首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
植物对重金属的耐性机理   总被引:65,自引:3,他引:62  
植物对重金属的耐性机理杨居荣,黄翌(北京师范大学环境科学研究所,100875)MechanismofHeavyMetalToleranceofPlants.¥YangJurong;HuangYi(InstituteofEnviron-mentalSc...  相似文献   

2.
Dwarf beans ( Phaseolus vulgaris L. cv. Limburgse Vroege) were grown on a nutrient medium containing a toxic non-lethal ZnSO4 concentration. The electron transport and photophosphorylation activities of chloroplasts, isolated from these beans, and from control plants, grown under standard nutrient conditions, were compared. Electron transport was significantly inhibited by Zn2+ treatment. Photosystem 2 activity proved to be more sensitive than photosystem 1 activity.
Inhibition was dependent on electron flow rate. Activity was fully restored with semicarbazide. EDTA-washed thylakoid membranes were strongly manganese-deficient. The results suggest that photolysis of water was primarily inhibited, due to a zinc-induced deficiency in loosely bound manganese at the water-splitting site. Manganese is probably substituted by zinc, since the zinc content of thylakoids increased five-fold. Non-cyclic photophosphorylation capacity was also limited as a result of inhibition of electron transport. Phosphorylation efficiency (ATP/2e ratio) involving both energy conserving sites was hardly affected.  相似文献   

3.
Abstract

Poplar plants were exposed during 61 days to a soil added with heavy metals so as to contain 300 mg Zn2+.kg?1 soil dry weight (SDW) (Zinc) or 50 mg Cd2+.kg?1 SDW (Cadmium). The Cd treatment induced a delayed growth of poplar, whereas Zn induced no change in physiological parameters. Both treatments resulted in a significant metal accumulation in plants. Zn2+ and Cd2+ exhibited contrasting distribution within tissues, indicating dissimilar handling by the plant. The main difference was the efficient compartmentalisation of Zn2+ in specific organ parts: old leaves and bark, while Cd2+ did not exhibit such a compartmentalisation. Results were also compared with a previous work where plants were exposed to 360 mg Cd2+.kg?1 SDW.  相似文献   

4.
将编码融合蛋白GST-SUMO-MT的DNA片段连接到大肠杆菌表达载体pET-28a中,构建重组表达质粒pET-GS-MT并转化到大肠杆菌Origami(DE3)中。20℃,1mM的IPTG诱导20h后,获得分子量约为43Kd的融合蛋白,表达量占菌体上清总蛋白的38.4%。利用谷胱甘肽交联琼脂糖(Glutathione Sepharose 4B)凝胶柱和Sephardex G-25分子筛联用可以得到纯度为95%以上的融合蛋白,得率约为70mg/L。该融合蛋白可与GST抗体产生阳性反应。融合蛋白GST-SUMO-MT可以显著提高宿主对Cd2+、Zn2+和Cu2+离子聚积的能力,其耐受能力比对照组分别提高4.2倍、4倍及1.6倍。此外,原子吸收光谱法测定,每分子GST-SUMO-MT可以结合2-3个Cd2+离子。  相似文献   

5.
对具超强汞富集能力的基因工程菌在重金属汞离子存在的水体中的生长状况进行了研究。实验所采用的基因工程菌由于外源基因的表达而对Hg^2 产生了一定的耐受力,而且这种耐受力经IPTG诱导后还能得到进一步的增强,耐受能力从Hg^2 浓度5mg/L提高到15mg/L。IPTG加入的时机对菌体的生长和耐受力的有效诱导是重要的。一般在OD600为0.5~0.8时加入,且加入后还应保证2h左右的诱导时间。实验结果还表明菌体在生长过程中对碳源的要求很低。  相似文献   

6.
Eleven bacterial strains were isolated from soil samples collected from mine tailings. Bacterial strains were checked for tolerance against heavy metals (Cr, Cd, Ni), using the agar dilution method. All the strains showed multiple tolerances against heavy metals, but the most promising results appeared in strains BCr3, BCd33, and BNi11: they were tolerant to 15 mM of Cr6+, 7.5 mM of Cd2+, and 10 mM of Ni2+, respectively. The effect of heavy metals on bacterial growth was tested together with their ability to grow in different pH, NaCl, and temperature values. Bacterial isolates grew well between pH 7.5 and 8.5. The optimum temperature for maximum growth was between 35 and 37°C, and no significant change in bacterial growth was observed in the presence of 2% NaCl. In addition, the bioaccumulation potential of bacterial strains was investigated. Bacterial strains BCr3, BCd33, and BNi11 showed high bioaccumulation ability of Cr (68.7%), Cd (72.4%), and Ni (69.8%), respectively. All bacterial isolates were identified by 16S rRNA gene sequencing. Analysis of plasmid content revealed that all bacterial isolates contained a single plasmid. Further, polymerase chain reaction together with DNA sequence analysis was used to screen all bacterial strains for the presence metal tolerance genes (czcD, chrA, chrB, czcB, czcC, nccA, and cadA) on both plasmid and chromosomal genomes.  相似文献   

7.
Synechocystis sp. PCC 6803 when grown in the presence of sublethal (M) levels of cobalt chloride shows an enhancement of Photosystem II (PS II) catalyzed Hill reaction. This stimulation seems to be induced by cobalt ions as other metal ions inhibit para-benzoquinone catalyzed Hill reaction. At saturating white light intensity, this enhancement is two times over that of the control cells on unit chlorophyll basis. Analysis of the PS II electron transport rate at varying intensities of white, blue or yellow light suggests an increased maximal rates but no change in the quantum yield or effective antenna size of CoCl2-grown cells. There were no structural and functional changes in the phycobilisome as judged by the absence of changes in the phycocyanin/allophycocyanin ratio, fluorescence emission spectra, second derivative absorption spectra at 77 K and SDS-PAGE analysis of isolated phycobilisomes. The 77 K fluorescence emission spectra of the cells showed a decrease in the ratio of Photosystem I emission (F725) to Photosystem II emission (F685) in CoCl2-grown cells compared to the control cells. These observations indicate three possibilities: (1) there is an increase in the number of Photosystem II units; (2) a faster turnover of Photosystem II centers; or (3) an alteration in energy redistribution between PS II and PS I in CoCl2-grown cells which causes stimulation of Photosystem II electron transport rate.Abbreviations APC allophycocyanin - Chl a chlorophyll a - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - EDTA ethylene diamine tetraacetic acid - PBS phycobilisome - PC phycocyanin - PSI Photosystem I - PS II Photosystem II - pBQ p-benzoquinone - PMSF phenyl methyl sulfonyl fluoride  相似文献   

8.
Heavy metals are toxic to living organisms. Some have no known beneficial biological function, while others have essential roles in physiological reactions. Mechanisms which deal with heavy metal stress must protect against the deleterious effects of heavy metals, yet avoid depleting the cell of a heavy metal which is also an essential nutrient. We describe the mechanisms of resistance in Escherichia coli to two different heavy metals, mercury and copper. Resistance of E. coli to mercury is reasonably well understood and is known to occur by transport of mercuric ions into the cytoplasmic compartment of the bacterial cell and subsequent reductive detoxification of mercuric ions. Recent mutational analysis has started to uncover the mechanistic detail of the mercuric ion transport processes, and has shown the essential nature of cysteine residues in transport of Hg(II). Resistance to copper is much less well understood, but is known to involve the increased export of copper from the bacterial cell and modification of the copper; the details of the process are still being elucidated. Expression of both metal resistance determinants is regulated by the corresponding cation. In each case the response enables the maintenance of cellular homeostasis for the metal. The conclusions drawn allow us to make testable predictions about the regulation of expression of resistance to other heavy metals.  相似文献   

9.
Soil heavy metal pollution is becoming more and more serious. Biomass charcoal application can play an important role in alleviating the toxicity of heavy metals in soils. Compared with other biochar, bamboo charcoal has more unique properties and may have a unique effect on heavy metal pollution. Zhejiang Province of Southeastern China is rich in bamboo resources. However, few studies related to bamboo charcoal application for heavy metal remediation in farmland were reported. In this study, four treatments with different amounts of bamboo charcoal application were set up through a field experiment, namely BC0 (no bamboo charcoal application), BC1 (2500 kg⋅ha−1), BC2 (5000 kg⋅ha−1), and BC3 (10000 kg⋅ha−1), and each treatment was replicated three times. The results showed that (1) The application of bamboo charcoal significantly increased the soil pH and organic matter content. Compared with BC0, the pH and organic content of BC3 increased by 7.4% and 17.4% (P < 0.05) respectively. (2) The HCl-extractable Cd content of paddy soil in the BC1 treatment was significantly lower than other treatments (P < 0.05), and decreased by 15.3%, compared with BC0. The soil HCl-extractable Zn and Cu content did not differ significantly between treatments (P > 0.05). (3) With the increase of bamboo charcoal application, the Cd content in rice gradually decreased, the BC3 treatment significantly decreased by 39.0% (P < 0.05), and the Zn and Cu contents in rice did not differ significantly between treatments (P > 0.05), compared with BC0. (4) Soil pH, organic matter and Cd in rice seeds were significantly negatively correlated (P < 0.01). The heavy metal content in rice does not change with the change of heavy metal content with HCl-extractable state in soil. It means bamboo charcoal does not reduce heavy metal content in rice by simply declining the heavy metal content with HCl-extractable state. The mechanism of action is relatively complicated, and further study is needed.  相似文献   

10.
通过对大豆铝胁迫下的转录组测序分析,发现一个差异表达的基因,其编码一个具有101个氨基酸残基的Dna J-like分子伴侣蛋白-Gm Dna J1(Glycine max Dna J1),等电点为8.97;序列分析表明该蛋白具有典型的高度保守的J domain功能域,是一种类型III的J蛋白;通过对其序列的同源性及进化关系分析,推测该蛋白可能响应重金属胁迫。为进一步探究Gm Dna J1是否能够对重金属胁迫产生应答反应,试验分别以0或100μmol·L-1Cu2+、Pb2+和Cd2+溶液胁迫处理的不同时间(0、12、24、48和72 h)大豆根尖RNA为材料,通过实时定量PCR研究了该蛋白基因的表达特征。结果表明:与对照相比,Gm Dna J1受Cu、Pb和Cd等重金属的诱导而强烈表达,呈现先升高后降低的趋势,其中Pb、Cd处理24 h后表达水平达到峰值,而Cu处理48 h后达到峰值;此外,Gm Dna J1对Cu、Pb和Cd胁迫的响应程度也不同,表明该基因对这三种重金属的响应模式存在差异。根据以上研究结果,推测大豆Gm Dna J1蛋白不仅响应铝毒胁迫,而且可能在响应重金属胁迫方面具有重要的作用,参与了大豆对重金属毒害的抵抗。该结果为深入研究Gm Dna J1在重金属胁迫响应中的功能及其分子机制提供了一定的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号