首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study documents the comparative success of seeds and seedlings of the perennial gynodioecious-gynomonoecious weed, Silene vulgaris, in the greenhouse. The importance of experimental design is stressed by comparing two different statistical analyses of the data. Seeds were obtained from artificial pollinations in the field: self-fertilization of hermaphrodites, and cross-fertilizations of both hermaphrodites and females. One-way analysis of variance using progeny type (selfed hermaphrodites, outcrossed hermaphrodites, and outcrossed females) as the treatment effect for each seed and seedling variable showed statistically discernable differences among progeny from different cross types. The significance of this type of ANOVA resulted from a reduced error term and positively-biased F ratios. A factorial design showed no significant differences due to type of progeny in seed mass, days to germination, leaf number, area, or biomass at six weeks of age. There were, however, significant differences among seeds attributable to maternal parent for all seed and seedling variables. A higher proportion of seeds from outcrossed individuals germinated compared to that from self-fertilization. When the data were analyzed to include and partition all sources of variation, differences among offspring appeared during germination, rather than during later development. Seed mass, cross type, and sex of maternal parent all significantly affected the likelihood of germination; however, they had decreasing predictive power, respectively. Inbreeding depression in Silene vulgaris may help maintain gynodioecy; however, the pleiotropic effects of both nuclear and cytoplasmic genes for sex expression also may affect fitness and the maintenance of females.  相似文献   

2.
In this study the effects of seed size variation on germinationand seedling vigour have been investigated within and betweenploidy levels of diploid and related autotetraploid Dactylixglomerata. Rates of seed germination and seedling growth werecompared in two contrasting environments using diploid and tetraploidseeds of equal and also different biomass. Within each ploidylevel, seed biomass had no effect on either the overall percentagenor the rate of germination. In contrast, the comparison ofseeds of equal biomass but differing in ploidy level showedthat seeds from tetraploid plants germinated faster and to ahigher percentage than those from diploid plants. With respectto seedling growth, heavier seeds from the tetraploid genotypesgave seedlings of significantly higher biomass than those fromlighter tetraploid and diploid seeds throughout the 2 monthsof study. Interestingly, seeds of equal biomass but from differentploidy levels produced seedlings more similar than those fromthe extreme seed weight categories. These differences were maintainedin two different environmental conditions. These results suggestthat there is a complex interdependance of seed size and ploidyon seed germination and seedling growth but is not a simpleconsequence of differences in seed size between diploids andtheir related tetraploids.Copyright 1995, 1999 Academic Press Dactylis glomerata, polyploidy, seed size, germination, seedling  相似文献   

3.
以1/4 Hoagland溶液为基础培养液,研究了0.5%、1.0%、1.5%、2.0%和2.5%NaCl处理对海滨锦葵[Kostelezkya rirginica(L.)Presl.]种子萌发和幼苗生长的影响,发现随着培养液中NaCl浓度的增加,海滨锦葵种子萌发率逐渐降低;当NaCl浓度达2.5%时种子不萌发,但NaCl胁迫解除后,种子的萌发率水平与对照相当。幼苗在含0.5%~1.0%NaCl的培养液中生长状况良好,叶绿素含量和根系活力明显增高;但当NaCl浓度达1.5%-2.0%时,叶绿素含量和根系活力逐渐下降;与对照相比,NaCl胁迫下幼苗的MDA水平降低。结果表明,NaCl胁迫对海滨锦葵种子萌发和幼苗牛长有一定的影响,但海滨锦葵可通过种子休眠、增加根系活力、降低体内MDA水平来缓解一定的盐害效应.以适应盐胁迫的生长环境.  相似文献   

4.
Habitat fragmentation reduces frugivorous bird abundance. Such a reduction may lead to a reduction in seed dispersal, thereby compromising seedling recruitment rate with far reaching consequences for plant population persistence. We assessed frugivory, seed germination, and seedling recruitment rates in a fragmented forest of central Chile by comparing a continuous forest with four forest fragments surrounded by pine plantations. Frugivory was 2.4 times higher in continuous forest than in forest fragments. Seeds eaten by birds germinated 1.7 and 3.7 times higher than non-eaten seeds from continuous forest and fragments respectively. Non-eaten seeds from continuous forest germinated 2.2 times higher than those from forest fragments, suggesting inbreeding depression. However, seedling recruitment rates at forest fragments were far higher than in continuous forest where no seedling recruited in the five years analysed. Therefore, despite forest fragmentation negatively affected frugivory, it did not translate into a decreased fitness of plants, thus highlighting the importance of considering the overall processes leading the reproductive success of plants following anthropogenic disturbances.  相似文献   

5.
Seeds were sampled from 19 populations of the rare Gentiana pneumonanthe, ranging in size from 5 to more than 50,000 flowering plants. An analysis was made of variation in a number of life-history characters in relation to population size and offspring heterozygosity (based on seven polymorphic isozyme loci). Life-his-tory characters included seed weight, germination rate, proportion of seeds germinating, seedling mortality, seedling weight, adult weight, flower production per plant and proportion of plants flowering per family. Principal component analysis (PCA) reduced the dataset to three main fitness components. The first component was highly correlated with adult weight and flowering performance, the second with germination performance and the third component with seed and seedling weight and seedling mortality. The latter two components were considered as being maternally influenced, since these comprised life-history traits that were significantly correlated with seed weight. Multiple regression analysis showed that variation in the first fitness component was mainly associated with heterozygosity and not with population size, while the third fitness component was only correlated with population size and not with heterozygosity. The latter relationship appeared to be non-linear, which suggests a stronger loss of fitness in the smallest populations. The second (germination) component was neither correlated with population size nor with genetic variation. There was only a weak association between population size, heterozygosity and the population coefficients of variation for each life history character. Most correlation coefficients were negative, however, which suggests that there is more variation among progeny from smaller populations. We conclude that progeny from small populations of Gentiana pneumonanthe show reduced fitness and may be phenotypically more variable. One of the possible causes of the loss of fitness is a combination of unfavourable environmental circumstances for maternal plants in small populations and increased inbreeding. The higher phenotypic variation in small populations may also be a result of inbreeding, which can lead to deviation of individuals from the average phenotype through a loss of developmental stability.  相似文献   

6.
One of the major evolutionary trends in flowering plants is the evolution of unisexual flowers (male or female) from perfect flowers. This transition has occurred repeatedly in many taxa and has generated a wonderful array of variation in sexual expression among species. Theoretical studies have proposed a number of mechanisms to explain how this level of variation could be maintained in natural systems. One possible mechanism is the female compensation hypothesis, which predicts that female mutants require an increase in their seed fitness in order to invade a hermaphroditic system. Using Geranium maculatum, I tested this hypothesis and showed that female mothers produced more and larger seeds than hermaphroditic mothers even though they were indistinguishable in their vegetative traits and the flower production. Seeds from females were also more likely to germinate and produced seedlings with larger above- and belowground biomass. These seedlings were more likely to flower than those from hermaphrodites in at least one of the two populations studied. Combined, these results indicated that females in G. maculatum did compensate for their loss of male function by producing more and better seeds than hermaphrodites. This provides a mechanism for the maintenance of female plants in this species.  相似文献   

7.
Seed size is normally distributed for many annual species, while mature plant size is frequently positively skewed. A study was conducted to determine the influence of seed size and the role of genetic differences in determining relative seedling size for Ludwigia leptocarpa. Seed size had a significant effect on percentage germination and time of seed germination but no effect on dry weight or leaf area of seedlings. Seed size and spacing had a significant effect on seedling dry weight for plants grown under competition, while relative day of emergence had no effect. Familial (genetic) differences were found in average seed weight between maternal plants, but not in average number of days to germination, average weight of seeds which germinated, or shoot dry weight. It is concluded that neither seed size alone nor genetic differences between plants are directly responsible for the development of size hierarchies in Ludwigia leptocarpa populations. Large seed size does convey an advantage in growth when plants from seeds of differing initial size interact.  相似文献   

8.
Controlled conditions were used to investigate the relationship between ion distribution in developing seeds of two Suaeda salsa populations and seed germination and seedling emergence. Seeds were harvested from S. salsa plants that had been treated with 1 or 400 mM NaCl for 122 (saline inland population) or 135 days (intertidal zone population) in a glasshouse. Germination and seedling emergence were evaluated under salinity. In both populations, more ions were accumulated in the pericarps of plants cultured in 400 mM NaCl than in 1 mM NaCl. Pericarps accumulated much higher ion concentrations in the intertidal zone population than in the saline inland population, while the opposite trend occurred for ion accumulation in the embryos. Seeds of plants from the intertidal zone population germinated more rapidly than those from plants of the saline inland population, regardless of the NaCl concentration during seed germination. However, seedling emergence under high salinity was lower with seeds from the intertidal zone population than with seeds from the saline inland population. In conclusion, S. salsa in the intertidal zone employs superior control of ion compartmentalization in the pericarps to tolerate salinity but requires a minimal level of ions in embryos to ensure seedling establishment in highly saline environments. This indicates that euhalophytes require salts during the mature seed stage to maintain seed viability and to ensure seedling emergence and population establishment.  相似文献   

9.
The timing of the transition from seed, seedlings and development into flowering is paramount importance in annual-type Zostera marina, because flowering is the first step of sexual reproduction. A majority of plants use environmental cues to regulate the transition to their developmental stages because plants must flower synchronously for successful outcrossing and must complete their sexual reproduction under favorable external conditions. The morphological characteristics (seeds and lateral shoot production, branch number, and inflorescence length) of reproductive shoots of Z. marina L. were examined in outdoor mesocosms to better understand the reproductive strategies of annual populations. Seeds in the germination experiment were divided into two groups: those exposed to cold (7 °C; vernalized group) and those left untreated (25-21 °C; non-vernalized group). All 600 seeds (300 from each group) were cultured for 2 months at 7, 10, 15, 20, and 25 °C in an indoor incubator. In the vernalized group, the germination rates were almost significantly higher than in the non-vernalized group. However, germination rates were not significantly affected by germination temperature. In outdoor mesocosms, production of vegetative shoots was observed in plants germinated at 15 and 20 °C in the vernalized group and at 10, 15 and 20 °C in the non-vernalized group. The highest number of vegetative shoots produced (35) was observed in plants germinated at 20 °C in the vernalized group, whereas seeds of either group failed to produce vegetative shoots when germinated at a low temperature (7 °C).In the flowering phase, the number of branches per shoot in the vernalized group was significantly higher than in the non-vernalized group. The total number of spadices on the 1st branches of plants in the vernalized group (germination at 20 °C) was significantly lower than that in the non-vernalized group at the same germination temperature. The total number of spadices per reproductive shoot in the vernalized group (germination at 10 °C) was also higher than in the non-vernalized group. Thus, both low temperature (vernalization) and seed germination temperature have implications for the sexual and asexual propagation of annual Z. marina populations.  相似文献   

10.
  • In the model species Arabidopsis thaliana phytochromes mediate dormancy and germination responses to seasonal cues experienced during seed maturation on the maternal plants. However, the effect of the maternal light environment on seed germination in native wild species has not been well studied. This is particularly important given its practical application in the context of environmental restoration, when there can be marked changes in the canopy.
  • Plants of Primula vulgaris were grown in the field over two vegetative seasons under four shading treatments from low to high ratio of red to far‐red light (R:FR). Leaf and seed traits were assessed in response to the light treatments. The germination of seeds from these four maternal environments (pre‐dispersal) was investigated at seven light and five temperature treatments (post‐dispersal).
  • Thinner leaves, larger leaf area and greater chlorophyll content were found in plants growing in reduced R:FR. Shading in the maternal environment led to increased seed size and yield, although the conditions experienced by the maternal plants had no effect on seed germination. Seeds responded strongly to the cues experienced in their immediate germination environment. Germination was always enhanced under higher R:FR conditions.
  • The observed phenotypic trait variation plays a major role in the ability of P. vulgaris to grow in a wide range of light conditions. However, the increased germination capacity in response to a higher R:FR for all maternal environments suggests potential for seedling establishment under vegetative shade only in the presence of canopy gaps.
  相似文献   

11.
Atriplex tatarica is a heterocarpic species of disturbed habitats. Seeds of Atriplex tatarica do not germinate immediately after shedding, but may remain in a dormant but viable state indefinitely. We investigated whether there were genetic and fitness differences between plants derived from seeds of the different fruit types germinated in different temperatures and salinities. Seeds that germinated in optimal and suboptimal conditions differed significantly in their genetic composition due, in part, to their source population. Seeds that germinated in the suboptimal conditions produced more homozygous plants. Plants that were primarily heterozygous were generated from nondormant fruit types as well as from fruits that germinated in the optimal conditions. Moreover, there was a positive correlation between the degree of heterozygosity and plant fitness measured as the mass of the stem and reproductive structures. In conclusion, the genetic variation of natural populations may be at least partly due to the ability of particular seed genotypes to germinate in the specific environmental conditions of a particular locality. In some circumstances, the process of differential germination may select not only for genetic variability but also for higher fitness if heterozygosity-fitness correlations are present.  相似文献   

12.
Li Y  Yang H  Xia J  Zhang W  Wan S  Li L 《PloS one》2011,6(12):e28601

Background

The responses of plant seeds and seedlings to changing atmospheric nitrogen (N) deposition and precipitation regimes determine plant population dynamics and community composition under global change.

Methodology/Principal Findings

In a temperate steppe in northern China, seeds of P. tanacetifolia were collected from a field-based experiment with N addition and increased precipitation to measure changes in their traits (production, mass, germination). Seedlings germinated from those seeds were grown in a greenhouse to examine the effects of improved N and water availability in maternal and offspring environments on seedling growth. Maternal N-addition stimulated seed production, but it suppressed seed mass, germination rate and seedling biomass of P. tanacetifolia. Maternal N-addition also enhanced responses of seedlings to N and water addition in the offspring environment. Maternal increased-precipitation stimulated seed production, but it had no effect on seed mass and germination rate. Maternal increased-precipitation enhanced seedling growth when grown under similar conditions, whereas seedling responses to offspring N- and water-addition were suppressed by maternal increased-precipitation. Both offspring N-addition and increased-precipitation stimulated growth of seedlings germinated from seeds collected from the maternal control environment without either N or water addition. Our observations indicate that both maternal and offspring environments can influence seedling growth of P. tanacetifolia with consequent impacts on the future population dynamics of this species in the study area.

Conclusion/Significance

The findings highlight the importance of the maternal effects on seed and seedling production as well as responses of offspring to changing environmental drivers in mechanistic understanding and projecting of plant population dynamics under global change.  相似文献   

13.
Understanding the relative magnitudes of inbreeding and outbreeding depression in rare plant populations is increasingly important for effective management strategies. There may be positive and negative effects of crossing individuals in fragmented populations. Conservation strategies may include introducing new genetic material into rare plant populations, which may be beneficial or detrimental based on whether hybrid offspring are of increased or decreased quality. Thus, it is important to determine the effects of pollen source on offspring fitness in rare plants. We established pollen crosses (i.e. geitonogamous‐self, autonomous‐self, intrasite‐outcross, intersite‐outcross and open‐pollinated controls) to determine the effects of pollen source on fitness (seeds/fruit and seed mass) and early offspring traits (probability of germination, number of leaves, leaf area and seedling height) in the rare plant Polemonium vanbruntiae. Open‐pollinated, intrasite‐outcross and geitonogamous‐self treatments did not differ in fitness. However, plants receiving autonomous‐self pollen had the lowest fitness and the lowest probability of seed germination. Intersite‐outcross plants contained fewer seeds/fruit, but seeds germinated at higher frequencies and seedlings were more vigorous. We also detected heterosis at the seed germination stage. These data may imply that natural populations of P. vanbruntiae exhibit low genetic variation and little gene flow. Evidence suggests that deleterious alleles were not responsible for reduced germination; rather environmental factors, dichogamy, herkogamy and/or lack of competition among pollen grains may have caused low germinability in selfed offspring. Although self‐pollination may provide some reproductive assurance in P. vanbruntiae, the result is a reduction in germination and size‐related early traits for selfed offspring.  相似文献   

14.
紫茎泽兰土壤种子库特征及其对幼苗的影响   总被引:5,自引:1,他引:4       下载免费PDF全文
研究紫茎泽兰(Eupatorium adenophorum)土壤种子库特征及其对紫茎泽兰种子的萌发、幼苗命运的影响, 在综合治理紫茎泽兰入侵危害及防止紫茎泽兰的继续扩散等方面有着重要的意义。该文在攀枝花紫茎泽兰入侵严重的地区, 通过采集果园、放牧灌丛以及禁牧灌丛3种不同生境紫茎泽兰土壤种子库的样本, 以说明不同干扰程度下紫茎泽兰种子在土壤中的分布状况。通过野外调查并结合盆栽实验, 初步研究了紫茎泽兰土壤种子库基本特征以及光照和种子在土壤中的埋藏深度等对紫茎泽兰幼苗的影响。结果表明: 1)果园、放牧灌丛和禁牧灌丛等3种干扰程度不同生境的深层种子量占总种子量的比例分别为56.44%、46.96%和24.86% (p=0.006), 这说明土壤深层种子量大小与干扰成正比, 干扰越大, 深层次紫茎泽兰种子量占总种子量的比重越大。2)播种在0、1和5 cm深度的种子萌发率分别为64.67%、22.67%和13.33%, 即种子埋藏越深, 萌发率越低, 不同层次种子萌发率差异极显著(p=0.00); 幼苗死亡率分别为27.95%、0和0, 表层种子萌发的幼苗有较高的死亡率, 而由埋藏在深层的种子萌发的幼苗没有死亡, 土壤表层发芽的幼苗与不同埋藏深度种子萌发的幼苗之间死亡率差异极显著(p=0.00)。3)在无遮蔽、半遮蔽和全遮蔽3种不同情况下, 紫茎泽兰幼苗的死亡率分别为72.15%、30.38%和4.87%, 定居率分别为6.66%、33.99%和46.67%, 即遮蔽程度越高, 死亡率越低, 定居率越高, 不同处理之间死亡率和定居率差异均极显著(p=0.00)。研究结果暗示, 强光可能是导致紫茎泽兰幼苗死亡的重要原因, 人类活动的干扰可能导致更多的紫茎泽兰种子进入土壤深层, 从而改变了紫茎泽兰土壤种子库的结构。由于土壤深层种子比表层种子具有更强的抵抗强光照射等不良环境因子影响的能力, 所萌发的幼苗成活率高, 表明其具有更高的繁殖效率, 因此人类活动干扰是紫茎泽兰入侵后难以根除的原因之一。  相似文献   

15.
Summary Models of the evolution of seed dormancy reveal that dormancy is favoured either when opportunities for establishment vary over time and when there is wide variation in the probability of success, or when the probability of success is limited by frequency dependence. Empirical evidence supporting the temporal heterogeneity hypothesis exists, but there is scant evidence for dormancy being favoured by frequency dependent competition among seedlings. We test the hypothesis that the intensity of between-sib competition should favour a positive relationship between maternal fecundity and seed dormancy. This hypothesis is supported for the rare, vernal pool annual,Pogogyne abramsii: the proportion of dormant offspring was significantly higher among high fecundity mothers than among other mothers. Dormancy inP. abramsii is controlled by the seed coat, a maternal tissue, so delaying germination favours the inclusive fitness of mothers by reducing the potential for competition among siblings. Seed weight and time to first germination varied significantly amongP. abramsii plants and mean seed weight increased linearly with plant biomass. Seed weight and seed number are independently regulated by plant size. Overall, seed weight varied 10-fold and variability in seed weight within mothers was not explained by plant biomass, seed yield or mean seed weight. GerminableP. abramsii seeds were significantly heavier than dormant seeds, and germinable seeds heavier than 0.20 mg germinated more rapidly than those smaller than 0.20 mg.  相似文献   

16.
Vera  M. L. 《Plant Ecology》1997,133(1):101-106
The effects of altitude and seed size on germination and seedling survival were studied in Calluna vulgaris, Erica cinerea and Erica vagans. Experiments were carried out in the laboratory over a one year period. Seeds collected from heathlands of different altitudes were divided in two size classes. They were sowed on moist filter paper inside Petri dishes which were placed in chambers at 20 °C and a photoperiod of 12 h light/12 h darkeness. The seeds of Calluna vulgaris were the first to begin germination and had the highest rate and percentage of germination. The germination of Erica vagans was moderate, while seeds of Erica cinerea germinated later and the germination was very low. Seeds of Calluna vulgaris and E. cinerea collected at the highest altitudes had the highest germination percentages. Seed size in Calluna vulgaris and E. cinerea did not affect germination. However, large seeds of Erica vagans had higher germination rates and percentages than small seeds. The large seed size of Calluna vulgaris contributes to a better survival and growth of its seedlings.  相似文献   

17.
该文研究了野外条件下不同深度的沙埋对沙鞭(Psammochloa villosa)种子萌发和幼苗出土的影响,以及温室条件下种子大小对不同深度沙埋后的种子萌发和幼苗出土的影响。结果表明,沙埋深度显著影响沙鞭的种子萌发率、幼苗出土率和种子休眠率。沙子表面的种子不能萌发。2 cm的浅层沙埋时的种子萌发率和幼苗出土率最高,1 cm 沙埋的种子萌发率和幼苗出土率次之。沙埋深度超过2 cm之后,沙鞭的种子萌发率和幼苗出土率与沙埋深度呈负相关。2 cm的种子休眠率最低。从2 ~12 cm,种子休眠率随着沙埋深度的增加而增加。在幼苗能够出土的深度(1~6 cm),幼苗首次出土所需的时间随着沙埋深度的增加而延长。种子大小对沙鞭的种子萌发率没有显著影响。但是在深层沙埋(6 cm)时,与小种子相比,大种子产生的幼苗的出土率较高。从2~6 cm,大种子形成的幼苗的茎长度都较长。  相似文献   

18.
Vegetation recovery on Mount Koma, Hokkaido, Japan, has been slow after the catastrophic eruption in 1929, due to undeveloped soil and limited plant colonization. Nowadays, the seedling establishment is supported mostly by a nurse plant, Salix reinii forming shrub patches, facilitates the plant colonization. Although the effects of shrub patches should differ with patch sizes, the size effects have not been examined well. To examine the size effects, seed-sowing experiments were conducted on two common pioneer herbaceous species, Miscanthus sinensis and Polygonum sachalinense, in the field. The seed germination and seedling survival were monitored by the seeds sown into S. reinii patches (0.97 m2–4.12 m2 in area) for 4 months during snow-free periods. Microenvironments altered by the patches were measured. Lab-experiments were performed to characterize the seed germination and seedling growth.Larger patches decreased light intensity and temperature more and increased litter and water content. The large patches promoted the seed germination of the two species. Interspecific interactions, examined by a seed mixture experiment, showed that the interaction increased the seed germination on M. sinensis and decreased that on P. sachalinense. On the lab-experiments at three temperatures (15, 20 and 25 °C), M. sinensis seeds germinated more at higher temperatures and obtained higher seedlings biomass. P. sachalinense germinated the seeds more at 20 °C and grew faster at lower temperatures. The total biomass of the two species was reduced by shade that intercepted 50% of light intensity. The seed germination and seedling growth of these two species became higher on litter with 2 cm in depth than on no litter. Soil water supported seed germination when the seeds of these two species were mixed while the water reduced the growth of P. sachalinense seedlings. Therefore, the dry soils were suitable for their growths. In all the treatments, P. sachalinense seedlings showed higher mortalities than M. sinensis.In conclusion, the large patches facilitated more to the colonization of pioneer plants via seed germination and growth. Large patches acted as a nursery supporting the natural regeneration in the disturbed area by improving litter accumulation, maintaining soil water, reducing strong light and/or protecting from heat.  相似文献   

19.

Background and Aims

Most studies on seed position-dependent effects have focused on germination characteristics. Our aim was to determine the effects of seed position in the spikelet on differences in timing of germination and on the ecological life history of the grass Eremopyrum distans in its cold desert habitat.

Methods

For seeds in three spikelet positions, morphology, mass and dormancy/germination characteristics were determined in the laboratory, and seeds planted in field plots with and without watering were followed to reproduction to investigate seedling emergence and survival, plant size and seed production.

Key Results

After maturation, of the seeds within the spikelet, basal ones (group 1) are the largest and have the highest proportion with physiological dormancy, while distal ones (group 3) are the smallest and have the highest proportion of non-dormant seeds. A higher percentage of seeds after-ripened in groups 2 and 3 than in group 1. Seeds sown in the field in early summer and watered at short, regular intervals germinated primarily in autumn, while those under natural soil moisture conditions germinated only in spring. Both cohorts completed their life cycle in early summer. Seeds in group 1 had lower percentages of seedling emergence and higher percentages of seedling survival than those in groups 2 and 3. Also, plants from group 1 seeds were larger and produced more seeds per plant than those from groups 2 and 3.

Conclusions

Seed position-dependent mass was associated with quantitative differences in several life history traits of E. distans. The environmentally enforced (low soil moisture) delay of germination from autumn to spring results in a reduction in fitness via reduction in number of seeds produced per plant.  相似文献   

20.
Seeds in a persistent soil seed bank (PSSB) provide an effective way to maintain plant population and community stability. Seeds that persist in soil incur physiological costs of maintaining viability and vigor, thus, the growth capability of resulting plants may be reduced. However, a lot of functional roles of the PSSB have been deduced from seed germination capability, and little consideration has been given to interspecific and intraspecific competitive ability of the resulting plants. Eupatorium adenophorum was used as the study species to compare germination of different artificially aged PSSB seeds and competition at different densities between resulting plants of aged and freshly produced seeds. Seed burial caused decreases in survival rates but not germination speed. During the 175-day growth period, the individual biomass, average height, basal stem diameter and leaf number of plants from aged PSSB seeds were little lower than that of plants germinated from freshly produced seeds. However, the differences were not significant at any densities. Thus, (1) although seeds stored in soil exhibited a very high death rate, they maintained a high vigor for germination, and (2) resulting plants from PSSB seeds exhibited good competiveness to plants from new seeds of the same population. The results further confirm the significance of PSSB in maintaining stability of plant populations and communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号