首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
ROP2(Rho-related GTPases from plant)为植物中特有的小G蛋白Rho家族的成员,参与植物细胞信号转导过程。为了探讨其在生长素信号响应过程中对细胞膜泡运输的调控作用,构建了拟南芥ROP2过表达(OX-ROP2)、组成激活型表达(CA-rop2)和显性失活型表达(DN-rop2)的载体,分别转化到膜泡标记和生长素结合蛋白ABP1(auxin binding protein 1)调控表达的烟草BY2细胞系,结合生长素处理开展了ROP2对细胞生长素作用下膜泡运输的调控。在生长素IAA作用下,ROP2的过表达和组成激活型表达都能明显促进细胞的膜泡外排运输,而ROP2的显性失活型表达则抑制细胞膜泡外排运输。如果同时诱导细胞中ABP1过表达,能显著增强ROP2对膜泡外排运输的促进作用,而ABP1受干扰抑制表达时,ROP2的过表达及组成型激活表达对膜泡外排的促进作用都受到明显抑制。IAA处理细胞2 min时就可以观察到细胞对IAA信号响应的膜泡运输明显变化,此时细胞核向内膜系统、内膜系统向细胞质膜之间的膜泡外排运输逐渐增强,外排运输的方向趋向于生长素高浓度方向更活跃。该研究说明,植物ROP2参与生长素快速响应的信号转导途径,能促进膜泡朝向生长素浓度较高的一侧外排运输。  相似文献   

2.
植物生长素极性运输调控机理的研究进展   总被引:7,自引:2,他引:5  
李俊华  种康 《植物学通报》2006,23(5):466-477
生长素极性运输特异地调控植物器官发生、发育和向性反应等生理过程。本文综述和分析了生长素极性运输的调控机制。分子遗传和生理学研究证明极性运输这一过程是由生长素输入载体和输出载体活性控制的。小G蛋白ARF附属蛋白GEF和GAP分别调控输出载体(PINI)和输入载体(AUX1)的定位和活性。并影响高尔基体等介导的细胞囊泡运输系统,小G蛋白ROP也参与输出载体PIN2活性的调节。本文基于作者的研究工作提出小G蛋白在调控生长素极性运输中的可能作用模式。  相似文献   

3.
植物生长素极性运输调控机理的研究进展   总被引:1,自引:0,他引:1  
李俊华  种康 《植物学报》2006,23(5):466-477
生长素极性运输特异地调控植物器官发生、发育和向性反应等生理过程。本文综述和分析了生长素极性运输的调控机制。分子遗传和生理学研究证明极性运输这一过程是由生长素输入载体和输出载体活性控制的。小G蛋白ARF附属蛋白GEF和GAP分别调控输出载体(PIN1)和输入载体(AUX1)的定位和活性, 并影响高尔基体等介导的细胞囊泡运输系统, 小G蛋白ROP也参与输出载体PIN2活性的调节。本 文基于作者的研究工作提出小G蛋白在调控生长素极性运输中的可能作用模式。  相似文献   

4.
生长素输出载体PIN家族研究进展   总被引:1,自引:0,他引:1  
林雨晴  齐艳华 《植物学报》2021,56(2):151-165
生长素极性运输调控植物的生长发育。生长素极性运输主要依赖3类转运蛋白: AUX/LAX、PIN和ABCB蛋白家族。生长素在细胞间流动的方向与PIN蛋白在细胞上的极性定位密切相关。PIN蛋白由1个中心亲水环和2个由中心亲水环隔开的疏水区组成。中心亲水环上含多个磷酸化位点, 其为一些蛋白激酶的靶点。PIN蛋白受多方面调控, 包括转录调控、转录后修饰以及胞内循环与降解, 以响应内源和外源信号。目前, 利用全基因组测序方法在禾谷类作物水稻(Oryza sativa)、玉米(Zea mays)和高粱(Sorghum bicolor)中分别鉴定出12、15和11个PIN基因, 但仅有少数PIN基因的功能被报道。该文从蛋白结构、活性调控和功能验证等方面综述了PIN蛋白在拟南芥(Arabidopsis thaliana)和禾谷类作物中的研究进展, 以期为探究PIN蛋白家族介导的生长素极性运输过程提供新的思路与线索。  相似文献   

5.
ROPs:植物细胞内多种信号通路的分子开关   总被引:1,自引:0,他引:1  
植物RHO相关蛋白GTPases(RHO-related GTPases of plants, ROPs)是广泛存在于植物中的一类信号转导G蛋白(又称GTP结合蛋白),其通过结合GDP或GTP在非活性和活性状态间进行切换,进而在细胞极性控制、形态发育、激素水平调控、逆境反应等诸多植物生命活动的信号转导过程中扮演重要的分子开关角色。本文对ROP蛋白的结构域及基于蛋白质结构分类进行了介绍,并对拟南芥、玉米、水稻和大麦中的ROP家族蛋白质进行了系统进化分析。分析结果表明,这些植物中的ROP蛋白根据蛋白质结构域组成可分为Ⅰ类(typeⅠ)和Ⅱ类(typeⅡ)两种类型,而根据蛋白质序列的保守性可将其在植物中的ROP蛋白划分为4个进化枝。本综述不但对ROP蛋白作为分子开关在细胞内调控各种信号通路的机制进行了叙述,还对ROP在花粉管、根毛及植物表皮铺盖细胞极性发育,以及其他抗逆反应中的具体作用和机制及研究进展进行了阐述。本文还对ROP蛋白在ABA、IAA、BR等植物激素信号传导过程中的调控作用及研究进展进行了阐述。本文对植物ROP蛋白研究过程中尚未解决的问题,例如不同的ROP蛋白在同一个信号通路中的作用为何如此不同,以及ROP是如何协调不同的信号通路以共同调控一个植物发育或者生理过程等问题进行了总结,并在此基础上对未来的研究方向进行了展望。  相似文献   

6.
生长素是最重要的植物激素之一, 对植物生长发育起着关键调控作用。生长素作用于植物后, 早期生长素响应基因家族Aux/IAAGH3SAUR等被迅速诱导, 基因表达上调。其中Aux/IAA基因家族编码的蛋白一般由4个保守结构域组成, 结构域I具有抑制生长素信号下游基因表达的作用, 结构域II在生长素信号转导中主要被TIR1调控进而影响Aux/IAA的稳定性, 结构域III/IV通过与生长素响应因子ARF相互作用调控生长素信号。Aux/IAA基因家族在双子叶植物拟南芥(Arabidopsis thaliana)的器官发育、根形成、茎伸长和叶扩张等方面发挥重要作用; 在单子叶植物水稻(Oryza sativa)和小麦(Triticum aestivum)中, 主要影响根系发育和株型, 但大多数Aux/IAA基因的功能尚不清楚。该文主要从Aux/IAA蛋白的结构、功能和生长素信号转导途径方面综述Aux/IAA家族在拟南芥、禾谷类作物及其它植物中的研究进展, 以期为全面揭示Aux/IAA家族基因的生物学功能提供线索。  相似文献   

7.
应用逆转录-聚合酶链式反应(RT—PCR),从黄瓜子房(幼果)中扩增出生长素结合蛋白ABP1)cDNA片段。该基因在开花前1天的子房中表达信号较弱,在授粉后2、4和6天的幼果中表达较强;在开花后2天有单性结实能力的子房中表达信号较强,不能形成果实的子房中信号较弱,所以ABP1基因可能参与黄瓜果实的生长发育过程。将拟南芥ABP1基因转入黄瓜中,转基因黄瓜的单性结实率平均为31.7%,高于对照(19.9%)。由于黄瓜的单性结实主要与生长素有关,所以,转基因植株单性结实率的提高可能是由于子房增强了对自身所含生长素的敏感性所致,说明生长素结合蛋白参与生长素在黄瓜果实生长发育中的生理作用。  相似文献   

8.
小G蛋白ROP的研究进展   总被引:2,自引:0,他引:2  
小G蛋白(small GTPases)是近年来研究细胞信号转导过程的热点问题,包括Ras、Rab、Rho、Arf和Ran5个亚家族,其中ROP蛋白是Rho家族成员,为植物特有,在调控细胞生长、发育及调节植物对环境响应等各方面起重要作用.对ROP蛋白的活性调节和功能进行了重点介绍.  相似文献   

9.
以黄瓜子房 (幼果 )RNA为模板 ,应用逆转录 聚合酶链式反应 (RT PCR) ,首次扩增出黄瓜生长素结合蛋白基因 (ABP1)cDNA片段 ,并进行测序和同源性分析。对ABP1基因在黄瓜子房 (幼果 )中的mRNA表达水平作了初步探讨 ,结果表明 ,该基因在开花前 1d的子房中表达信号较弱 ,在授粉后 2、4和 6d的幼果中表达增强 ;开花后 2d未经授粉的子房中 ,绿而膨大、能形成单性结实果者信号较强 ,黄而萎蔫、不能形成果实者信号较弱。Southern杂交结果表明 ,黄瓜生长素结合蛋白为小基因家族编码  相似文献   

10.
生长素调控植物气孔发育的研究进展   总被引:2,自引:0,他引:2  
气孔是分布于植物表皮由保卫细胞围成的小孔, 是植物体与外界环境进行水分和气体交换的重要通道, 通过影响光合作用、蒸腾作用及一系列生物学过程来促进植物适应环境的变化。生长素是最早被发现的植物激素, 在植物生长发育中发挥重要作用。近年来的研究表明, 生长素通过载体蛋白-TIR1/AFB受体-AUXIN/IAA-ARFs信号通路, 调控STOMAGEN的表达; 之后, 经STOMAGEN-类LRR受体蛋白激酶ERf-MAPKs级联反应激酶-SPCH转录因子信号通路, 启动气孔的发育进程。EPF1、EPF2和类LRR受体蛋白激酶TMM不是该过程的必需元件。生长素对气孔的调控受光信号影响, 光信号通路组分E3泛素连接酶COP1位于MAPKs激酶的上游, 参与气孔的发育调控。  相似文献   

11.
ROP GTPases are crucial for the establishment of cell polarity and for controlling responses to hormones and environmental signals in plants. In this work, we show that ROP3 plays important roles in embryo development and auxin-dependent plant growth. Loss-of-function and dominant-negative (DN) mutations in ROP3 induced a spectrum of similar defects starting with altered cell division patterning during early embryogenesis to postembryonic auxin-regulated growth and developmental responses. These resulted in distorted embryo development, defective organ formation, retarded root gravitropism, and reduced auxin-dependent hypocotyl elongation. Our results showed that the expression of AUXIN RESPONSE FACTOR5/MONOPTEROS and root master regulators PLETHORA1 (PLT1) and PLT2 was reduced in DN-rop3 mutant embryos, accounting for some of the observed patterning defects. ROP3 mutations also altered polar localization of auxin efflux proteins (PINs) at the plasma membrane (PM), thus disrupting auxin maxima in the root. Notably, ROP3 is induced by auxin and prominently detected in root stele cells, an expression pattern similar to those of several stele-enriched PINs. Our results demonstrate that ROP3 is important for maintaining the polarity of PIN proteins at the PM, which in turn ensures polar auxin transport and distribution, thereby controlling plant patterning and auxin-regulated responses.  相似文献   

12.
Auxin and abscisic acid (ABA) are major plant hormones that act together to modulate numerous aspects of plant growth and development, including seed germination, primary root elongation, and lateral root formation. In this study, we analyzed the loss-of-function mutants of two closely related ROP (Rho of plants) GTPases, ROP9 and ROP10, and found that these ROP GTPases differentially regulate the auxin and ABA responses. rop9 and rop10 mutations enhanced the ABA-induced suppression of seed germination, primary root growth, and lateral root formation and the expression of ABA-responsive genes, whereas rop9 but not rop10 suppressed auxin-induced root phenotypes and auxin-responsive gene expression. These results suggest that both ROP9 and ROP10 function as negative regulators of ABA signaling, and that ROP9, but not ROP10, functions as a positive regulator of auxin signaling. Previously, ROPinteractive CRIB motif-containing protein 1 (RIC1) was reported to participate in auxin and ABA responses, and to have a similar effect as ROP9 and ROP10 on gene expression, root development, and seed germination. Because RIC proteins mediate ROP GTPase signaling, our results suggest that ROP9 and ROP10 GTPases function upstream of RIC1 in auxin- and ABA-regulated root development and seed germination.  相似文献   

13.
Nagawa S  Xu T  Lin D  Dhonukshe P  Zhang X  Friml J  Scheres B  Fu Y  Yang Z 《PLoS biology》2012,10(4):e1001299
Cell polarization via asymmetrical distribution of structures or molecules is essential for diverse cellular functions and development of organisms, but how polarity is developmentally controlled has been poorly understood. In plants, the asymmetrical distribution of the PIN-FORMED (PIN) proteins involved in the cellular efflux of the quintessential phytohormone auxin plays a central role in developmental patterning, morphogenesis, and differential growth. Recently we showed that auxin promotes cell interdigitation by activating the Rho family ROP GTPases in leaf epidermal pavement cells. Here we found that auxin activation of the ROP2 signaling pathway regulates the asymmetric distribution of PIN1 by inhibiting its endocytosis. ROP2 inhibits PIN1 endocytosis via the accumulation of cortical actin microfilaments induced by the ROP2 effector protein RIC4. Our findings suggest a link between the developmental auxin signal and polar PIN1 distribution via Rho-dependent cytoskeletal reorganization and reveal the conservation of a design principle for cell polarization that is based on Rho GTPase-mediated inhibition of endocytosis.  相似文献   

14.
15.
Mitogen‐activated protein kinase (MPK) cascades are conserved mechanisms of signal transduction across eukaryotes. Despite the importance of MPK proteins in signaling events, specific roles for many Arabidopsis MPK proteins remain unknown. Multiple studies have suggested roles for MPK signaling in a variety of auxin‐related processes. To identify MPK proteins with roles in auxin response, we screened mpk insertional alleles and identified mpk1‐1 as a mutant that displays hypersensitivity in auxin‐responsive cell expansion assays. Further, mutants defective in the upstream MAP kinase kinase MKK3 also display hypersensitivity in auxin‐responsive cell expansion assays, suggesting that this MPK cascade affects auxin‐influenced cell expansion. We found that MPK1 interacts with and phosphorylates ROP BINDING PROTEIN KINASE 1 (RBK1), a protein kinase that interacts with members of the Rho‐like GTPases from Plants (ROP) small GTPase family. Similar to mpk1‐1 and mkk3‐1 mutants, rbk1 insertional mutants display auxin hypersensitivity, consistent with a possible role for RBK1 downstream of MPK1 in influencing auxin‐responsive cell expansion. We found that RBK1 directly phosphorylates ROP4 and ROP6, supporting the possibility that RBK1 effects on auxin‐responsive cell expansion are mediated through phosphorylation‐dependent modulation of ROP activity. Our data suggest a MKK3 ? MPK1 ? RBK1 phosphorylation cascade that may provide a dynamic module for altering cell expansion.  相似文献   

16.
RAC/ROP GTPases are a family of plant-specific signaling molecules solely representing the Ras and Rho family of Ras-related G proteins in plants. RAC/ROPs potentially interact with cell surface-associated signal perception apparatus for a broad range of extracellular stimuli, including hormones, pathogen elicitors and abiotic stress, and mediate diverse cellular pathways in response to these signals. They are also known to interact with multiple effectors, affecting cellular and biochemical systems that regulate actin dynamics, reactive oxygen species production, proteolysis, and gene expression. RAC/ROPs are, thus, ideally suited as integrators for multiple signals and as coordinators of diverse cellular pathways to control growth, differentiation, development and defense responses. Recent findings that suggest how RAC/ROP signaling activity is regulated and how functional specificity can be achieved are discussed here.  相似文献   

17.

Background

Local activation of Rho GTPases is important for many functions including cell polarity, morphology, movement, and growth. Although a number of molecules affecting Rho-of-Plants small GTPase (ROP) signalling are known, it remains unclear how ROP activity becomes spatially organised. Arabidopsis root hair cells produce patches of ROP at consistent and predictable subcellular locations, where root hair growth subsequently occurs.

Methodology/Principal Findings

We present a mathematical model to show how interaction of the plant hormone auxin with ROPs could spontaneously lead to localised patches of active ROP via a Turing or Turing-like mechanism. Our results suggest that correct positioning of the ROP patch depends on the cell length, low diffusion of active ROP, a gradient in auxin concentration, and ROP levels. Our theory provides a unique explanation linking the molecular biology to the root hair phenotypes of multiple mutants and transgenic lines, including OX-ROP, CA-rop, aux1, axr3, tip1, eto1, etr1, and the triple mutant aux1 ein2 gnom eb.

Conclusions/Significance

We show how interactions between Rho GTPases (in this case ROPs) and regulatory molecules (in this case auxin) could produce characteristic subcellular patterning that subsequently affects cell shape. This has important implications for research on the morphogenesis of plants and other eukaryotes. Our results also illustrate how gradient-regulated Turing systems provide a particularly robust and flexible mechanism for pattern formation.  相似文献   

18.
Target of rapamycin (TOR) promotes reinitiation at upstream ORFs (uORFs) in genes that play important roles in stem cell regulation and organogenesis in plants. Here, we report that the small GTPase ROP2, if activated by the phytohormone auxin, promotes activation of TOR, and thus translation reinitiation of uORF-containing mRNAs. Plants with high levels of active ROP2, including those expressing constitutively active ROP2 (CA-ROP2), contain high levels of active TOR. ROP2 physically interacts with and, when GTP-bound, activates TOR in vitro. TOR activation in response to auxin is abolished in ROP-deficient rop2 rop6 ROP4 RNAi plants. GFP-TOR can associate with endosome-like structures in ROP2-overexpressing plants, indicating that endosomes mediate ROP2 effects on TOR activation. CA-ROP2 is efficient in loading uORF-containing mRNAs onto polysomes and stimulates translation in protoplasts, and both processes are sensitive to TOR inhibitor AZD-8055. TOR inactivation abolishes ROP2 regulation of translation reinitiation, but not its effects on cytoskeleton or intracellular trafficking. These findings imply a mode of translation control whereby, as an upstream effector of TOR, ROP2 coordinates TOR function in translation reinitiation pathways in response to auxin.  相似文献   

19.
20.
Wu HM  Hazak O  Cheung AY  Yalovsky S 《The Plant cell》2011,23(4):1208-1218
Auxin functions as a key morphogen in regulating plant growth and development. Studies on auxin-regulated gene expression and on the mechanism of polar auxin transport and its asymmetric distribution within tissues have provided the basis for realizing the molecular mechanisms underlying auxin function. In eukaryotes, members of the Ras and Rho subfamilies of the Ras superfamily of small GTPases function as molecular switches in many signaling cascades that regulate growth and development. Plants do not have Ras proteins, but they contain Rho-like small G proteins called RACs or ROPs that, like fungal and metazoan Rhos, are regulators of cell polarity and may also undertake some Ras functions. Here, we discuss the advances made over the last decade that implicate RAC/ROPs as mediators for auxin-regulated gene expression, rapid cell surface-located auxin signaling, and directional auxin transport. We also describe experimental data indicating that auxin-RAC/ROP crosstalk may form regulatory feedback loops and theoretical modeling that attempts to connect local auxin gradients with RAC/ROP regulation of cell polarity. We hope that by discussing these experimental and modeling studies, this perspective will stimulate efforts to further refine our understanding of auxin signaling via the RAC/ROP molecular switch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号