首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microbial communities in solar salterns and a soda lake have been characterized using two techniques: BIOLOG, to estimate the metabolic potential, and amplicon length heterogeneity analysis, to estimate the molecular diversity of these communities. Both techniques demonstrated that the halophilic Bacteria and halophilic Archaea populations in the Eilat, Israel saltern are dynamic communities with extensive metabolic potentials and changing community structures. Halophilic Bacteria were detected in Mono Lake and the lower salinity ponds at the Shark Bay saltern in Western Australia, except when the crystallizer samples were stressed by exposure to Acid Green Dye #9899. At Shark Bay, halophilic Archaea were found only in the crystallizer samples. These data confirm both the metabolic diversity and the phylogenetic complexity of the microbial communities and assert the need to develop more versatile media for the cultivation of the diversity of bacteria in hypersaline environments. Journal of Industrial Microbiology & Biotechnology (2002) 28, 48–55 DOI: 10.1038/sj/jim/7000175 Received 20 May 2001/ Accepted in revised form 15 June 2001  相似文献   

2.
Next-generation sequencing has greatly contributed to an improved ecological understanding of the human gut microbiota. Nevertheless, questions remain regarding the characteristics of this ecosystem and the ecological processes that shape it, and controversy has arisen regarding the stability of the bacterial populations and the existence of a temporal core. In this study, we have characterized the fecal microbial communities of three human individuals over a one-year period by 454 pyrosequencing of 16S rRNA tags in order to investigate the temporal characteristics of the bacterial communities. The findings revealed a temporal core of 33 to 40 species-level Operational Taxonomic Units (OTUs) within subjects. Although these OTUs accounted only for around 12% of the total OTUs detected, they added up to >75% of the total sequences obtained for each individual. In order to determine the capacity of the sequencing and bioinformatic approaches applied during this study to accurately determine the proportion of a core microbiota, we analyzed the fecal microbiota of nine mice with a defined three-member community. This experiment revealed that the sequencing approach inflated the amount of rare OTUs, which introduced a significant degree of artificial variation across samples, and hence reduced the apparent fraction of shared OTUs. However, when assessing the data quantitatively by focusing on dominant lineages, the sequencing approaches deliver an accurate representation of the community. In conclusion, this study revealed that the human fecal microbiota is dominated by around 40 species that maintain persistent populations over the duration of one year. The findings allow conclusions about the ecological factors that shape the community and support the concept of a homeostatic ecosystem controlled largely by deterministic processes. Our analysis of a three-member community revealed that methodological artifacts of OTU-based approaches complicate core calculations, and these limitations have to be considered in the interpretation of microbiome studies.  相似文献   

3.
Owing to previous methodological limitations, knowledge about the fine-scale distribution of fungal mycelia in decaying logs is limited. We investigated fungal communities in decaying Norway spruce logs at various spatial scales at two environmentally different locations in Sweden. On the basis of 454 pyrosequencing of the ITS2 region of rDNA, 1914 operational taxonomic units (OTUs) were detected in 353 samples. The communities differed significantly among logs, but the physical distance between logs was not found to have a significant effect on whether fungal communities had any resemblance to each other. Within a log, samples that were closer together generally had communities that showed more resemblance to each other than those that were further apart. OTUs characteristic for particular positions on the logs could be identified. In general, these OTUs did not overlap with the most abundant OTUs, and their ecological role was often unknown. Only a few OTUs were detected in the majority of logs, whereas numerous OTUs were rare and present in only one or a few logs. Wood-decaying Basidiomycetes were often represented by higher sequence reads in individual logs than Ascomycete OTUs, suggesting that Basidiomycete mycelia spread out more rapidly when established. OTU richness tended to increase with the decay stage of the sample; however, the known wood decayers were most abundant in less-decomposed samples. The fungi identified in the logs represented different ecological strategies. Our findings differ from previously published sporocarp studies, indicating that the highly abundant fruiting species may respond to environment in different ways than the rest of the fungal community.  相似文献   

4.
Marine sponges are well known for their associations with highly diverse, yet very specific and often highly similar microbiota. The aim of this study was to identify potential bacterial sub-populations in relation to sponge phylogeny and sampling sites and to define the core bacterial community. 16S ribosomal RNA gene amplicon pyrosequencing was applied to 32 sponge species from eight locations around the world''s oceans, thereby generating 2567 operational taxonomic units (OTUs at the 97% sequence similarity level) in total and up to 364 different OTUs per sponge species. The taxonomic richness detected in this study comprised 25 bacterial phyla with Proteobacteria, Chloroflexi and Poribacteria being most diverse in sponges. Among these phyla were nine candidate phyla, six of them found for the first time in sponges. Similarity comparison of bacterial communities revealed no correlation with host phylogeny but a tropical sub-population in that tropical sponges have more similar bacterial communities to each other than to subtropical sponges. A minimal core bacterial community consisting of very few OTUs (97%, 95% and 90%) was found. These microbes have a global distribution and are probably acquired via environmental transmission. In contrast, a large species-specific bacterial community was detected, which is represented by OTUs present in only a single sponge species. The species-specific bacterial community is probably mainly vertically transmitted. It is proposed that different sponges contain different bacterial species, however, these bacteria are still closely related to each other explaining the observed similarity of bacterial communities in sponges in this and previous studies. This global analysis represents the most comprehensive study of bacterial symbionts in sponges to date and provides novel insights into the complex structure of these unique associations.  相似文献   

5.
Plants harbors complex and variable microbial communities. Endophytic bacteria play an important function and potential role more effectively in developing sustainable systems of crop production. To examine how endophytic bacteria in sugar beet (Beta vulgaris L.) vary across both host growth period and location, PCR-based Illumina was applied to revealed the diversity and stability of endophytic bacteria in sugar beet on the north slope of Tianshan mountain, China. A total of 60.84 M effective sequences of 16S rRNA gene V3 region were obtained from sugar beet samples. These sequences revealed huge amount of operational taxonomic units (OTUs) in sugar beet, that is, 19–121 OTUs in a beet sample, at 3 % cutoff level and sequencing depth of 30,000 sequences. We identified 13 classes from the resulting 449,585 sequences. Alphaproteobacteria were the dominant class in all sugar beets, followed by Acidobacteria, Gemmatimonadetes and Actinobacteria. A marked difference in the diversity of endophytic bacteria in sugar beet for different growth periods was evident. The greatest number of OTUs was detected during rossette formation (109 OTUs) and tuber growth (146 OTUs). Endophytic bacteria diversity was reduced during seedling growth (66 OTUs) and sucrose accumulation (95 OTUs). Forty-three OTUs were common to all four periods. There were more tags of Alphaproteobacteria and Gammaproteobacteria in Shihezi than in Changji. The dynamics of endophytic bacteria communities were influenced by plant genotype and plant growth stage. To the best of our knowledge, this study is the first application of PCR-based Illumina pyrosequencing to characterize and compare multiple sugar beet samples.  相似文献   

6.
Saline, meromictic lakes with significant depth are usually formed as a result of salt mining activity. Ocnei Lake is one of the largest Transylvanian (Central Romania) neutral, hypersaline lake of man-made origin. We aimed to survey the seasonal dynamics of archaeal diversity in the water column of Ocnei Lake by employing microbiological methods as well as molecular techniques based on the sequence analysis of the 16S rRNA gene. We found that archaeal diversity in the water column increased with depth and salinity, with 8 OTUs being detected in the epilimnion compared to 21 found in the chemocline, and 32 OTUs in the monimolimnion. Down to 3.5 m depth, the archaeal community was markedly dominated by the presence of an unclassified archaeon sharing 93 % sequence identity to Halogeometricum spp. At the chemocline, the shift in archaeal community composition was associated with an increase in salinity, the main factor affecting the vertical distribution of archaeal assemblages. It appears that the microoxic and hypersaline monimolimnion is populated by several major haloarchaeal taxa, with minor fluctuations in their relative abundances throughout all seasons. The culturable diversity was reasonably correlated to the dominant OTUs obtained by molecular methods. Our results indicate that Ocnei Lake represents a relatively stable extreme habitat, accommodating a diverse and putatively novel archaeal community, as 30 % of OTUs could not be classified at the genus level.  相似文献   

7.
Kôso is a Japanese fermented beverage made with over 20 kinds of vegetables, mushrooms, and sugars. The changes in the bacterial population of kôso during fermentation at 25 °C over a period of 10 days were studied using 454 pyrosequencing of the 16S rRNA gene. The analysis detected 224 operational taxonomic units (OTUs) clustered from 8 DNA samples collected on days 0, 3, 7, and 10 from two fermentation batches. Proteobacteria were the dominant phylum in the starting community, but were replaced by Firmicutes within three days. Seventy-eight genera were identified from the 224 OTUs, in which Bifidobacterium, Leuconostoc, Lactococcus, and Lactobacillus dominated, accounting for over 96% of the total bacterial population after three days’ fermentation. UniFrac–Principal Coordinate Analysis of longitudinal fermented samples revealed dramatic changes in the bacterial community in kôso, resulting in significantly low diversity at the end of fermentation as compared with the complex starting community.  相似文献   

8.
《Fungal biology》2021,125(10):785-795
Fungi play key roles in forest ecosystems and help to shape the forest’s diverse functions. However, little is known about the diversity of phyllospheric fungi or their possible relationships with fungal communities residing in different micro-environments of Pinus massoniana forests. We investigated seven different sample types: mature needles (NM), dead needles (ND), needles falling as litter (L), fermenting needles (F), humus (H), top soil (0–20 cm) (TS), and secondary soil (20–40 cm) (SS). These seven fungal communities were examined and compared with ITS amplicons using a high-throughput sequencing technique. A total of 1213 fungal operational taxonomic units (OTUs) were obtained at a 97% sequence similarity level. Distinct fungal communities were associated with different sample types. A greater number of OTUs were present in both NM and F samples than those shared by both NM and TS samples, indicating that phyllospheric fungi may play crucial roles in litter decomposition. Sixty OTUs (the core microbiome) were found in all sample types, and they may probably play different ecological roles in different sample types. These findings extend our knowledge of the fungal diversity of the phyllosphere and its possible interactions with fungal communities found in distinct forest micro-habitats.  相似文献   

9.
Moso bamboo is fast-growing and negatively allelopathic to neighboring plants. However, there is little information on the effects of its establishment and expansion to adjacent forest soil communities. To better understand the impacts of bamboo invasion on soil communities, the phylogenetic structure and diversity of the soil bacterial communities in moso bamboo forest, adjacent Japanese cedar plantation, and bamboo-invaded transition zone were examined using a combination of 16S rRNA gene clone libraries and bar-coded pyrosequencing techniques. Based on the number of operational taxonomic units (OTUs), Shannon diversity index, Chao1 estimator, and rarefaction analysis of both techniques, the bamboo soil bacterial community was the most diverse, followed by the transition zone, with the cedar plantation possessing the lowest diversity. The results from both techniques revealed that the Acidobacteria and Proteobacteria predominated in the three communities, though the relative abundance was different. The 250 most abundant OTUs represented about 70 % of the total sequences found by pyrosequencing. Most of these OTUs were found in all three soil communities, demonstrating the overall similarity among the bacterial communities. Nonmetric multidimensional scaling analysis showed further that the bamboo and transition soil communities were more similar with each other than the cedar soils. These results suggest that bamboo invasion to the adjacent cedar plantation gradually increased the bacterial diversity and changed the soil community. In addition, while the 10 most abundant OTUs were distributed worldwide, related sequences were not abundant in soils from outside the forest studied here. This result may be an indication of the uniqueness of this region.  相似文献   

10.
内生真菌在植物生长以及抵御环境胁迫过程中起着非常重要的生态作用.本研究从黄河三角洲滨海湿地1350个芦苇组织切片中分离得到318株内生真菌,通过对rDNA ITS的分型、测序及系统进化分析,研究了该地区芦苇植株根、茎、叶中可培养内生真菌的种类组成及在不同盐度、不同组织中的分布情况.根据序列相似性(以98%为阈值),共获得12个真菌分类操作单元(OTUs).在门级分类水平上,子囊菌门为绝对优势菌群, 在各组织和站位中均有分布.芦苇根组织中分离得到的内生真菌OTU数相对较多,叶组织和茎组织中分离到的OTU数相同,且叶中的OTU在根中均存在.潮上区(低盐区)内生真菌OTU数最多,高潮区次之.根中可培养内生真菌的丰富度和多样性指数最高,叶中多样性最低;潮上区丰富度最高,中潮区多样性最高.尽管不同盐度梯度及不同芦苇组织中都有其特异的菌株,但总体看,土壤盐度及不同组织对可培养内生真菌的种类组成的影响并不显著(ANOSIM,P>0.05).链格孢属是所有样品共有的优势菌.  相似文献   

11.
Mesophotic coral-reef ecosystems (MCEs), which comprise the light-dependent communities of corals and other organisms found at depths between 30 and ~ 150 m, have received very little study to date. However, current technological advances, such as remotely operated vehicles and closed-circuit rebreather diving, now enable their thorough investigation. Following the reef-building stony corals, octocorals are the second most common benthic component on many shallow reefs and a major component on deep reefs, the Red Sea included. This study is the first to examine octocoral community features on upper MCEs based on species-level identification and to compare them with the shallower reef zones. The study was carried out at Eilat (Gulf of Aqaba, northern Red Sea), comparing octocoral communities at two mesophotic reefs (30–45 m) and two shallow reef zones (reef flat and upper fore-reef) by belt transects. A total of 30 octocoral species were identified, with higher species richness on the upper MCEs compared to the shallower reefs. Although the MCEs were found to host a higher number of species than the shallower reefs, both featured a similar diversity. Each reef zone revealed a unique octocoral species composition and distinct community structure, with only 16% of the species shared by both the MCEs and the shallower reefs. This study has revealed an almost exclusive dominance of zooxanthellate species at the studied upper MCE reefs, thus indicating an adequate light regime for photosynthesis there. The findings should encourage similar studies on other reefs, aimed at understanding the spatiotemporal features and ecological role of octocorals in reef ecosystems down to the deepest limit of the MCEs.  相似文献   

12.
Fungi may play an important role in material cycling in lakes and oceans; however, only limited information is available on fungal community structure, especially in large lakes such as Lake Biwa. In this study, whole fungal communities were determined seasonally and spatially using a high-throughput sequencing technique. Water samples were collected from the epilimnion, 0–20 m depth, with a Van Dorn sampler at a pelagic site and from the surface at a littoral site in the north basin of Lake Biwa. All pelagic depth samples were combined into one sample. Sampling occurred on 24 April, 22 May, 10 July, and 16 September 2015. DNA was extracted from filtered samples. Metabarcoding analysis targeting fungi-specific internal transcribed spacer 2 regions was performed using an Illumina MiSeq platform. Epilimnetic fungal communities showed high diversity, with 479 operational taxonomic units (OTUs). The OTUs included 122 belonging to the phylum Ascomycota, 127 to Basidiomycota, 38 to Zygomycota, 45 to Chytridiomycota, 2 to Glomeromycota, and 145 were unclassified fungi. Fungal community structures varied seasonally and spatially. Few of the fungal OTUs overlapped between seasons and sites, and specific communities of fungi were detected on each sampling occasion. Results indicated that spatio-temporal variations in fungal communities were high and may be influenced by both internal factors and external factors, such as terrestrial inputs.  相似文献   

13.
We have studied the activity and composition of several geochemically significant physiological groups of bacteria in more than twenty alkaline salt lakes of the north-east Mongolia steppe with water salinity from 3 to 390 g l?1 and pH values ranging from 9.0 to 10.6. Active and diverse microbial communities have been found in most of the lakes. The methanotrophic bacteria were represented by the Type I members. Among the culturable forms of sulfur-oxidizing bacteria obligately chemolithoautotrophic and haloalkaliphilic representatives of the genera Thioalkalimicrobium and Thioalkalivibrio were detected in the sediments at high numbers (up to 106 cells ml?1). The largest population of anaerobic phototrophic bacteria was represented by purple sulfur bacteria of the Ectothiorhodospiraceae family. Salinity was the key factor in determining the activity and the composition of the microbial communities. The most diverse and active prokaryotic populations, including aerobic and anaerobic phototrophic, methanogenic, methanotrophic, sulfur-oxidizing, sulfate-reducing and nitrifying bacteria, were found in lakes with salinity less than 60 g l?1. In hypersaline lakes with a salinity >100 g l?1, the sulfur cycle remained active due to the activity of extremely halotolerant and alkaliphilic sulfur bacteria, while other important functional groups responsible for nitrification and methane oxidation processes were not detected. Overall, the prokaryotic communities of the Mongolian alkaline salt lakes represent an interesting new example of a diverse community of haloalkaliphilic bacteria well adopted to a broad salinity range.  相似文献   

14.
The phylogenetic composition of bacterial communities in the rhizosphere of three potato cultivars grown at two distant field sites was analysed. Ribosomal gene fragments amplified from total community DNA were hybridized to PhyloChips. A total of 2432 operational taxonomic units (OTUs) were detected by the PhyloChips, of which 65% were found in the rhizosphere of all cultivars at both field sites. From all detected OTUs, 9% revealed a cultivar-dependent abundance at the one or the other field site and 4% at both sites. Differential abundance on the three cultivars was mainly observed for OTUs belonging to the Pseudomonadales, Actinomycetales and Enterobacteriales. More than 40% of OTUs belonging to Bradyrhizobiales, Sphingomonadales, Burkholderiales, Rhodocyclales, Xanthomonadales and Actinomycetales differed significantly in their abundance between the sites. A sequence analysis of six 16S rRNA gene clone libraries corresponded well with the taxonomic community structure evidenced by the PhyloChip hybridization. Most ribotypes matched OTUs detected by the PhyloChip. Those OTUs that responded to the potato cultivar at both field sites might be of interest in view of cultivar-specific effects on bacterial biocontrol strains and pathogens.  相似文献   

15.
We used a partial 16S rRNA sequencing approach to compare the structure and composition of the bacterial communities in three large, deep subalpine lakes in France with those of communities in six shallow tropical reservoirs in Burkina Faso. Despite the very different characteristics of these ecosystems, we found that their bacterial communities share the same composition in regard to the relative proportions of the different phyla, suggesting that freshwater environmental conditions lead to convergence in this composition. In the same way, we found no significant difference in the richness and diversity of the bacterial communities in France and Burkina Faso. We defined core and satellite operational taxonomic units (OTUs) (sequences sharing at least 98% identity) on the basis of their abundance and their geographical distribution. The core OTUs were found either ubiquitously or only in temperate or tropical and subtropical areas, and they contained more than 70% of all the sequences retrieved in this study. In contrast, satellite OTUs were characterized by having a more restricted geographical distribution and by lower abundance. Finally, the bacterial community composition of these freshwater ecosystems in France and Burkina Faso was markedly different, showing that the history of these ecosystems and regional environmental parameters have a greater impact on the relative abundances of the different OTUs in each bacterial community than the local environmental conditions.  相似文献   

16.
We investigated microbial succession on lake sturgeon (Acipenser fulvescens) egg surfaces over the course of their incubation period as a function of simulated stream flow rate. The primary objective was to characterize the microbial community assembly during succession and to examine how simulated stream flow rate affect the successional process. Sturgeon eggs were reared under three flow regimes; high (0.55 m/s), low (0.18 m/s), and variable (0.35 and 0.11 m/s alternating 12 h intervals). Eggs were collected from each flow regime at different egg developmental stages. Microbial community DNA was extracted from egg surface and the communities were examined using 16S rRNA gene-based terminal restriction fragment length polymorphism and 454 pyrosequencing. Analysis of these datasets using principal component analysis revealed that microbial communities were clustered by egg developmental stages (early, middle, and late) regardless of flow regimes. 454 pyrosequencing data suggested that 90–98 % of the microbial communities were composed of the phyla Proteobacteria and Bacteroidetes throughout succession. β-Protebacteria was more dominant in the early stage, Bacteroidetes became more dominant in the middle stage, and α-Proteobacteria became dominant in the late stage. A total of 360 genera and 5,826 OTUs at 97 % similarity cutoff were associated with the eggs. Midway through egg development, the egg-associated communities of the low flow regime had a higher diversity than those communities developed under high or variable flow regimes. Results show that microbial community turnover occurred during embryogenesis, and stream flow rate influenced the microbial succession processes on the sturgeon egg surfaces.  相似文献   

17.
The subalpine forest and grassland ecosystems at Tatajia in Yushan National Park, Taiwan, at an elevation of 2,700 m, mean annual precipitation of 4,100 mm, mean annual temperature of 9.5°C, and soil pH near 3.5, represent land types whose bacterial communities have not been previously characterized. To this end, small subunit (SSU) rRNA libraries were prepared from environmental DNA, and 319 clones were sequenced and characterized. Despite differences in vegetation, Acidobacteria, Proteobacteria and Firmicutes were the most abundant phyla in soil communities from the forest and grassland. Although not significantly different, on the basis of Chao1, Shannon and other indices and rarefaction analyses, the diversity of the bacterial community of grassland appeared higher than that of the forest. The composition of the most abundant operational taxonomic units (OTUs) also differed between the grassland and forest communities. Because the grassland was formed by fire 30 years ago from forest, these results indicated a different bacterial community could form within that time. Moreover, most of the OTUs abundant in Tatajia soils had been previously detected in other studies, but in lower numbers. Therefore, the bacterial communities in Tatajia differed in relative abundance but not in types of bacteria present. However, one acidobacterial OTU abundant in Tatajia had previously been found to be abundant in soils from around the world. Thus, this OTU may represent a particularly abundant and cosmopolitan bacterial phylotype.  相似文献   

18.
While non-native species (NIS) are important components in many coastal bays and estuaries, quantitative measures that characterize their effects on community structure at bay-wide scales are rare. In this study, we measure species composition and abundance for soft-sediments to assess the contribution of NIS to multiple dimensions of community structure, focusing on one of the most highly invaded bays in the world, San Francisco Bay. Benthic macrofauna was sampled in the high salinity, muddy shallow subtidal (2 m depth) across 10 sites, using replicate 0.1 m2 Van Veen grabs. Invertebrates retained on a 1 mm sieve were identified, counted, and used to estimate the overall contribution of NIS to (a) abundance (b) species richness, and (c) community similarity. Soft-sediment communities were dominated numerically by NIS, which accounted for 76 % of all organisms detected and had a mean bay-wide abundance that was three and half-fold higher than native biota. Overall, NIS contributed to 36 % of observed taxa and 24–29 % of total estimated regional diversity. Native species accounted for 21 % of total abundance and 45 % of total species richness. Compared to native species, NIS occurred more frequently among samples and also explained more of the variation in community structure among sites. NIS dominate several key attributes of the soft-sediment infaunal community in San Francisco Bay. Percent contribution of NIS to species richness was at least two-fold higher than reported from two decades ago. Unique to this bay, these measures establish a quantitative baseline on the state of invasions and provide an important model for evaluating the extent of NIS in estuaries. Application of this approach across estuaries, with repeated measures over time, is critically needed to advance scientific understanding of invasions and also evaluation of efficacy and gaps in management to reduce new invasions.  相似文献   

19.

Salinity is an important factor when exploring the limits known for life. Therefore, hypersaline systems have attracted much attention in recent years. In this study, we investigated the protistan diversity and community composition in two natural salt evaporation ponds (27–30% salinity) located in an ancient volcanic crater on the Cape Verde island Sal using high-throughput DNA sequencing. Our study revealed a broad range of protistan taxa and a high taxonomic diversity within the Ciliophora, Dinophyceae, and Chlorophyta. We detected a total of 23 Dinophyceae families, although Dinophyceae were generally considered to be only this diverse in aquatic environments of less than 10% salinity. Moreover, we uncovered a high degree of genetic novelty in this habitat. The mean similarity of all detected OTUs to previously described sequences was only 93.6%. These findings strongly dispute the traditional view that extreme hypersaline environments generally maintain low protistan diversity. A meta-analysis covering our and previously published data from other inland and coastal salt ponds clearly showed that our samples clustered according to salinity and not biogeography. This result further supports the claim that salinity is a major transition boundary for protistan communities, regardless of their biogeographic origin.

  相似文献   

20.
Gravel and sand mulching is an indigenous technology used for the crop yield for at least 300 years in the loess area of northwest China; however, little is known about the changes of soil bacterial community and metabolic capability under the mulching. In this study, we investigated the soil microbial community structure and metabolic functional diversity during mulching using Illumina MiSeq sequencing and Biolog ECO method. Totally, 9417 OTUs were classified at 97% similarity level for soil samples after 0 (control), 4, 7, and 10 years of mulching. Dendrogram result indicated that mulching affected the soil bacterial community; and the higher richness and diversity of bacterial community were detected in mulching samples. The average abundance of soil bacteria (such as Proteobacteria, Actinobacteria, Firmicutes and Nitrospirae) in mulching samples was higher than samples without mulching. Besides, some microbial communities (such as Rhodobacteraceae, Phenylobacterium, Pseudonocardia, Nonomuraea and Aeromicrobium) were only present in the mulched soil samples. However, the lower metabolic capability was observed in mulching samples based on Biolog method, which the main reason for the opposite result might be that the soil objects detected by the two methods are different. In conclusion, these results demonstrated that gravel and sand mulching affected the structure and metabolic capability of bacterial community and was one reason for crop yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号