首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mathematical models of cardiac electro-mechanics typically consist of three tightly coupled parts: systems of ordinary differential equations describing electro-chemical reactions and cross-bridge dynamics in the muscle cells, a system of partial differential equations modelling the propagation of the electrical activation through the tissue and a nonlinear elasticity problem describing the mechanical deformations of the heart muscle. The complexity of the mathematical model motivates numerical methods based on operator splitting, but simple explicit splitting schemes have been shown to give severe stability problems for realistic models of cardiac electro-mechanical coupling. The stability may be improved by adopting semi-implicit schemes, but these give rise to challenges in updating and linearising the active tension. In this paper we present an operator splitting framework for strongly coupled electro-mechanical simulations and discuss alternative strategies for updating and linearising the active stress component. Numerical experiments demonstrate considerable performance increases from an update method based on a generalised Rush–Larsen scheme and a consistent linearisation of active stress based on the first elasticity tensor.  相似文献   

2.
3.
In this paper we present a numerical method for the bidomain model, which describes the electrical activity in the heart. The model consists of two partial differential equations (PDEs), which are coupled to systems of ordinary differential equations (ODEs) describing electrochemical reactions in the cardiac cells. Many applications require coupling these equations to a third PDE, describing the electrical fields in the torso surrounding the heart. The resulting system is challenging to solve numerically, because of its complexity and very strict resolution requirements in time and space. We propose a method based on operator splitting and a fully coupled discretization of the three PDEs. Numerical experiments show that for simple simulation cases and fine discretizations, the algorithm is second-order accurate in space and time.  相似文献   

4.
5.
In this paper we introduce and study a model for electrical activity of cardiac membrane which incorporates only an inward and an outward current. This model is useful for three reasons: (1) Its simplicity, comparable to the FitzHugh-Nagumo model, makes it useful in numerical simulations, especially in two or three spatial dimensions where numerical efficiency is so important. (2) It can be understood analytically without recourse to numerical simulations. This allows us to determine rather completely how the parameters in the model affect its behavior which in turn provides insight into the effects of the many parameters in more realistic models. (3) It naturally gives rise to a one-dimensional map which specifies the action potential duration as a function of the previous diastolic interval. For certain parameter values, this map exhibits a new phenomenon—subcritical alternans—that does not occur for the commonly used exponential map.  相似文献   

6.
Quantifying the interactions between excitation and contraction is fundamental to furthering our understanding of cardiac physiology. To date simulating these effects in strongly coupled excitation and contraction tissue models has proved computationally challenging. This is in part due to the numerical methods implemented to maintain numerical stability in previous simulations, which produced computationally intensive problems. In this study, we analytically identify and quantify the velocity and length dependent sources of instability in the current established coupling method and propose a new method which addresses these issues. Specifically, we account for the length and velocity dependence of active tension within the finite deformation equations, such that the active tension is updated at each intermediate Newton iteration, within the mechanics solution step. We then demonstrate that the model is stable and converges in a three-dimensional rod under isometric contraction. Subsequently, we show that the coupling method can produce stable solutions in a cube with many of the attributes present in the heart, including asymmetrical activation, an inhomogeneous fibre field and a nonlinear constitutive law. The results show no instabilities and quantify the error introduced by discrete length updates. This validates our proposed coupling framework, demonstrating significant improvement in the stability of excitation and contraction simulations.  相似文献   

7.
Clinical and experimental studies involving human hearts can have certain limitations. Methods such as computer simulations can be an important alternative or supplemental tool. Physiological simulation at the tissue or organ level typically involves the handling of partial differential equations (PDEs). Boundary conditions and distributed parameters, such as those used in pharmacokinetics simulation, add to the complexity of the PDE solution. These factors can tailor PDE solutions and their corresponding program code to specific problems. Boundary condition and parameter changes in the customized code are usually prone to errors and time-consuming. We propose a general approach for handling PDEs and boundary conditions in computational models using a replacement scheme for discretization. This study is an extension of a program generator that we introduced in a previous publication. The program generator can generate code for multi-cell simulations of cardiac electrophysiology. Improvements to the system allow it to handle simultaneous equations in the biological function model as well as implicit PDE numerical schemes. The replacement scheme involves substituting all partial differential terms with numerical solution equations. Once the model and boundary equations are discretized with the numerical solution scheme, instances of the equations are generated to undergo dependency analysis. The result of the dependency analysis is then used to generate the program code. The resulting program code are in Java or C programming language. To validate the automatic handling of boundary conditions in the program code generator, we generated simulation code using the FHN, Luo-Rudy 1, and Hund-Rudy cell models and run cell-to-cell coupling and action potential propagation simulations. One of the simulations is based on a published experiment and simulation results are compared with the experimental data. We conclude that the proposed program code generator can be used to generate code for physiological simulations and provides a tool for studying cardiac electrophysiology.  相似文献   

8.
The contraction of the heart is preceded and caused by a cellular electro-chemical reaction, causing an electrical field to be generated. Performing realistic computer simulations of this process involves solving a set of partial differential equations, as well as a large number of ordinary differential equations (ODEs) characterizing the reactive behavior of the cardiac tissue. Experiments have shown that the solution of the ODEs contribute significantly to the total work of a simulation, and there is thus a strong need to utilize efficient solution methods for this part of the problem. This paper presents how an efficient implicit Runge-Kutta method may be adapted to solve a complicated cardiac cell model consisting of 31 ODEs, and how this solver may be coupled to a set of PDE solvers to provide complete simulations of the electrical activity.  相似文献   

9.
The VPH/Physiome Project is developing the model encoding standards CellML (cellml.org) and FieldML (fieldml.org) as well as web-accessible model repositories based on these standards (models.physiome.org). Freely available open source computational modelling software is also being developed to solve the partial differential equations described by the models and to visualise results. The OpenCMISS code (opencmiss.org), described here, has been developed by the authors over the last six years to replace the CMISS code that has supported a number of organ system Physiome projects.OpenCMISS is designed to encompass multiple sets of physical equations and to link subcellular and tissue-level biophysical processes into organ-level processes. In the Heart Physiome project, for example, the large deformation mechanics of the myocardial wall need to be coupled to both ventricular flow and embedded coronary flow, and the reaction-diffusion equations that govern the propagation of electrical waves through myocardial tissue need to be coupled with equations that describe the ion channel currents that flow through the cardiac cell membranes.In this paper we discuss the design principles and distributed memory architecture behind the OpenCMISS code. We also discuss the design of the interfaces that link the sets of physical equations across common boundaries (such as fluid-structure coupling), or between spatial fields over the same domain (such as coupled electromechanics), and the concepts behind CellML and FieldML that are embodied in the OpenCMISS data structures. We show how all of these provide a flexible infrastructure for combining models developed across the VPH/Physiome community.  相似文献   

10.

The electrical activity of the heart may be modeled with a system of partial differential equations (PDEs) known as the bidomain model. Computer simulations based on these equations may become a helpful tool to understand the relationship between changes in the electrical field and various heart diseases. Because of the rapid variations in the electrical field, sufficiently accurate simulations require a fine-scale discretization of the equations. For realistic geometries this leads to a large number of grid points and consequently large linear systems to be solved for each time step. In this paper, we present a fully coupled discretization of the bidomain model, leading to a block structured linear system. We take advantage of the block structure to construct an efficient preconditioner for the linear system, by combining multigrid with an operator splitting technique.  相似文献   

11.
An intricate network of reactions is involved in matching energy supply with demand in the heart. This complexity arises because energy production both modulates and is modulated by the electrophysiological and contractile activity of the cardiac myocyte. Here, we present an integrated mathematical model of the cardiac cell that links excitation-contraction coupling with mitochondrial energy generation. The dynamics of the model are described by a system of 50 ordinary differential equations. The formulation explicitly incorporates cytoplasmic ATP-consuming processes associated with force generation and ion transport, as well as the creatine kinase reaction. Changes in the electrical and contractile activity of the myocyte are coupled to mitochondrial energetics through the ATP, Ca2+, and Na+ concentrations in the myoplasmic and mitochondrial matrix compartments. The pseudo steady-state relationship between force and oxygen consumption at various stimulus frequencies and external Ca2+ concentrations is reproduced in both model simulations and direct experiments in cardiac trabeculae under normoxic conditions, recapitulating the linearity between cardiac work and respiration in the heart. Importantly, the model can also reproduce the rapid time-dependent changes in mitochondrial NADH and Ca2+ in response to abrupt changes in workload. The steady-state and dynamic responses of the model were conferred by ADP-dependent stimulation of mitochondrial oxidative phosphorylation and Ca2+ -dependent regulation of Krebs cycle dehydrogenases, illustrating how the model can be used as a tool for investigating mechanisms underlying metabolic control in the heart.  相似文献   

12.

Background

Cardiac arrhythmias are becoming one of the major health care problem in the world, causing numerous serious disease conditions including stroke and sudden cardiac death. Furthermore, cardiac arrhythmias are intimately related to the signaling ability of cardiac cells, and are caused by signaling defects. Consequently, modeling the electrical activity of the heart, and the complex signaling models that subtend dangerous arrhythmias such as tachycardia and fibrillation, necessitates a quantitative model of action potential (AP) propagation. Yet, many electrophysiological models, which accurately reproduce dynamical characteristic of the action potential in cells, have been introduced. However, these models are very complex and are very time consuming computationally. Consequently, a large amount of research is consecrated to design models with less computational complexity.

Results

This paper is presenting a new model for analyzing the propagation of ionic concentrations and electrical potential in space and time. In this model, the transport of ions is governed by Nernst-Planck flux equation (NP), and the electrical interaction of the species is described by a new cable equation. These set of equations form a system of coupled partial nonlinear differential equations that is solved numerically. In the first we describe the mathematical model. To realize the numerical simulation of our model, we proceed by a finite element discretization and then we choose an appropriate resolution algorithm.

Conclusions

We give numerical simulations obtained for different input scenarios in the case of suicide substrate reaction which were compared to those obtained in literature. These input scenarios have been chosen so as to provide an intuitive understanding of dynamics of the model. By accessing time and space domains, it is shown that interpreting the electrical potential of cell membrane at steady state is incorrect. This model is general and applies to ions of any charge in space and time domains. The results obtained show a complete agreement with literature findings and also with the physical interpretation of the phenomenon. Furthermore, various numerical experiments are presented to confirm the accuracy, efficiency and stability of the proposed method. In particular, we show that the scheme is second-order accurate in space.
  相似文献   

13.
The electrical activity of the heart may be modeled with a system of partial differential equations (PDEs) known as the bidomain model. Computer simulations based on these equations may become a helpful tool to understand the relationship between changes in the electrical field and various heart diseases. Because of the rapid variations in the electrical field, sufficiently accurate simulations require a fine-scale discretization of the equations. For realistic geometries this leads to a large number of grid points and consequently large linear systems to be solved for each time step. In this paper, we present a fully coupled discretization of the bidomain model, leading to a block structured linear system. We take advantage of the block structure to construct an efficient preconditioner for the linear system, by combining multigrid with an operator splitting technique.  相似文献   

14.
Smoothly varying muscle fibre orientations in the heart are critical to its electrical and mechanical function. From detailed histological studies and diffusion tensor imaging, we now know that fibre orientations in humans vary gradually from approximately ? 70° in the outer wall to +80° in the inner wall. However, the creation of fibre orientation maps for computational analyses remains one of the most challenging problems in cardiac electrophysiology and cardiac mechanics. Here, we show that Poisson interpolation generates smoothly varying vector fields that satisfy a set of user-defined constraints in arbitrary domains. Specifically, we enforce the Poisson interpolation in the weak sense using a standard linear finite element algorithm for scalar-valued second-order boundary value problems and introduce the feature to be interpolated as a global unknown. User-defined constraints are then simply enforced in the strong sense as Dirichlet boundary conditions. We demonstrate that the proposed concept is capable of generating smoothly varying fibre orientations, quickly, efficiently and robustly, both in a generic bi-ventricular model and in a patient-specific human heart. Sensitivity analyses demonstrate that the underlying algorithm is conceptually able to handle both arbitrarily and uniformly distributed user-defined constraints; however, the quality of the interpolation is best for uniformly distributed constraints. We anticipate our algorithm to be immediately transformative to experimental and clinical settings, in which it will allow us to quickly and reliably create smooth interpolations of arbitrary fields from data-sets, which are sparse but uniformly distributed.  相似文献   

15.
The literature characterizes cartilaginous tissues as osmoviscoelastic. Understanding the damage and failure of these tissues is essential for designing treatments. To determine tissue strength and local stresses, experimental studies—both clinical and animal—are generally supported by computational studies. Verification methods for computational studies of ionized porous media including cracks are hardly available. This study provides a method for verification and shows its performance. For this purpose, shear loading of a finite crack is addressed analytically and through a commercial finite element code. Impulsive shear loading by two-edge dislocation of a crack was considered in a 2D plane strain model for an ionized porous medium. To derive the analytical solution, the system of equation is decoupled by stress functions. The shear stress distribution at the plane of the crack is derived using Fourier and Laplace transformations. The analytical solution for the shear stress distribution is compared with computer simulations in ABAQUS version 6.4-5. Decoupling of the equations makes it possible to solve some boundary value problems in porous media taking chemical effects into account. The numerical calculations underestimate the shear stress at the crack-tips. Mesh refinement increases accuracy, but is still low in the neighborhood of the crack-tips.  相似文献   

16.
Cardiac electrical asynchrony occurs as a result of cardiac pacing or conduction disorders such as left bundle-branch block (LBBB). Electrically asynchronous activation causes myocardial contraction heterogeneity that can be detrimental for cardiac function. Computational models provide a tool for understanding pathological consequences of dyssynchronous contraction. Simulations of mechanical dyssynchrony within the heart are typically performed using the finite element method, whose computational intensity may present an obstacle to clinical deployment of patient-specific models. We present an alternative based on the CircAdapt lumped-parameter model of the heart and circulatory system, called the MultiPatch module. Cardiac walls are subdivided into an arbitrary number of patches of homogeneous tissue. Tissue properties and activation time can differ between patches. All patches within a wall share a common wall tension and curvature. Consequently, spatial location within the wall is not required to calculate deformation in a patch. We test the hypothesis that activation time is more important than tissue location for determining mechanical deformation in asynchronous hearts. We perform simulations representing an experimental study of myocardial deformation induced by ventricular pacing, and a patient with LBBB and heart failure using endocardial recordings of electrical activation, wall volumes, and end-diastolic volumes. Direct comparison between simulated and experimental strain patterns shows both qualitative and quantitative agreement between model fibre strain and experimental circumferential strain in terms of shortening and rebound stretch during ejection. Local myofibre strain in the patient simulation shows qualitative agreement with circumferential strain patterns observed in the patient using tagged MRI. We conclude that the MultiPatch module produces realistic regional deformation patterns in the asynchronous heart and that activation time is more important than tissue location within a wall for determining myocardial deformation. The CircAdapt model is therefore capable of fast and realistic simulations of dyssynchronous myocardial deformation embedded within the closed-loop cardiovascular system.  相似文献   

17.
Both the forward and inverse problems of electrocardiography rely on the precise modelling of the anatomic and electrical properties of the thoracic tissues. This, in turn, requires good knowledge of the electrical anisotropy as well as conductivity inhomogeneity of the heart, lungs and the rest of the thorax. Cardiac electrical anisotropy is related to its microstructure (fibre length, density and orientation). We hereby present detailed three-dimensional (3D) meshes of the thorax and heart, using image data from contiguous 2D magnetic resonance (MR) imaging slices as well as a realistic 3D cardiac fibre orientation model that derives its data from high-resolution ex vivo human heart MR images and from histology specimens of heart tissue. Using specific software, we integrated the 3D thorax and heart meshes in one that addresses the related modelling requirements for the solution of the forward and inverse problems of electrocardiography.  相似文献   

18.
In this work, we show that a one-dimensional model of the blood flow across the lungs can reproduce the evolution of a bolus versus the time. Solving the differential equation governing the bolus concentration in the framework of this model, we determine the solution which fulfills Gaussian initial boundary conditions. An effective parameter related to the ratio of a diffusion coefficient to the square of the mean speed of the flow is defined. The determination of its numerical values following a semi-empirical approach enables us to know accurately the mean transit time and the cardiac output. The results have been compared to other methods, and were found in good agreement. Such an approach could be of interest in all studies where the knowledge of flow—including micro-circulation—is needed.  相似文献   

19.
The propagation of an action potential (AP) in a nerve fibre is accompanied by mechanical and thermal effects. In this paper, an attempt is made to build up a mathematical model which couples the AP with a possible pressure wave (PW) in the axoplasm and waves in the nerve fibre wall (longitudinal—LW and transverse—TW) made of a lipid bilayer (biomembrane). A system of differential equations includes the governing equations of single waves with coupling forces between them. The single equations are kept as simple as possible in order to carry out the proof of concept. An assumption based on earlier studies is made that the coupling forces depend on changes (the gradient, time derivative) of the voltage. In addition, it is assumed that the transverse displacement of the biomembrane can be calculated from the gradient of the LW in the biomembrane. The computational simulation is focused to determining the influence of possible coupling forces on the emergence of mechanical waves from the AP. As a result, an ensemble of waves (AP, PW, LW, TW) emerges. The further experiments should verify assumptions about coupling forces.  相似文献   

20.
Reentry in the heart is the repeated excitation of the same tissue by a single excitation wave; it is responsible for several types of cardiac arrhythmia. The simplest model which permits the phenomenon of reentry is two laterally coupled excitable fibers; in this paper we examine such a model in order to establish a basis for the understanding of the fundamental physical processes underlying the process of reentry. Two versions of the FitzHugh-Nagumo equations are used to develop complementary numerical and analytical results for the coupled fiber model. On the basis of numerical studies, regions of qualitatively different behaviour are mapped in the parameter space of excitation threshold and coupling strength between the fibers, and the effect of the rate of recovery is explored. Some of these regions are also obtained analytically, in good agreement with the numerical results. Finally, the results are discussed in the light of recent work on the role of the anisotropy of cardiac tissue in the initiation of reentrant activity in the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号