首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To complete our investigations on the oriented behavioral response of isotropically cooled, inert populations of Oxytricha bifaria to a warm thermal gradient, their physiological potentialities under cold microgradient conditions arising at 8.5 degrees C were studied. We monitored the behavior of the experimental populations, both at the level of the passing cold wave front, and afterwards when the thermal gradient stabilized, evaluating (i) their distribution in general, (ii) their relative centroids, (iii) the percentage of both backward creeping and immobile ciliates, and (iv) the numerical indices and rates of their creeping tracks. At the arrival of the cold wave front, the oxytrichas react immediately to the thermal stimulus, creep backwards at very high velocity along uninterrupted linear tracks, and thus move away from the cooling source. No specific behavioral response was ever observed in the static microgradient conditions. At 8.5 degrees C, despite their inertness, the ciliates are still able to behave adaptively, reacting immediately and orientatedly, once a directional factor (the cold-repelling thermal gradient) arises in an isotropic environment. This is similar to their behavior in the symmetric warm attracting thermal gradient.  相似文献   

2.
The physiological effects on isotropically heated populations of Oxytricha bifaria cultured at 24 degrees C were investigated. At 34.6 degrees C ciliates became inert, and did not adaptively react to either cold or warm microgradients; they neither moved towards the favorable cold thermal source nor escaped from the unfavorable warm one. The inert oxytrichas were only able to perform the Side-Stepping Reaction (SSR) on the same spot. However, mobile ciliates at 31.6 degrees C reacted to the cold microgradient by immediately orienting themselves towards its source, without accelerating but reducing their SSR frequency. Moreover, in a warm microgradient such ciliates immediately increased their SSR frequency, then moved away from the thermal source. At 34.6 degrees C the behavior of ciliates was not-adaptive--not acting to guide the organisms to more favorable conditions--whereas at 31.6 degrees C it was still clearly adaptive. Therefore, the locomotory inertness of the oxytrichas at 34.6 degrees C was the result of thermal stress rather than their behavioral response to the environmental isotropy, in contrast to populations of the same species made inert at 9 degrees C.  相似文献   

3.
ABSTRACT. The behavior of populations of Uronychia setigera (Ciliata, Hypotrichida) exposed to water currents flowing at increasing velocities (300, 400, 500, 900, 1,700 μm/s) was analyzed using two techniques: 1) the ethogram and 2) the numerical indices recently proposed to measure the development in space and time of tracks of ciliates. Beyond a certain threshold value of the water velocity (˜ 300 μm/s), this species shows a definite positive rheotaxis, only if it moves in a more or less direct contact with the substrate. No rheotactic swimming ever occurs. Rheotaxis is a gradual, adaptive behavior: the higher the velocity of the current, the stronger the degree of the rheotactic response, as demonstrated by the increasing significance of the polar distribution of the tracks. Beyond 500 μm/s the water flow is so strong that it affects the locomotion of U. setigera continuously and strongly inducing this species to perform a new behavioral pattern, the Fast Backward Bidimensional Swimming. Under stressing water currents it reacts at first by creeping along straighter trajectories and then with faster locomotion, in such a way that its reaction is to a certain extent proportional to the drag of the currents. the rheotaxis of U. setigera is discussed as an adaptive response.  相似文献   

4.
The behavior of Heterolepidoderma sp. was studied with the same approach as those already used for many species of ciliates. The ethogram we drew comprehends both helicoidal swimming (n = 20, r = 52.5 +/-12.2 mum, pitch = 512 +/- 101 mum, v--> = 215 +/- 43 mum/sec), periodically interrupted by irregular patterns changing the direction of the swimming of random angles and creeping on the substrate. The latter behavioral state, very common for the species we studied, occurs along tracks formed by successive elements (circular, C, vs linear segments, S) joined to each other by two kinds of reactions, which change their trajectory. The surprising similarities and the unexpected differences between the behavior of this gastrotrich and those of the ciliates already studied from this point of view are discussed, on the basis of the dimensional ranges and ecological niches shared by these two, definitely unrelated groups of organisms.  相似文献   

5.
Aberle N  Lengfellner K  Sommer U 《Oecologia》2007,150(4):668-681
This study aimed at simulating different degrees of winter warming and at assessing its potential effects on ciliate succession and grazing-related patterns. By using indoor mesocosms filled with unfiltered water from Kiel Bight, natural light and four different temperature regimes, phytoplankton spring blooms were induced and the thermal responses of ciliates were quantified. Two distinct ciliate assemblages, a pre-spring and a spring bloom assemblage, could be detected, while their formation was strongly temperature-dependent. Both assemblages were dominated by Strobilidiids; the pre-spring bloom phase was dominated by the small Strobilidiids Lohmaniella oviformis, and the spring bloom was mainly dominated by large Strobilidiids of the genus Strobilidium. The numerical response of ciliates to increasing food concentrations showed a strong acceleration by temperature. Grazing rates of ciliates and copepods were low during the pre-spring bloom period and high during the bloom ranging from 0.06 (Δ0°C) to 0.23 day−1 (Δ4°C) for ciliates and 0.09 (Δ0°C) to 1.62 day−1 (Δ4°C) for copepods. During the spring bloom ciliates and copepods showed a strong dietary overlap characterized by a wide food spectrum consisting mainly of Chrysochromulina sp., diatom chains and large, single-celled diatoms. Priority programme of the German Research Foundation—contribution 4.  相似文献   

6.
The new analytic approach to the behavior of ciliates represented by the ethogram was used to study the locomotion of Oxytricha bifaria at different temperatures, isotropically applied according to a new protocol. It was shown that under these experimental conditions as the temperature dropped in stages from 24°C to 19°C to 14°C to 9°C, the general mobility of experimental populations decreased, as indicated by 1) the decreasing percentage of mobile organisms, 2) their decreasing velocity, 3) their prolonged backward creeping, and 4) the increasing length of their immobilization periods. The ethogram more particularly revealed that decreasing temperatures induced 1) the appearance of rightward arcs (several of them being travelled by specimens sliding on the substrate). 2) the reduction of both the radius and the velocity along the normal leftward arcs (A-) and the segments (S), and 3) the symmetric increase of both the central angle and the duration of the A- and S. These changes were reversibly induced: they disappeared when the temperature returned to 24°C. Moreover. a new behavioral pattern, the prolonged Side Stepping Reaction, was found. Helicoidal swimming, occurring only at 14°C, was analyzed. Among all of the behavioral parameters, nine were shown to change dramatically between 14°C and 9°C, demonstrating that the linear cooling of the populations induced clear non-linear effects.  相似文献   

7.
To study interactions between host figs and their pollinating wasps and the influence of climatic change on their genetic structures, we sequenced cytoplasmic and nuclear genes and genotyped nuclear microsatellite loci from two varieties of Ficus pumila, the widespread creeping fig and endemic jelly fig, and from their pollinating wasps, Wiebesia pumilae, found in Taiwan and on nearby offshore islands. Great divergence in the mitochondrial cytochrome c oxidase subunit I (mtCOI) with no genetic admixture in nuclear markers indicated that creeping‐ and jelly‐fig wasps are genetically distinct. Compared with creeping‐fig wasps, jelly‐fig wasps also showed better resistance under cold (20 °C) than warm (25 and 30 °C) conditions in a survival test, indicating their adaptation to a cold environment, which may have facilitated population expansion during the ice age as shown by a nuclear intron and 10 microsatellite loci. An excess of amino acid divergence and a pattern of too many rare mtCOI variants of jelly‐fig wasps as revealed by computer simulations and neutrality tests implied the effect of positive selection, which we hypothesize was associated with the cold‐adaptation process. Chloroplast DNA of the two fig plants was completely segregated, with signs of genetic admixture in nuclear markers. As creeping‐ and jelly‐fig wasps can pollinate creeping figs, occasional gene flow between the two figs is thus possible. Therefore, it is suggested that pollinating wasps may be playing an active role in driving introgression between different types of host fig.  相似文献   

8.
In some turtle species, temperature selection may be influenced by environmental conditions, including acclimation temperature and substrate quality. These factors may be particularly important for softshell turtles that are highly aquatic and often thermoregulate by burying in the substrate in shallow water microhabitats. We tested for effects of acclimation temperature (22 °C or 27 °C) and substrate type (sand or gravel) on the selected temperature and movement patterns of 20 juvenile spiny softhshell turtles (Apalone spinifera; Reptilia: Trionychidae) in an aquatic thermal gradient of 14–34 °C. Among 7–11 month old juvenile softshell turtles, acclimation temperature and substrate type did not influence temperature selection, nor alter activity and movement patterns. During thermal gradient tests, both 22- and 27 °C-acclimated turtles selected the warmest temperature (34 °C) available most frequently, regardless of substrate type (sand or gravel). Similarly, acclimation temperature and substrate type did not influence movement patterns of turtles, nor the number of chambers used in the gradient tests. These results suggest that juvenile Apalone spinifera are capable of detecting small temperature increments and prefer warm temperatures that may positively influence growth and metabolism, and that thermal factors more significantly influence aquatic thermoregulation in this species than does substrate type.  相似文献   

9.
10.
Thermoregulation is critical to the survival of animals. Tropical environments can be particularly thermally challenging as they reach very high, even lethal, temperatures. The thermoregulatory responses of tropical freshwater turtles to these challenges are poorly known. One common thermoregulatory behaviour is diurnal basking, which, for many species, facilitates heat gain. Recently, however, a north-eastern Australian population of Krefft's river turtles (Emydura macquarii krefftii) has been observed basking nocturnally, possibly to allow cooling. To test this, we determined the thermal preference (central 50% of temperatures selected) of E. m. krefftii in an aquatic thermal gradient in the laboratory. We then conducted a manipulative experiment to test the effects of water temperatures, both lower and higher than preferred temperature, on diurnal and nocturnal basking. The preferred temperature range fell between 25.3°C (±SD: 1.5) and 27.6°C (±1.4) during the day, and 25.3°C (±2.4) and 26.8°C (±2.5) at night. Based on this, we exposed turtles to three 24 h water temperature treatments (‘cool’ [23°C], ‘preferred’ [26°C] and ‘warm’ [29°C]) while air temperature remained constant at 26°C. Turtles basked more frequently and for longer periods during both the day and night when water temperatures were above their preferred range (the ‘warm’ treatment). This population frequently encounters aquatic temperatures above the preferred thermal range, and our results support the hypothesis that nocturnal basking is a mechanism for escaping unfavourably warm water. Targeted field studies would be a valuable next step in understanding the seasonal scope of this behaviour in a natural environment.  相似文献   

11.
12.
The role of the microbial communities in the classical planktonic food web and its response to eutrophication in shallow lakes is still contradictory. Mediterranean shallow lakes with different eutrophication levels were sampled to study the influence of eutrophication on the microbial food web (MFW) and their contribution to the planktonic food web. Percentage of ciliate biomass in the metazooplankton (MZP) showed a U-shaped trend with eutrophication, with maximum at both ends of the chlorophyll-a (Chla) gradient. The MZP to phytoplankton ratio demonstrated a unimodal pattern with minimum values at the two ends of the Chla gradient and maximum values in the Chla range 5-10 μg l?1. In contrast, the MFW to phytoplankton ratio reached its minimum in the central part of the Chla gradient and maximum values at the extremes of the gradient. These patterns support the hypothesis that the relative importance of bacteria and ciliates is lowest in mesotrophic shallow lakes, and highest in oligotrophic and hypereutrophic systems. These results stress the importance of protozoan in the trophic web, and indicate it is essential to include this group, especially ciliates, when quantifying zooplankton in warm shallow lakes.  相似文献   

13.
Abstract. The thermal preferences of Alaskozetes antarcticus (Acari, Cryptostigmata) and Cryptopygus antarcticus (Collembola, Isotomidae) were investigated over 6 h within a temperature gradient (?3 to +13 °C), under 100% relative humidity (RH) conditions. After 10 days of acclimation at ?2 or +11 °C, individual supercooling points (SCP) and thermopreferences were assessed, and compared with animals maintained for 10 days under fluctuating field conditions (?6 to +7 °C). Acclimation at ?2 °C lowered the mean SCP of both A. antarcticus (?24.2 ± 9.1) and C. antarcticus (?14.7 ± 7.7) compared to field samples (?19.0 ± 9.0 and ?10.7 ± 5.2, respectively). Acclimation at +11 °C increased A. antarcticus mean SCP values (?13.0 ± 8.5) relative to field samples, whereas those of C. antarcticus again decreased (?16.7 ± 9.1). Mites acclimated under field conditions or at +11 °C selected temperatures between ?3 and +1 °C. After acclimation at ?2 °C, both species preferred +1 to +5 °C. Cryptopygus antarcticus maintained under field conditions preferred +5 to +9 °C, whereas individuals acclimated at +11 °C selected +9 to +13 °C. For A. antarcticus, thermopreference was not influenced by its cold hardened state. The distribution of field specimens was further assessed within two combined temperature and humidity gradient systems: (i) 0–3 °C/12% RH, 3–6 °C/33% RH, 6–9 °C/75% RH and 9–12 °C/100% RH and (ii) 0–3 °C/100% RH, 3–6 °C/75% RH, 6–9 °C/33% RH and 9–12 °C/12% RH. In gradient (i), C. antarcticus distributed homogeneously, but, in gradient (ii), C. antarcticus preferred 0–3 °C/100% RH. Alaskozetes antarcticus selected temperatures between 0 and +6 °C regardless of RH conditions. Cryptopygus antarcticus appears better able than A. antarcticus to opportunistically utilize developmentally favourable thermal microclimates, when moisture availability is not restricted. The distribution of A. antarcticus appears more influenced by temperature, especially during regular freeze‐thaw transitions, when this species may select low temperature microhabitats to maintain a cold‐hardened state.  相似文献   

14.
Using three columns of different depths (1.10m, 8.40m and 10.40m), we investigated the possibility of Biomphalaria glabrata moving towards deep regions. In the 1.10m column, we noted that locomotion can occur in two manners: 1) when the foot is in contact with the substrate: a) sliding descent; b) sliding ascent; c) creeping descent; d) creeping ascent, 2) when the foot is not in contact with the substrate: a) sudden descent without emission of air bules; b) sudden descent with emission of air bules; c) sudden ascent. In the 8.40m column containing food on the bottom (experimental group), the snails remained longer at this depth when compared to those of the group which received no food (control). The sliding behavior was characteristic of locomotion occurring at 0 to 1m both in upward and downward directions. Creeping behavior was typical for the ascent of the snails that reached deeper levels. When the snails were creeping, the shell remained hanging as if it were heavier, a fact that may have been due to water entering the pulmonary chamber. In the 10.40m column, the snails slid downward to a depth of 4m or descended suddenly all the way to the bottom. Ascent occurred by creeping from the bottom to the surface. In the 8.40m and 10.40m columns, copulation, feeding and oviposition occurred at the deepest levels.  相似文献   

15.
Thermal tolerance windows serve as a powerful tool for estimating the vulnerability of marine species and their life stages to increasing temperature means and extremes. However, it remains uncertain to which extent additional drivers, such as ocean acidification, modify organismal responses to temperature. This study investigated the effects of CO2‐driven ocean acidification on embryonic thermal sensitivity and performance in Atlantic cod, Gadus morhua, from the Kattegat. Fertilized eggs were exposed to factorial combinations of two PCO2 conditions (400 μatm vs. 1100 μatm) and five temperature treatments (0, 3, 6, 9 and 12 °C), which allow identifying both lower and upper thermal tolerance thresholds. We quantified hatching success, oxygen consumption (MO2) and mitochondrial functioning of embryos as well as larval morphometrics at hatch and the abundance of acid–base‐relevant ionocytes on the yolk sac epithelium of newly hatched larvae. Hatching success was high under ambient spawning conditions (3–6 °C), but decreased towards both cold and warm temperature extremes. Elevated PCO2 caused a significant decrease in hatching success, particularly at cold (3 and 0 °C) and warm (12 °C) temperatures. Warming imposed limitations to MO2 and mitochondrial capacities. Elevated PCO2 stimulated MO2 at cold and intermediate temperatures, but exacerbated warming‐induced constraints on MO2, indicating a synergistic interaction with temperature. Mitochondrial functioning was not affected by PCO2. Increased MO2 in response to elevated PCO2 was paralleled by reduced larval size at hatch. Finally, ionocyte abundance decreased with increasing temperature, but did not differ between PCO2 treatments. Our results demonstrate increased thermal sensitivity of cod embryos under future PCO2 conditions and suggest that acclimation to elevated PCO2 requires reallocation of limited resources at the expense of embryonic growth. We conclude that ocean acidification constrains the thermal performance window of embryos, which has important implication for the susceptibility of cod to projected climate change.  相似文献   

16.
Microstructures of yttria stabilized zirconia thin films deposited by aerosol assisted chemical vapor deposition (AA‐CVD) are correlated with the thermal decomposition behavior of the corresponding metal precursors, zirconium and yttrium 2,4‐pentanedionate. Process conditions of AA‐CVD are investigated with the aim of producing dense and compact YSZ thin films for applications as gas‐tight electrolyte. Based on systematic cross sectional scanning transmission electron microscopy (STEM) investigations and conductivity measurements, the development of percolating nanoporosity is observed in samples prepared at temperatures between 350 °C and 600 °C at standard solution throughput. Compact columnar thin films with bulk conductivity are obtained at 600 °C by reducing the metal content of the precursor solution and at 450 °C by reducing the solution throughput.  相似文献   

17.
1. In a combined field and laboratory study, seasonal relationships between water temperature and oxygen content, genetic structure (composition of MultiLocus Genotypes, MLGs) of a Daphnia assemblage (D. galeatahyalina hybrid species complex), and the physiological properties of clones of frequent MLGs were studied. In accordance with the oxygen‐limited thermal tolerance hypothesis, essential physiological variables of oxygen transport and supply were measured within the tolerable temperature range. 2. A few MLGs (types T1–T4) were frequent during early spring and late autumn at surface temperatures below 10 °C. Clones of T1–T4 showed a low tolerance towards higher temperatures (above 20 °C) and a high phenotypic plasticity under thermal acclimation in comparison to clones derived from frequent MLGs from later seasons, and stored high–medium quantities of carbohydrates at 12 and 18 °C. 3. Another MLG (T6) succeeded the MLGs T1–T4. T6 was frequent over most of the year at temperatures above 10 °C and below 20 °C. A clone derived from T6 exhibited a high tolerance towards warm temperatures and a more restricted phenotypic plasticity. It stored high–medium quantities of carbohydrates at 12, 18 and 24 °C and showed a high capacity for acclimatory adjustments based on haemoglobin expression. 4. During the summer period at temperatures ≥20 °C, the MLG T6 was found mainly near to the thermocline, where temperature and oxygen content were distinctly lower, and to a lesser extent in surface water. At the surface, another MLG (T19) was predominant during this period. A clone of this MLG showed a very high tolerance towards warm temperatures, minimal phenotypic plasticity, low carbohydrate stores and a high capacity for circulatory adjustments to improve oxygen transport at higher temperatures. 5. This study provides evidence for connections between the spatio‐temporal genetic heterogeneity of a Daphnia assemblage and the seasonal changes of water temperature and oxygen content. The data also suggest that not only the actual temperature but also the dynamics of temperature change may influence the genetic structure of Daphnia populations and assemblages.  相似文献   

18.
Paramecium populations from a clear and a glacier‐fed turbid alpine lake were exposed to solar simulated ultraviolet (UVR) and photosynthetically active radiation (PAR) at 8 and 15 °C. The ciliates were tested for DNA damage (comet assay), behavioral changes, and mortality after UVR + PAR exposure. High DNA damage levels (~58% tail DNA) and abnormal swimming behavior were observed, although no significant changes in cell numbers were found irrespective of the lake origin (clear, turbid), and temperatures. We conclude that environmental stressors such as UVR and their effects may influence the adaptation of ciliates living in alpine lakes.  相似文献   

19.
Understanding the potential for organisms to tolerate thermal stress through physiological or evolutionary responses is crucial given rapid climate change. Although climate models predict increases in both temperature mean and variance, such tolerances are typically assessed under constant conditions. We tested the effects of temperature variability during development on male fitness in the rainforest fly Drosophila birchii, by simulating thermal variation typical of the warm and cool margins of its elevational distribution, and estimated heritabilities and genetic correlations of fitness traits. Reproductive success was reduced for males reared in warm (mean 24 °C) fluctuating (±3 °C) vs. constant conditions but not in cool fluctuating conditions (mean 17 °C), although fluctuations reduced body size at both temperatures. Male reproductive success under warm fluctuating conditions was similar to that at constant 27 °C, indicating that briefly exceeding critical thermal limits has similar fitness costs to continuously stressful conditions. There was substantial heritable variation in all traits. However, reproductive success traits showed no genetic correlation between treatments reflecting temperature variation at elevational extremes, which may constrain evolutionary responses at these ecological margins. Our data suggest that even small increases in temperature variability will threaten tropical ectotherms living close to their upper thermal limits, both through direct effects on fitness and by limiting their adaptive potential.  相似文献   

20.
Laboratory mice housed under standard vivarium conditions with an ambient temperature (Ta) of ~22 °C are likely to be cold stressed because this Ta is below their thermoneutral zone (TNZ). Mice raised at Tas within the TNZ adapt to the warmer temperatures, developing smaller internal organs and longer tails compared to mice raised at 22 °C. Since mice prefer Tas equal to their TNZ when housed in a thermocline, we hypothesized that mice reared for long periods (e.g., months) in a thermocline would undergo significant changes in organ development and tail length as a result of their thermoregulatory behavior. Groups of three female BALB/c mice at an age of 37 days were housed together in a thermocline consisting of a 90 cm long aluminum runway with a floor temperature ranging from 23 to 39 °C. Two side-by-side thermoclines allowed for a total of 6 mice to be tested simultaneously. Control mice were tested in isothermal runways maintained at a Ta of 22 °C. All groups were given cotton pads for bedding/nest building. Mass of heart, lung, liver, kidney, brain, and tail length were assessed after 73 days of treatment. Mice in the thermocline and control (isothermal) runways were compared to cage control mice housed 3/cage with bedding under standard vivarium conditions. Mice in the thermocline generally remained in the warm end throughout the daytime with little evidence of nest building, suggesting a state of thermal comfort. Mice in the isothermal runway built elaborate nests and huddled together in the daytime. Mice housed in the thermocline had significantly smaller livers and kidneys and an increase in tail length compared to mice in the isothermal runway as well as when compared to the cage controls. These patterns of organ growth and tail length of mice in the thermocline are akin to warm adaptation. Thus, thermoregulatory behavior altered organ development, a process we term behaviorally mediated, warm adaptation. Moreover, the data suggest that the standard vivarium conditions are likely a cold stress that alters normal organ development relative to mice allowed to select their thermal preferendum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号