首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In ethanol fermentation, instantaneous biomass yield of the yeast Saccharmoyces cerevisiae was found to decrease (from 0.156 to 0.026) with increase in ethanol concentration (from 0 to 107 g/L), indicating a definite relationship between biomass yield and product inhibition. A suitable model was proposed to describe this decrease which incorporates the kinetic parameters of product inhibition rather than pure empirical constants. Substrate inhibition was found to occur when substrate concentration is above 150 g/L. A similar definite relationship was observed between substrate inhibition and instantaneous biomass yield. A simple empirical model is proposed to describe the declines in specfic growth rate and biomass yield due to substrate inhibition. It is observed that product inhibition does not have any effect on product yield whereas substrate inhibition significantly affects the product yield, reflecting a drop in overall product yield from 0.45 to 0.30 as the initial substrate concentration increases from 150 to 280 g/L. These results are expected to have a significant influence in formulating optimum fermentor design variables and in developing an effective control strategy for optimizing ethanol producitivity.  相似文献   

2.
This work presents the development of an unstructured kinetic model incorporating the differing degrees of product, substrate, and pH inhibition on the kinetic rates of ethanol fermentation by recombinant Zymomonas mobilis CP4:pZB5 for growth on two substrates. Product inhibition was observed to start affecting the specific growth rate at an ethanol concentration of 20 g/L and the specific productivity at about 35-40 g/L. Specific growth rate was also shown to be more sensitive to inhibition by lowered pH as well. A model for the inhibition of two competing substrates' cellular uptake via membrane transport is proposed. Inhibition functions and model parameters were determined by fitting experimental data to the model. The model was utilized in a nonlinear model predictive control (NMPC) algorithm to control the product concentration during fed-batch fermentation to offset the inhibitory effects of product inhibition. Using the optimal feeding policy determined online, the volumetric productivity of ethanol was improved 16.6% relative to the equivalent batch operation when the final ethanol concentration was reached.  相似文献   

3.
The inhibition of substrate and products on the growth of Actinobacillus succinogenes in fermentation using glucose as the major carbon source was studied. A. succinogenes tolerated up to 143 g/L glucose and cell growth was completely inhibited with glucose concentration over 158 g/L. Significant decrease in succinic acid yield and prolonged lag phase were observed with glucose concentration above 100 g/L. Among the end-products investigated, formate was found to have the most inhibitory effect on succinic acid fermentation. The critical concentrations of acetate, ethanol, formate, pyruvate and succinate were 46, 42, 16, 74, 104 g/L, respectively. A growth kinetic model considering both substrate and product inhibition is proposed, which adequately simulates batch fermentation kinetics using both semi-defined and wheat-derived media. The model accurately describes the inhibitory kinetics caused by both externally added chemicals and the same chemicals produced during fermentation. This paper provides key insights into the improvement of succinic acid production and the modelling of inhibition kinetics.  相似文献   

4.
The influence of sucrose concentration on the specific ethanol production rate was studied during batch processes using the yeast strain Saccharomyces cerevisiae Hansen Sc 5. From experimental data a model could be derived for the simulataneous effect of substrate and product inhibition. It was found that both the decreases of fermentation activity of the cells caused by sucrose and ethanol have an additional relation to each other. This model also takes into consideration the fact that the maximum ethanol concentration P′ can't be realized at high substrate concentrations in a batch process. Compared to it sucrose concentrations below 100 g/l did not inhibit the ethanol production by the strain used in this investigation.  相似文献   

5.
Extractive fermentation is a technique that can be used to reduce the effect of end product inhibition through the use of a water-immiscible phase that removes fermentation products in situ. This has the beneficial effect of not only removing inhibitory products as they are formed (thus keeping reaction rates high) but also has the potential for reducing product recovery costs. We have chosen to examine the ethanol fermentation as a model system for end product inhibition and extractive fermentation and have developed a computer model predicting the productivity enhancement possible with this technique together with other key parameters such as extraction efficiency and residual glucose concentration. The model accommodates variable liquid flowrates entering and leaving the system, since it was found that the aqueous outlet flowrate could be up to 35% lower than the inlet flowrate during extractive fermentation of concentrated glucose feeds due to the continuous removal of ethanol from the fermentation broth by solvent extraction. The model predicts a total ethanol productivity of 82.6 g/L h if a glucose feed of 750 g/L is fermented with a solvent having a distribution coefficient of 0.5 at a solvent dilution rate of 5.0 h(-1). This is more than 10 times higher than for a conventional chemostat fermentation of a 250 g/L glucose feed. The model has furthermore illustrated the possible trade-offs that exist between obtaining a high extraction efficiency and a low residual glucose concentration.  相似文献   

6.
In order to understand the effect of pH on growth and ethanol production in ethanologenic Escherichia coli, we investigated the kinetic behavior of ethanologenic E. coli during alcoholic fermentation of glucose or xylose in a controlled pH environment and the fermentation of glucose, xylose, or their mixtures without pH control. Based on the Monod equation, an unstructured and unsegregated kinetic model was proposed as a function of the pH of the fermentation medium. The pH effects on cell growth, sugar consumption, and ethanol production were taken into account in the proposed model. Both cell growth and ethanol production were found to be significantly influenced by the pH of the fermentation medium. The optimal pH range for ethanol production by ethanologenic E. coli on either glucose or xylose was 6.0–6.5. The highest value of the maximum specific growth rate (μ m) was obtained at pH 7.0. In the kinetic model of the fermentations of the sugar mixture, two inhibition terms related to glucose concentrations were included in both the cell growth and ethanol production equations because of the strong inhibitions of glucose and glucose metabolites on xylose metabolism. A good fit was found between model predictions and experimental data for both single-sugar and mixed-sugar fermentations without pH control within the experimental domain.  相似文献   

7.
The rice straw, an agricultural waste from Asians’ main provision, was collected as feedstock to convert cellulose into ethanol through the enzymatic hydrolysis and followed by the fermentation process. When the two process steps are performed sequentially, it is referred to as separate hydrolysis and fermentation (SHF). The steps can also be performed simultaneously, i.e., simultaneous saccharification and fermentation (SSF). In this research, the kinetic model parameters of the cellulose saccharification process step using the rice straw as feedstock is obtained from real experimental data of cellulase hydrolysis. Furthermore, this model can be combined with a fermentation model at high glucose and ethanol concentrations to form a SSF model. The fermentation model is based on cybernetic approach from a paper in the literature with an extension of including both the glucose and ethanol inhibition terms to approach more to the actual plants. Dynamic effects of the operating variables in the enzymatic hydrolysis and the fermentation models will be analyzed. The operation of the SSF process will be compared to the SHF process. It is shown that the SSF process is better in reducing the processing time when the product (ethanol) concentration is high. The means to improve the productivity of the overall SSF process, by properly using aeration during the batch operation will also be discussed.  相似文献   

8.
The inhibitory effect of ethanol is studied during alcoholic fermentation in strict anaerobiosis (initial dissolved oxygen stripped by gasing pure nitrogen). It is demonstrated that the ethanol produced during the batch fermentation is more inhibitory than the added ethanol (in the range of 0 to 72.6g/liter). By analogy with noncompetitive enzyme kinetic inhibition, the inhibition constant for added ethanol is 105.2 g/liter and 3.8 g/liter for produced ethanol, which exhibits the same inhibition effects in all experiments where ethanol was added. The measurement of the intracellular alcohol concentration can explain the dual inhibitory effects of ethanol.  相似文献   

9.
Summary The kinetics of the utilization of D-xylulose by the yeast Schizosaccharomyces pombe has been examined under anaerobic batch conditions. The inhibitory effect of ethanol on xylulose uptake and ethanol production was studied at pH 6.0 and 30°C. Ethanol had little or no effect on the sugar uptake rate, but end product inhibition was observed on ethanol production. This non-competitive inhibition was linear with respect to ethanol concentration between 0 and 60 g/l. A kinetic model for the alcoholic fermentation of xylulose is presented.  相似文献   

10.
High concentrations of both ethanol and sugar in the fermentation broth inhibit the growth of yeast cells and the rate of product formation. Inhibitory effects of ethanol on the yeast strain Saccharomyces cerevisiae NRRL-Y-132 were studied in batch and continuous chemostat cultures. Growth was limited by either glucose or ethanol. Feed medium was supplemented with different ethanol concentrations. Ethanol was found to inhibit growth and the activity of yeast to produce ethanol in a noncompetitive manner. A linear kinetic pattern for growth and product formation was observed according to μ = μm (1 – P/Pm) and v = vm (1 – P/Pm′), where μm is the maximum specific growth rate at P = 0 (hr?1); Pm is the maximum specific product formation rate at P = 0 (hr?1); Pm is the maximum ethanol concentration above which cells do not grow (g/liter); Pm′ is the maximum ethanol concentration above which cells do not produce ethanol (g/liter). Substrate inhibition studies were carried out using short-time experimental techniques under aerobic and anaerobic condition. The degree of substrate inhibition was found to be higher than that has been reported for ethanol fermentation of pure sugar. The kinetic relationships thus obtained were used to compute growth, substrate utilization, and alcohol production patterns and have been discussed with reference to batch and continuous fermentation of enzymatically produced bagasse hydrolysate.  相似文献   

11.
In Part I(1) of this research a complex model was obtained for describing the ethanol fermentation in a cascade reactor. This complexity is due to both the nonlinearity and the large scale representation. Based on techniques of partitioning and relaxation, a decentralized successive approximation method is developed for static optimization. The influence of the way of fermentation during continuous culture in multistage fermentors is studied in the case of a double inhibition of cell growth and product formation by both substrate and final product. The optimal number of reactors is discussed with respect to the strength of the ethanol inhibition, while the interest of head feeding or distributed feeding is evaluated in relation to the strength of substrate inhibition.  相似文献   

12.
A tapered column type of bioreactor system packed with immobilized Saccharomyces cerevisiae was used to study the bioreactor performance as a function of design and operating variables. The performance of tapered column bioreactor system was found to be better than that of the conventional cylindrical column reactor system for the ethanol fermentation. The new bioreactor design alleviated problems associated with carbon dioxide evolution and provided a significantly better flow pattern for both liquid and gas phases in the bioreactor without local channelling. A mathematical simulation model, which takes into account of the axial convection and dispersion, interphase mass transfer, and apparent kinetic design parameters, was developed. The effect of radial concentration gradients on the bioreactor performance was found to be insignificant. For the reactor system studied, the maximum ethanol productivity obtained was 60 g ethanol/L gel/h, and the maximum glucose assimilation rate was 140 g glucose/L gel/h. One of the most important findings from this study was that the apparent kinetic parameters change at the glucose concentration of 2 g/L This change was found to be due to the changes in yeast physiology and metabolism. The values of V(m) (') and V(m) (') decreased from 0.8 to 0.39 g ethanol/g cell/h and from 97mM to 11mM, respectively. The substrate inhibition constant was estimated as 0.76M and the product inhibition constant was determined as 113 g ethanol/L The degree of product inhibition showed practically a linear relationship with an increasing ethanol concentration. Based on the hydro-dynamic analysis of the bioreactor system, it was found that the Peclet number, N(Pe) was not a strong function of the flow velocity at low flow rates through the bioreactor system, but its value decreased somewhat at an interstitial velocity greater than 0.03 cm/s. The tapered column bioreactor system showed a much better flow pattern of gas and liquid phases within the reactor, thereby providing a more homogeneous distribution of gas-liquid-solid phases in the reactor without any phase separation.  相似文献   

13.
Let us consider the modeling of a cascade reactor for the production of ethanol. The rates of reaction in alcoholic fermentation are modeled so that it can assume both ethanol and substrate inhibition, in relation to the observed results.A nonstructured model, based on biomass, substrate, and ethanol concentrations, is developed and identified. It is a complex model, this being due to the nonlinearity between the specific rate of ethanol production and the growth rate and, on the other hand, the study of the static optimization of ethanol fermentation is performed.  相似文献   

14.
A four-phase reactor-separator (gas, liquid, solid, and immobilized catalyst) is proposed for fermentations characterized by a volatile product and nonvolatile substrate.In this reactor, the biological catalyst is immobilized onto a solid column packing and contacted by the liquid containing the substrate.A gas phase is also moved through the column to strip the volatile product into the gas phase. The Immobilized Cell Reactor-Separator (ICRS) consists of two basic gas-liquid flow sections: a cocurrent "enricher" followed by a countercurrent-"stripper".In this article, an equilibrium stage model of the reactor is developed to determine the feasibility and important operational variables of such a reactor-separator. The ICRS concept is applied to the ethanol from whey lactose fermentation using some preliminary immobilized cell reactor performance data. A mathematical model for a steady-state population based on an adsorbed monolayer of cells is also developed for the reactor. The ICRS model demonstrated that the ICRS should give a significant increase in reactor productivity as compared to an identically sized Immobilized Cell Reactor (ICR) with no separation. The gas-phase separation of the product also allows fermentation of high inlet substrate concentrations. The model is used to determine the effects of reactor parameters on ICRS performance including temperature, pressure, gas flow rates, inlet substrate concentration, and degree of microbial product inhibition.  相似文献   

15.
Ethanolic fermentation of simple sugars is an important step in the production of bioethanol as a renewable fuel. Significant levels of organic acids, which are generally considered inhibitory to microbial metabolism, could be accumulated during ethanolic fermentation, either as a fermentation product or as a by-product generated from pre-treatment steps. To study the impact of elevated concentrations of organic acids on ethanol production, varying levels of exogenous acetate or lactate were added into cultures of Thermoanaerobacter ethanolicus strain 39E with glucose, xylose or cellobiose as the sole fermentation substrate. Our results found that lactate was in general inhibitory to ethanolic fermentation by strain 39E. However, the addition of acetate showed an unexpected stimulatory effect on ethanolic fermentation of sugars by strain 39E, enhancing ethanol production by up to 394%. Similar stimulatory effects of acetate were also evident in two other ethanologens tested, T. ethanolicus X514, and Clostridium thermocellum ATCC 27405, suggesting the potentially broad occurrence of acetate stimulation of ethanolic fermentation. Analysis of fermentation end product profiles further indicated that the uptake of exogenous acetate as a carbon source might contribute to the improved ethanol yield when 0.1% (w/v) yeast extract was added as a nutrient supplement. In contrast, when yeast extract was omitted, increases in sugar utilization appeared to be the likely cause of higher ethanol yields, suggesting that the characteristics of acetate stimulation were growth condition-dependent. Further understanding of the physiological and metabolic basis of the acetate stimulation effect is warranted for its potential application in improving bioethanol fermentation processes.  相似文献   

16.
A power series solution is presented which describes the steady-state concentration profiles for substrate and product molecules in immobilized enzyme systems. Diffusional effects and product inhibition are incorporated into this model. The kinetic consequences of diffusion limitation and product inhibition for immobilized enzymes are discussed and are compared to kinetic behavior characteristic of other types of effects, such as substrate inhibition and substrate activation.  相似文献   

17.
Various aspects of process water recycle in a continuous flow fermentation process are analyzed. Simple mass balance equations in terms of product and feed components for a single-stage reactor producing biomass are developed. Constraints on the recycle ratio, imposed by the efficiency of the dewatering stage, are examined. The recycle analysis is extended using a kinetic growth model incorporating water soluble product formation and growth inhibition. The potential effect of recycle on substrate conversion and product accumulation is also examined and the concept of a critical recycle ratio in fermentation processes is developed.  相似文献   

18.
19.
A dialysate-feed, immobilized-cell dialysis continuous fermentation system was investigated as a method of relieving product inhibition in the conversion of glucose to ethanol by cells of Saccharomyces cerevisiae ATCC 4126. The substrate was fed into a continuous dialysate circuit and then into a batch fermentor circuit via diffusion through the microporous membranes of an intermediate dialyzer. Simultaneously, product was withdrawn from the fermentor circuit through the dialyzer membranes into the dialysate circuit and out in the effluent. Since the fermentor was operated without an effluent, the cells essentially were immobilized and converted substrate to product by maintenance metabolism. Contrary to prior results with this novel system for the continuous fermentation of lactose to lactate by lactobacillus cells, a steady state of yeast cells in the fermentor did not occur initially but was obtained by the depletion of medium nitrogen and the prevention of cell breakage, although the substrate and product concentrations then became unsteady. The inherent advantages of the system was offset in the ethanol fermentation by relatively low productivity, which appeared to be limited by membrane permeability.  相似文献   

20.
A study of ethanol tolerance in yeast   总被引:10,自引:0,他引:10  
The ethanol tolerance of yeast and other microorganisms has remained a controversial area despite the many years of study. The complex inhibition mechanism of ethanol and the lack of a universally accepted definition and method to measure ethanol tolerance have been prime reasons for the controversy. A number of factors such as plasma membrane composition, media composition, mode of substrate feeding, osmotic pressure, temperature, intracellular ethanol accumulation, and byproduct formation have been shown to influence the ethanol tolerance of yeast. Media composition was found to have a profound effect upon the ability of a yeast strain to ferment concentrated substrates (high osmotic pressure) and to ferment at higher temperatures. Supplementation with peptone-yeast extract, magnesium, or potassium salts has a significant and positive effect upon overall fermentation rates. An intracellular accumulation of ethanol was observed during the early stages of fermentation. As fermentation proceeds, the intracellular and extracellular ethanol concentrations become similar. In addition, increases in osmotic pressure are associated with increased intracellular accumulation of ethanol. However, it was observed that nutrient limitation, not increased intracellular accumulation of ethanol, is responsible to some extent for the decreases in growth and fermentation activity of yeast cells at higher osmotic pressure and temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号