首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
Two abscisic acid (ABA)-responsive seed proteins, ABR17 and ABR18 (ABA-responsive 17000-Mr and 18000-Mr, respectively), previously found to be induced in cultured embryos of pea (Pisum sativum L.) are major components synthesised during normal seed desiccation. The ABR17 and ABR18 proteins showed different patterns of accumulation. The ABR18 protein was abundant in the testa during early seed development but in desiccating seed it was synthesised in the embryo, indicating spacial as well as temporal regulation of expression. The ABR18 protein was undetectable soon after germination but reappeared after adding ABA. The ABR17 protein was not detected in the testa but appeared in the embryo just prior to maximum fresh weight. The ABR17 protein continued to be synthesised during germination and was also present in non-stressed leaves. A high level of endogenous ABA or added ABA increased levels of translatable ABR17 mRNA. The ABR17 and ABR18 proteins were further characterised so as to help determine their structure and function. Neither protein appeared to contain a signal peptide but both proteins appeared to be glycosylated. The proteins had similar amino-acid compositions and limited Nterminal analysis showed 56% sequence identity. Neither protein had any significant N-terminal sequence homology to any of the late embryogenesis-abundant (LEA) proteins or dehydrins. Both proteins, however, show striking homology with a pea disease-resistance-response protein and the major birch pollen allergen, indicating that the ABR17 and ABR18 proteins may be members of a distinct group of stress-induced proteins.Abbreviations ABA (±) cis,trans-abscisic acid - ABR17 Mr-17200 ABA-responsive protein - ABR18 Mr-18 100 ABA-responsive protein - FW fresh weight - IgG immunoglobulin G - LEA late embryogenesis-abundant - Mr apparent molecularmass - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - TCA trichloroacetic acid This work was supported by the Agricultural and Food Research Council via grants-in-aid to Long Ashton Research Station.  相似文献   

2.
The expression of members of two closely related abscisic acid (ABA)-responsive pea protein families, ABR17 and ABR18 (ABA-responsive 17200-Mr and 18100-Mr, respectively), is developmentally, tissueand stress-specifically regulated. Two-dimensional polyacrylamide gel electrophoresis revealed a number of ABR polypeptides on fluorographs of immunoprecipitated translation products of mRNAs, depending on the tissue, stage of development or type of stress. High endogenous ABA, or added ABA, enhanced the accumulation of translatable mRNA for specific ABR members under certain conditions, but high endogenous ABA was not a pre-requisite for accumulation of translatable ABR mRNA. The accumulation of ABR polypeptides was examined by Western blot analysis of acetate-buffer-extracted proteins. In fully expanded, young unstressed leaves, the ABR17 polypeptides (ABR18 polypeptides not detectable) accumulated to markedly higher levels in the epidermis than in the mesophyll. Dehydration stress caused an increased (ABR17) and detectable (ABR18) polypeptide accumulation which occurred predominantly in the epidermis. Detached leaves were used further to characterise factors affecting ABR polypeptide accumulation. An enhanced (ABR17) and detectable (ABR18) polypeptide accumulation occurred in the presence of ABA (10–4 M) but ABR18-polypeptide accumulation required light. The accumulation of both ABR polypeptides was stimulated in the presence of metabolisable and non-metabolisable carbohydrate sources but not in water or glutamine, indicating an osmotic rather than metabolic response. This carbohydrate-stimulated accumulation was markedly enhanced by light but unaffected by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, an inhibitor of photosynthesis, indicating other photoreceptive processes besides photosynthesis were involved. The function of the ABR proteins remains unknown but their accumulation in aging tissues indicates a role in senescence. The results clearly demonstrate highly complex interactions between different environmental and developmental signals leading to the expression of these stressrelated proteins. In light of these results, the induction of protein expression of the newly-termed intracellular pathogenesis-related proteins, to which the ABR proteins are closely related, is discussed.Abbreviations ABA (±)cis, trans-abscisic acid - ABR17 Mr17200 ABA-responsive protein - ABR18 Mr-18100 ABA-responsive protein - 2-D two-dimensional - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - FW fresh weight - IgG immunoglobulin G - Mr apparent molecular mass - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

3.
4.
Immature embryos of Brassica napus were cultured in vitro with and without various concentrations of germination inhibitors, and the progress of embryogeny was monitored by comparing accumulation of storage proteins in culture with the normal accumulation in seeds. The two major B. napus storage proteins (12S and 1.7S) were purified from seed extracts and analyzed by rocket immunoelectrophoresis (12S protein) or by sodium lauryl sulfate polyacrylamide gel electrophoresis (1.7S protein). During embryo development within seeds both the 12S and 1.7S proteins were first detected when the cotyledons were well developed (embryo dry weight, 0.4 mg), and each storage protein accumulated at an average rate of 26 g d-1 during maximum deposition. Accumulation of the 1.7S protein stopped when the water content of the embryo began to decline (embryo DW, 2.7 mg), but accumulation of the 12S protein continued until seed maturity (embryo DW, 3.6 mg). At the end of embryo development the 12S and the 1.7S proteins comprised approx. 60 and 20% of the total salt-soluble protein, respectively. When embryos were removed from seeds at day 27, just as storage protein was starting to accumulate, and placed in culture on a basal medium, they precociously germinated within 3d, and incorporation of amino acids into the 12S storage protein dropped from 3% of total incorporation to less than 1%. If 10-6 M abscisic acid (ABA) was included in the medium, amino-acid incorporation into the 12S protein increased from 3% of total incorporation when embryos were placed into culture to 18%, 5d later, and the accumulation rate (27.1±2.6 g embryo-1 d-1) matched the maximum rate observed in the seed. High osmotica, such as 0.29 M sucrose or mannitol, added to the basal medium, also inhibited precocious germination, but there was a lag period before 12S-protein synthesis rates equaled the rates on ABA media. These results indicate that some factor in the seed environment is necessary for storage-protein synthesis to proceed, and that ABA is a possible candidate.Abbreviations ABA abscisic acid - PAGE polyacrylamide gel electrophoresis - PMSF phenylmethylsulfonylfluoride - SDS sodium lauryl sulfate  相似文献   

5.
We report here the isolation of cDNAs encoding two abscisic acid-responsive pea (Pisum sativum L.) proteins, ABR17 and ABR18, which are synthesized during late seed development in vivo. Southern blot analyses suggest that ABR17 cDNA corresponds to a single-copy gene, but ABR18 is one member of a family of closely related sequences in the pea genome. The deduced amino acid sequences of ABR17 and ABR18 cDNAs showed similarity to those of the pea disease resistance response proteins, to pathogenesis-related and to stress-induced proteins in other species and to the major birch pollen allergen Betvl.  相似文献   

6.
Total protein was extracted from zygotic embryos and from somatic embryos of Picea abies (L.) Karst. (Norway spruce) cultured in vitro at different times during their development. An analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 2-dimensional gel electrophoresis of the protein extracts showed that protein composition and the temporal changes in protein abundance were very similar in the two embryo types. Both zygotic and somatic embryos accumulated storage proteins in abundance during their maturation phase of growth; the somatic embryos when cultured on medium containing 90 m M sucrose and 7.6 μ M ABA. The major storage proteins are composed of polypeptides with molecular masses of about 22, 28, 33 and 42 kDa and they are identical in both embryo types according to their molecular mass and average isoelectric points. These proteins are also the most abundant proteins in the female gametophytic tissue of the mature seed.  相似文献   

7.
The major storage proteins isolated from wild-type seeds of Arabidopsis thaliana (L.) Heynh., strain Columbia, were studied by sucrose gradient centrifugation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Both the hypocotyl and cotyledons of mature embryos contained abundant 12 S (cruciferin) and 2 S (arabin) proteins that appeared similar in size and subunit composition to the cruciferin (12 S) and napin (1.7 S) seed-storage proteins of Brassica napus. The 12 S protein from Arabidopsis was resolved by SDS-PAGE into two groups of subunits with approximate relative molecular weights of 22–23 kDa (kilodalton) and 30–34 kDa. These polypeptides accumulated late in embryo development, disappeared early in germination, and were not detected in other vegetative or reproductive tissues. Accumulation of the 12 S proteins in aborted seeds from nine embryo-lethal mutants with different patterns of abnormal development was studied to determine the extent of cellular differentiation in arrested embryos from each mutant line. Abundant 12 S proteins were found in arrested embryos from two mutants with late lethal phases, but not in seven other mutants with lethal phases ranging from the globular to the cotyledon stages of embryo development. These results indicate that the accumulation of seed-storage proteins in wild-type embryos of Arabidopsis is closely tied to morphogenetic changes that occur during embryo development. Embryo-lethal mutants may therefore be useful in future studies on the developmental regulation of storage-protein synthesis.Abbreviations kDa kilodalton - Mr relative molecular weight - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

8.
Seed water content is high during early development of tomato seeds (10–30 d after pollination (DAP)), declines at 35 DAP, then increases slightly during fruit ripening (following 50 DAP). The seed does not undergo maturation drying. Protein content during seed development peaks at 35 DAP in the embryo, while in the endosperm it exhibits a triphasic accumulation pattern. Peaks in endosperm protein deposition correspond to changes in endosperm morphology (i.e. formation of the hard endosperm) and are largely the consequence of increases in storage proteins. Storage-protein deposition commences at 20 DAP in the embryo and endosperm; both tissues accumulate identical proteins. Embryo maturation is complete by 40 DAP, when maximum embryo protein content, size and seed dry weight are attained. Seeds are tolerant of premature drying (fast and slow drying) from 40 DAP.Thirty-and 35-DAP seeds when removed from the fruit tissue and imbibed on water, complete germination by 120 h after isolation. Only seeds which have developed to 35 DAP produce viable seedlings. The inability of isolated 30-DAP seed to form viable seedlings appears to be related to a lack of stored nutrients, since the germinability of excised embryos (20 DAP and onwards) placed on Murashige and Skoog (1962, Physiol. Plant. 15, 473–497) medium is high. The switch from a developmental to germinative mode in the excised 30- and 35-DAP imbibed seeds is reflected in the pattern of in-vivo protein synthesis. Developmental and germinative proteins are present in the embryo and endosperm of the 30- and 35-DAP seeds 12 h after their isolation from the fruit. The mature seed (60 DAP) exhibits germinative protein synthesis from the earliest time of imbibition. The fruit environment prevents precocious germination of developing seeds, since the switch from development to germination requires only their removal from the fruit tissue.Abbreviations DAP days after pollination - kDa kilodaltons - SP1-4 storage proteins 1–4 - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - HASI hours after seed isolation - MS medium Murashige and Skoog (1962) medium This work is supported by National Science and Engineering Research Council of Canada grant A2210 to J.D.B.  相似文献   

9.
10.
Storage proteins of interior spruce ( Picea glauca engelmanii complex) somatic embryos were compared to those of zygotic embryos by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. Somatic embryos contain the same storage proteins as zygotic embryos based on similarities of molecular weight, isoelectric variants, solubility characteristics and disulfide linkages. Storage protein levels varied among different somatic embryo genotypes; however, all genotypes tested accumulated significant amounts of storage proteins. Zygotic and somatic embryos display a similar developmental accumulation of storage proteins. The 22, 24, 33 and 35 kDa proteins appear in early stage embryos, while the 41 kDa protein begins to accumulate during mid cotyledon development. The 22, 24 and 41 kDa proteins accumulate continuously during cotyledon development in somatic embryos cultured on abscisic acid. In contrast, zygotic embryos display a more rapid and transient accumulation of these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号