:A s was positively correlated with tree size and negatively correlated with competition level, increasing leaf hydraulic conductance in H trees. Accordingly, higher gc and E per unit A L were found in H than in L trees when soil water availability was high, but decreased abruptly during dry periods. BL trees maintained stable gc and E values even during the summer drought. The functional adjustments observed in H trees allow them to maintain their hydraulic integrity (no apparent k s losses), but their stem and leaf growth were severely affected by drought events. iWUE was similar between all tree groups in a wet season, whereas it significantly decreased in SH trees in a dry season suggesting that when radiation and water are co-limiting gas exchange, functional adjustments not only affect absolute growth, but also WUE.  相似文献   

10.
This study was the first to investigate the key reproductive traits of the electric lantern fish Electrona risso (Myctophidae, n = 918) and the bigscale fishes (Melamphaidae) Melamphaes polylepis (n = 260) and Scopelogadus mizolepis (n = 649). Specimens of these mesopelagic species were collected in March and April 2015 in the eastern Central Atlantic (0–24° N, 20–26° W). Sex ratio was not significantly different from 1:1 in E. risso and M. polylepis but significantly skewed toward female dominance in S. mizolepis. Reproductive phases were determined macroscopically and by histological analyses on selected individuals. Female length at 50% maturity (L50) was 55.1 mm standard length (LS) in E. risso, with an observed female maximum length (Lmax) of 81.2 mm LS. M. polylepis females had an L50 of 40.2 mm LS and an Lmax of 86.7 mm LS. S. mizolepis had an L50 of 46 mm LS and an Lmax of 97.9 mm LS. The three species show histological features of iteroparity, but the E. risso population appears to occur in two year-classes and experience only one spawning season per lifetime in the study region. All three species are batch-spawners. A batch fecundity of 2668 eggs was estimated from one E. risso individual, with a relative batch fecundity of 369 eggs g−1 gonad-free body mass. M. polylepis had a batch fecundity of 1027 eggs and a relative batch fecundity of 149 eggs g−1 (n = 3). S. polylepis had a batch fecundity of 1545 eggs and a relative batch fecundity of 215 eggs g−1 (n = 21). The median gonado-somatic index during the actively spawning phase of E. risso was 4.5, significantly lower than that of M. polylepis (7.5) and S. mizolepis (7.1). No regressing or regenerating phases were observed in this study. Batch-spawning in all three species is suggested to be advantageous to cope with intra-annual variability in food supply and other risks for offspring survival. With what appears to be in effect a (facultative) semelparous strategy in combination with a short life span in E. risso, interannual differences would have a great effect on population dynamics of this species. Knowledge is still lacking on temporal aspects of reproduction such as the duration of the spawning season and the frequency of spawning, as well as age and growth.  相似文献   

11.
Over the past decade, the concept of isohydry or anisohydry, which describes the link between soil water potential (ΨS), leaf water potential (ΨL), and stomatal conductance (gs), has soared in popularity. However, its utility has recently been questioned, and a surprising lack of coordination between the dynamics of ΨL and gs across biomes has been reported. Here, we offer a more expanded view of the isohydricity concept that considers effects of vapour pressure deficit (VPD) and leaf area index (AL) on the apparent sensitivities of ΨL and gs to drought. After validating the model with tree‐ and ecosystem‐scale data, we find that within a site, isohydricity is a strong predictor of limitations to stomatal function, though variation in VPD and leaf area, among other factors, can challenge its diagnosis. Across sites, the theory predicts that the degree of isohydricity is a good predictor of the sensitivity of gs to declining soil water in the absence of confounding effects from other drivers. However, if VPD effects are significant, they alone are sufficient to decouple the dynamics of ΨL and gs entirely. We conclude with a set of practical recommendations for future applications of the isohydricity framework within and across sites.  相似文献   

12.
Water regulation caused by enzymes, such as carbonic anhydrase (CA), changes the water status, making it difficult to diagnose water deficit using leaf water potential (ψL) or stomatal conductance (gs). Therefore, new methods for timely and accurately determining plant water status should be established. In this study, CA activity, ψL, leaf tensity (Td), photosynthetic characteristics and plant growth of Brassica napus L. seedlings under drought and subsequent rewatering were analysed. Results indicated that Td could reflect the plant water status better than ψL or gs and played an important role in the photosynthesis of B. napus. B. napus exhibited good restorability at the 40?g?L?1 polyethylene glycol level. The rewatering strategy for B. napus was excellent at 40?g?L?1 (?0.15?MPa) →20?g?L?1 (?0.11?MPa). Td could be used for the rapid determination of water requirement information in B. napus during winter drought period.  相似文献   

13.
In recent years, many studies have focused on the limiting role of mesophyll conductance (gm) to photosynthesis (An) under water stress, but no studies have examined the effect of drought on gm through the forest canopy. We investigated limitations to An on leaves at different heights in a mixed adult stand of sessile oak (Quercus petraea) and beech (Fagus sylvatica) trees during a moderately dry summer. Moderate drought decreased An of top and lowest beech canopy leaves much more than in leaves located in the mid canopy; whereas in oak, An of the lower canopy was decreased more than in sunlit leaves. The decrease of An was probably not due to leaf‐level biochemistry given that VCmax was generally unaffected by drought. The reduction in An was instead associated with reduction in stomatal and mesophyll conductances. Drought‐induced increases in stomatal limitations were largest in leaves from the top canopy, whereas drought‐induced increases in mesophyll limitations were largest in leaves from the lowest canopy. Sensitivity analysis highlighted the need to decompose the canopy into different leaf layers and to incorporate the limitation imposed by gm when assessing the impact of drought on the gas exchange of tree canopies.  相似文献   

14.
In situ gas-exchange data, for branchlets of white spruce [Picea glauca (Moench) Voss.] in a mature mixed-wood boreal forest in central Canada (53°44′N 105°14′W), were subjected to a multiple regression analysis. Vapor pressure deficit (VPD) and branchlet temperature (tleaf) were both significant predictors (P<0.0001) of stomatal conductance to water vapor (gsw) and net photosynthesis (An), together explaining 67 and 64% of the variation in gsw and An, respectively. Since VPD and tleaf were autocorrelated in these field data, but also to further explore the nature of independent effects of temperature and humidity on water and CO2 exchange in white spruce, steady-state gas-exchange was performed on well-watered greenhouse-grown seedlings of white spruce. Results from laboratory experiments supported the following conclusions: (1) Transpiration (E) increases with VPD to an inflection point that increases linearly with tleaf. This tleaf effect on E could not be explained by trends in VPD, RH, An or PFD. Rather, our data support a model in which E and gsw are influenced by the balance between ’supply’ and ’loss’ of water to and from leaf tissue, respectively. The supply of water appears to be in accordance with Darcy’s law, where supply of water is proportional to the driving gradient in pressure/ tension, specific permeability (k), and inverse of water viscosity (n –1). Approximately half of the increase in E could be explained by the linear increase in n –1 with increasing tleaf. We propose that increases in k explain the remainder of the increase in E with tleaf. (2) VPD and tleaf appear to have independent effects on gsw. In contrast, RH effects on gsw or E were subtle and could be explained by a combination of effects of tleaf and VPD. (3) An was affected primarily by tleaf, being reduced at low (10°C) and high (40°C) temperatures, and only indirectly by humidity parameters via stomatal conductance, viz. intercellular CO2 concentrations. Our results have implications for the prediction of water fluxes from plants and canopies in areas where plant temperatures vary diurnally or seasonally. Received: 24 September 1998 / Accepted: 20 July 1999  相似文献   

15.
Climate-driven changes in biomass allocation in pines   总被引:8,自引:0,他引:8  
Future increases in air temperature resulting from human activities may increase the water vapour pressure deficit (VPD) of the atmosphere. Understanding the responses of trees to spatial variation in VPD can strengthen our ability to predict how trees will respond to temporal changes in this important variable. Using published values, we tested the theoretical prediction that conifers decrease their investment in photosynthetic tissue (leaves) relative to water‐conducting tissue in the stem (sapwood) as VPD increases. The ratio of leaf/sapwood area (AL/AS) decreased significantly with increasing VPD in Pinus species but not in Abies, Pseudotsuga, Tsuga and Picea, and the average AL/AS was significantly lower for pines than other conifers (pines: 0.17 m2 cm?2; nonpines: 0.44 m2 cm?2). Thus, pines adjusted to increasing aridity by altering above‐ground morphology while nonpine conifers did not. The average water potential causing a 50% loss of hydraulic conductivity was ?3.28 MPa for pines and ?4.52 MPa for nonpine conifers, suggesting that pines are more vulnerable to xylem embolism than other conifers. For Pinus ponderosa the decrease in AL/AS with high VPD increases the capacity to provide water to foliage without escalating the risk of xylem embolism. Low AL/AS and plasticity in this variable may enhance drought tolerance in pines. However, lower AL/AS with increasing VPD and an associated shift in biomass allocation from foliage to stems suggests that pines may expend more photosynthate constructing and supporting structural mass and carry less leaf area as the climate warms.  相似文献   

16.
A family of 10 competing, unstructured models has been developed to model cell growth, substrate consumption, and product formation of the pyruvate producing strain Escherichia coli YYC202 ldhA::Kan strain used in fed-batch processes. The strain is completely blocked in its ability to convert pyruvate into acetyl-CoA or acetate (using glucose as the carbon source) resulting in an acetate auxotrophy during growth in glucose minimal medium. Parameter estimation was carried out using data from fed-batch fermentation performed at constant glucose feed rates of qVG=10 mL h–1. Acetate was fed according to the previously developed feeding strategy. While the model identification was realized by least-square fit, the model discrimination was based on the model selection criterion (MSC). The validation of model parameters was performed applying data from two different fed-batch experiments with glucose feed rate qVG=20 and 30 mL h–1, respectively. Consequently, the most suitable model was identified that reflected the pyruvate and biomass curves adequately by considering a pyruvate inhibited growth (Jerusalimsky approach) and pyruvate inhibited product formation (described by modified Luedeking–Piret/Levenspiel term).List of symbols cA acetate concentration (g L–1) - cA,0 acetate concentration in the feed (g L–1) - cG glucose concentration (g L–1) - cG,0 glucose concentration in the feed (g L–1) - cP pyruvate concentration (g L–1) - cP,max critical pyruvate concentration above which reaction cannot proceed (g L–1) - cX biomass concentration (g L–1) - KI inhibition constant for pyruvate production (g L–1) - KIA inhibition constant for biomass growth on acetate (g L–1) - KP saturation constant for pyruvate production (g L–1) - KP inhibition constant of Jerusalimsky (g L–1) - KSA Monod growth constant for acetate (g L–1) - KSG Monod growth constant for glucose (g L–1) - mA maintenance coefficient for growth on acetate (g g–1 h–1) - mG maintenance coefficient for growth on glucose (g g–1 h–1) - n constant of extended Monod kinetics (Levenspiel) (–) - qV volumetric flow rate (L h–1) - qVA volumetric flow rate of acetate (L h–1) - qVG volumetric flow rate of glucose (L h–1) - rA specific rate of acetate consumption (g g–1 h–1) - rG specific rate of glucose consumption (g g–1 h–1) - rP specific rate of pyruvate production (g g–1 h–1) - rP,max maximum specific rate of pyruvate production (g g–1 h–1) - t time (h) - V reaction (broth) volume (L) - YP/G yield coefficient pyruvate from glucose (g g–1) - YX/A yield coefficient biomass from acetate (g g–1) - YX/A,max maximum yield coefficient biomass from acetate (g g–1) - YX/G yield coefficient biomass from glucose (g g–1) - YX/G,max maximum yield coefficient biomass from glucose (g g–1) - growth associated product formation coefficient (g g–1) - non-growth associated product formation coefficient (g g–1 h–1) - specific growth rate (h–1) - max maximum specific growth rate (h–1)  相似文献   

17.
Mesophyll conductance (gm) is one of the major determinants of photosynthetic rate, for which it has an impact on crop yield. However, the regulatory mechanisms behind the decline in gm of cotton (Gossypium. spp) by drought are unclear. An upland cotton (Gossypium hirsutum) genotype and a pima cotton (Gossypium barbadense) genotype were used to determine the gas exchange parameters, leaf anatomical structure as well as aquaporin and carbonic anhydrase gene expression under well‐watered and drought treatment conditions. In this study, the decrease of net photosynthetic rate (AN) under drought conditions was related to a decline in gm and in stomatal conductance (gs). gm and gs coordinate with each other to ensure optimum state of CO2 diffusion and achieve the balance of water and CO2 demand in the process of photosynthesis. Meanwhile, mesophyll limitations to photosynthesis are equally important to the stomatal limitations. Considering gm, its decline in cotton leaves under drought was mostly regulated by the chloroplast surface area exposed to leaf intercellular air spaces per leaf area (Sc/S) and might also be regulated by the expression of leaf CARBONIC ANHYDRASE (CA1). Meanwhile, cotton leaves can minimize the decrease in gm under drought by maintaining cell wall thickness (Tcw). Our results indicated that modification of chloroplasts might be a target trait in future attempts to improve cotton drought tolerance.  相似文献   

18.
Very few studies have attempted to disentangle the respective role of ontogeny and water stress on leaf photosynthetic attributes. The relative significance of both effects on photosynthetic attributes has been investigated in leaves of field‐grown almond trees [Prunus dulcis (Mill.) D. A. Webb] during four growth cycles. Leaf ontogeny resulted in enhanced leaf dry weight per unit area (Wa), greater leaf dry‐to‐fresh weight ratio and lower N content per unit of leaf dry weight (Nw). Concomitantly, area‐based maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), mesophyll conductance to CO2 diffusion (gm)′ and light‐saturated net photosynthesis (Amax) declined in both well‐watered and water‐stressed almond leaves. Although gm and stomatal conductance (gs) seemed to be co‐ordinated, a much stronger coordination in response to ontogeny and prolonged water stress was observed between gm and the leaf photosynthetic capacity. Under unrestricted water supply, the leaf age‐related decline of Amax was equally driven by diffusional and biochemical limitations. Under restricted soil water availability, Amax was mainly limited by gs and, to a lesser extent, by photosynthetic capacity and gm. When both ontogeny and water stress effects were combined, diffusional limitations was the main determinant of photosynthesis limitation, while stomatal and biochemical limitations contributed similarly.  相似文献   

19.
The objective of the present study was to examine the functional coordination among hydraulic traits, xylem characteristics and gas exchange rates across three deciduous Euphorbiaceae tree species (Hevea brasiliensis, Macaranga denticulata and Bischofia javanica) and three evergreen Euphorbiaceae tree species (Drypetes indica, Aleurites moluccana and Codiaeum variegatum) from a seasonally tropical forest in south-western China. The deciduous tree species were more vulnerable to water stress-induced embolism than the evergreen tree species. However, the deciduous tree species generally had higher maximal rates of sapwood and leaf-specific hydraulic conductivity (K S and K L), respectively. Compared with the evergreen tree species, the deciduous tree species, however, possessed a lower density of sapwood and a wider diameter of xylem vessels. Regardless of leaf phenology, the hydraulic vulnerability and conductivity were significantly correlated with sapwood density and mean vessel diameter. Furthermore, the hydraulic vulnerability was positively correlated with water transport efficiency. In addition, the deciduous tree species exhibited higher maximal photosynthetic rates (A max) and stomatal conductance (g max), but lower water use efficiency (WUE). Interestingly, the A max, g max and WUE were strongly correlated with K S and K L across the deciduous and evergreen tree species. These results suggest that xylem structure, rather than leaf phenology, accounts for the difference in hydraulic traits between the deciduous tree species and the evergreen tree species. Meanwhile, our results show that there is a significant trade-off between hydraulic efficiency and safety, and a strong functional correlation between the hydraulic capacity and gas exchange rates across the deciduous and evergreen tree species.  相似文献   

20.
We examined the responses of two tree fern species (Dicksonia antarctica and Cyathea australis) growing under moderate and high light regimes to short-term water deficit followed by rewatering. Under adequate water supply, morphological and photosynthetic characteristics differed between species. D. antarctica, although putatively the more shade and less drought adapted species, had greater chlorophyll a/b ratio, and greater water use efficiency and less negative δ13C. Both species were susceptible to water deficit regardless of the light regime showing significant decreases in photosynthetic parameters (A max, V cmax, J max) and stomatal conductance (g s ) in conjunction with decreased relative frond water content (RWC) and predawn frond water potential (Ψpredawn). During the water deficit period, decreases in g s in both species started one day later, and were at lower soil water content, under moderate light compared with high light. D. antarctica under moderate light was more vulnerable to drought than all other plants as was indicated by greater decreases in Ψpredawn, lowest stomatal conductance, and photosynthetic rates. Both tree fern species were able to recover after a short but severe water stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号