首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thrombin induces cell proliferation and migration during vascular injury. We report that thrombin rapidly stimulated expression and release of the pro-angiogenic polypeptide fibroblast growth factor 1 (FGF1). Thrombin failed to induce FGF1 release from protease-activated receptor 1 (PAR1) null fibroblasts, indicating that this effect was dependent on PAR1. Similarly to thrombin, FGF1 expression and release were induced by TRAP, a specific oligopeptide agonist of PAR1. These results identify a novel aspect of the crosstalk between FGF and thrombin signaling pathways which both play important roles in tissue repair and angiogenesis.  相似文献   

2.
The vasodilator effects of thrombin depend on activation of proteinase-activated receptor (PAR)-1 and the subsequent release of endothelin (ET)-1, which stimulates the generation of nitric oxide and PGs. We recently showed that thrombin released matrix metalloproteinase-2 (MMP-2) from rat arteries. We have now studied the significance of this release for the vasodilator effects of thrombin. Thrombin (>/=100 pmol), but not a PAR-1-activating peptide (TFLLR-NH(2)), produced a long-lasting (>10 min) vasorelaxation of rat mesenteric arteries, as detected by a microperfusion bioassay. Thrombin induced a simultaneous release of vascular MMP-2 into arterial perfusates, as revealed by zymography. Interestingly, the vasodilator effects of thrombin were inhibited by a tissue inhibitor of MMP-2 (TIMP-2, 10 pmol). Moreover, infusion of exogenous MMP-2 (5 pmol) resulted in vasorelaxation. These vasodilatory effects of thrombin and MMP-2 were significantly (P < 0.05) inhibited by endothelium denudation and by PD-142893 (2 nmol), an antagonist of ET receptors. Furthermore, both thrombin and MMP-2 constricted endothelium-denuded arteries. These results show that the vasodilator effects of thrombin may depend, in part, on a release of vascular MMP-2 and downstream activation of ETs. Thus MMP-2-dependent signaling may complement the PAR-1-dependent pathway of vasodilator action of thrombin.  相似文献   

3.
Metalloproteinases (MMP)-2 and MMP-9 play a role in smooth muscle cell (SMC) migration from the media to the intima following arterial injury. Intravenous administration of adenovirus encoding tissue inhibitor of metalloproteinase-1 (TIMP-1) into balloon-injured rat arteries (3 x 10(11) viral particles/rat; n=7) resulted in a transient expression of TIMP-1 and a significant inhibition of neointima thickening within 16 days ( approximately 40% vs. control; P=0.012). Three days after injury, the number of intimal SMCs was decreased by approximately 98% in TIMP-1-treated rats. However, no alteration was seen in intimal SMC proliferation after 13 days of injury. Therefore, our results show that systemic gene transfer of TIMP-1 is a promising approach in early restenosis treatment.  相似文献   

4.
5.
Thrombin-dependent platelet activation has been shown to be important in the setting of angioplasty and stenting, which may cause ischemic complications including acute myocardial infarction and death. Inhibitors of the high-affinity thrombin receptor, protease-activated receptor 1 (PAR1), are now being evaluated in clinical trials for safety and efficacy in patients with atherothrombotic disease. However, it is unknown whether chronic inhibition of PAR1 in these large patient populations will have beneficial or possibly adverse effects on other biologic processes involved in blood vessel homeostasis and the response to vascular injury. Most recently, PAR1 was found to be cleaved at a distinct site by matrix metalloprotease-1 (MMP-1) to create a longer tethered ligand, which activates a distinct spectrum of G protein pathways in platelets. The differential activation by serine proteases such as thrombin and the metalloprotease MMP-1, places the protease receptor PAR1 at the junction of two major protease classes critically involved in thrombosis, matrix remodeling, and the response to vascular injury.  相似文献   

6.
We have previously reported that protease-activated receptor 1 (PAR1 or thrombin receptor) is over-expressed in metastatic prostate cancer cell lines compared to prostate epithelial cells. In this study, we examined 1,074 prostate biopsies by tissue microarray analysis and demonstrated that PAR1 expression is significantly increased in prostate cancer compared to normal prostate epithelial cells and benign prostatic hyperplasia. We hypothesized that PAR1 activation contributed to prostate cancer cell progression. We demonstrated that stimulation of PAR1 by thrombin or thrombin receptor activating peptide (TRAP6), in androgen-independent DU145 and PC-3 cells resulted in increased DNA binding activity of the NFkappaB p65 subunit. IL-6 and IL-8 levels were also elevated in conditioned media by at least two-fold within 4-6 h of PAR1 activation. This induction of cytokine production was abrogated by pretreatment of cells with the NFkappaB inhibitor caffeic acid phorbol ester. The p38 and ERK1/2 MAPK signaling cascades were also activated by PAR1 stimulation, whereas the SAPK/JNK pathway was unaffected. Inhibition of p38 and ERK1/2 by SB-203589 and PD-098059, respectively, did not abrogate NFkappaB activity, suggesting an independent induction of NFkappaB by PAR1 stimulation. Furthermore, TUNEL assay showed that activation of PAR1 attenuated docetaxel induced apoptosis through the upregulation of the Bcl-2 family protein Bcl-xL. Akt activation was not observed, suggesting that drug resistance induced by PAR1 was independent of PI3K signaling pathway. Because thrombin and PAR1 are over-expressed in prostate cancer patients, targeting the inhibition of their interaction may attenuate NFkappaB signaling transduction resulting in decreased drug resistance and subsequent survival of prostate cancer cells.  相似文献   

7.
Platelet activation due to vascular injury is essential for hemostatic plug formation, and is mediated by agonists, such as thrombin, which trigger distinct receptor-coupled signaling pathways. Thrombin is a coagulation protease, which activates G protein-coupled protease-activated receptors (PARs) on the surface of platelets. We found that C57BL/6J and BALB/C mice that are deficient in protein kinase C θ (PKCθ), exhibit an impaired hemostasis, and prolonged bleeding following vascular injury. In addition, murine platelets deficient in PKCθ displayed an impaired thrombin-induced platelet activation and aggregation response. Lack of PKCθ also resulted in impaired α-granule secretion, as demonstrated by the low surface expression of CD62P, in thrombin-stimulated platelets. Since PAR4 is the only mouse PAR receptor that delivers thrombin-induced activation signals in platelets, our results suggest that PKCθ is a critical effector molecule in the PAR4-linked signaling pathways and in the regulation of normal hemostasis in mice.  相似文献   

8.
During restenosis following arterial injury, vascular smooth muscle cells (VSMCs) form a neointimal layer in arteries by changing from a differentiated, contractile phenotype to a dedifferentiated, migratory, and proliferative phenotype. Several growth factors, cytokines, and extracellular matrix components released following injury have been implicated in these phenotypic changes. We have recently detected the expression of laminin-5, an ECM protein found predominantly in epithelial tissues, in the arterial vasculature. Here we report that ln-5 expression by VSMC is upregulated by platelet-derived growth factor (PDGF-BB), epidermal growth factor, basic fibroblast growth factor, and transforming growth factor-beta1. Adhesion to ln-5 specifically enhances PDGF-BB-stimulated VSMC proliferation and migration. PD98059, a specific inhibitor of the ERK1/2 members of the Mitogen Activated Protein kinase family, increases both VSMC adhesion to ln-5 and blocks PDGF-BB-stimulated VSMC migration on ln-5. These results suggest that adhesion to ln-5 mediates a PDGF-BB-stimulated VSMC response to vascular injury via an ERK1/2 signaling pathway.  相似文献   

9.
10.
The most effective immediate cure for coronary stenosis is stent-supported angioplasty. Restenosis due to neointima proliferation represents a major limitation. We investigated the expression of 2435 genes in atherectomy specimens and blood cells of patients with restenosis, normal coronary artery specimens, and cultured human smooth muscle cells (SMCs). Of the 223 differentially expressed genes, 37 genes indicated activation of interferon-gamma (IFN-gamma) signaling in neointimal SMCs. In cultured SMCs, IFN-gamma inhibited apoptosis. Genetic disruption of IFN-gamma signaling in a mouse model of restenosis significantly reduced the vascular proliferative response. Our data suggest an important role of IFN-gamma in the control of neointima proliferation.  相似文献   

11.
The intima hyperplasia is a major morphological feature of various arterial pathologies such as atherosclerosis, postangioplasty restenosis and transplantation arteriopathy. It is commonly assumed that smooth muscle cells (SMC) comprising loci of the intima hyperplasia originate from arterial media. However, recent studies suggest that the bone marrow could also supply circulating vascular progenitor of SMCs and endothelial cells (EC). Such bone marrow progenitors participate in the formation of a cellular mass of neointima after experimental allotransplantation, mechanical vessel injury or hyperlipidemia induced experimental atherosclerosis. Circulating SMC and EC progenitors are also likely to be involved in the transplantation arteriopathy development in humans but their roles in the atherosclerosis and restenosis remain to be determined. Stages of the mobilization, defferentiation and proliferation of SMC progenitors could provide point of attack for new therapeutic strategies for the treatment of proliferative vascular diseases. The precise understanding of the neointima cells origin could provide a key for development of the optimal therapeutic strategy of treatnent of such disorders. This review is focused on the pathological significance of circulating progenitors of the bone marrow origin, particularly on the SMC progenitors, for development of vascular wall disorders.  相似文献   

12.

Introduction

Thrombin is a key factor in the stimulation of fibrin deposition, angiogenesis, and proinflammatory processes. Abnormalities in these processes are primary features of osteoarthritis (OA). Heme oxygenase (HO)-1 is a stress-inducible rate-limiting enzyme in heme degradation that confers cytoprotection against oxidative injury. Here, we investigated the intracellular signaling pathways involved in thrombin-induced HO-1 expression in human synovial fibroblasts (SFs).

Methods

Thrombin-mediated HO-1 expression was assessed with quantitative real-time (q)PCR. The mechanisms of action of thrombin in different signaling pathways were studied by using Western blotting. Knockdown of protease-activated receptor (PAR) proteins was achieved by transfection with siRNA. Chromatin immunoprecipitation assays were used to study in vivo binding of Nrf2 to the HO-1 promoter. Transient transfection was used to examine HO-1 activity.

Results

Osteoarthritis synovial fibroblasts (OASFs) showed significant expression of thrombin, and expression was higher than in normal SFs. OASFs stimulation with thrombin induced concentration- and time-dependent increases in HO-1 expression. Pharmacologic inhibitors or activators and genetic inhibition by siRNA of protease-activated receptors (PARs) revealed that the PAR1 and PAR3 receptors, but not the PAR4 receptor, are involved in thrombin-mediated upregulation of HO-1. Thrombin-mediated HO-1 expression was attenuated by thrombin inhibitor (PPACK), PKCδ inhibitor (rottlerin), or c-Src inhibitor (PP2). Stimulation of cells with thrombin increased PKCδ, c-Src, and Nrf2 activation.

Conclusion

Our results suggest that the interaction between thrombin and PAR1/PAR3 increases HO-1 expression in human synovial fibroblasts through the PKCδ, c-Src, and Nrf2 signaling pathways.  相似文献   

13.
Fibroblast proliferation and procollagen production are central features of tissue repair and fibrosis. In addition to its role in blood clotting, the coagulation cascade proteinase thrombin can contribute to tissue repair by stimulating fibroblasts via proteolytic activation of proteinase-activated receptor-1 (PAR1). During hemostasis, the coagulation cascade proteinase factor X is converted into factor Xa. We have previously shown that factor Xa upregulates fibroblast proliferation via production of autocrine PDGF. In this study, we further examined the effects of factor Xa on fibroblast function and aimed to identify its signaling receptor. We showed that factor Xa stimulates procollagen promoter activity and protein production by human and mouse fibroblasts. This effect was independent of PDGF and thrombin production, but dependent on factor Xa proteolytic activity. We also showed that PAR1-deficient mouse fibroblasts did not upregulate procollagen production, mobilize cytosolic calcium, or proliferate in response to factor Xa. Desensitization techniques and PAR1-specific agonists and inhibitors were used to demonstrate that PAR1 mediates factor Xa signaling in human fibroblasts. This is the first report that factor Xa stimulates extracellular matrix production. In contrast with endothelial cells and vascular smooth muscle cells, fibroblasts appear to be the only cell type in which the effects of factor Xa are mediated mainly via PAR1 and not PAR2. These findings are critical for our understanding of tissue repair and fibrotic mechanisms, and for the design of novel approaches to inhibit the profibrotic effects of the coagulation cascade without compromising blood hemostasis.  相似文献   

14.
Platelet‐derived growth factor (PDGF) has been implicated in the pathogenesis of arterial atherosclerosis and venous neointimal hyperplasia. We examined the effects of PDGF isoforms on smooth muscle cells (SMCs) from arterial and venous origins in order to further understand the differential responsiveness of these vasculatures to proliferative stimuli. Serum‐starved human arterial and venous SMCs exhibited very different proliferative responses to PDGF isoforms. Whereas, proliferation of arterial SMCs was strongly stimulated by PDGF‐AA, venous SMCs showed no proliferative response to PDGF‐AA, but instead demonstrated a significantly greater proliferative response to PDGF‐BB than arterial SMCs. Part of this difference could be attributed to differences in PDGF receptors expression. There was a 2.5‐fold higher (P < 0.05) density of PDGF receptor‐α (PDGF‐Rα) and a 6.6‐fold lower (P < 0.05) density of PDGF‐Rβ expressed on arterial compared to venous SMCs. Concomitant with an increased proliferative response to PDGF‐AA in arterial SMCs was a marked PDGF‐Rα activation, enhanced phosphorylation of ERK1/2 and Akt, a transient activation of c‐Jun NH2‐terminal kinase (JNK), and a significant reduction in expression of the cell‐cycle inhibitor p27kip1. This pattern of signaling pathway changes was not observed in venous SMCs. No phosphorylation of PDGF‐Rα was detected after venous SMC exposure to PDGF‐AA, but there was enhanced phosphorylation of ERK1/2 and Akt in venous SMCs, similar to that seen in the arterial SMCs. PDGF‐BB stimulation of venous SMC resulted in PDGF‐Rβ activation as well as transactivation of epidermal growth factor receptor (EGF‐R); transactivation of EGF‐R was not observed in arterial SMCs. These results may provide an explanation for the differential susceptibility to proliferative vascular diseases of arteries and veins. J. Cell. Biochem. 112: 289–298, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Expansive vascular remodeling is considered a feature of vulnerable plaques. Although inflammation is upregulated in the media and adventitia of atherosclerotic lesions, its contribution to expansive remodeling is unclear. We investigated this issue in injured femoral arteries of normo- and hyperlipidemic rabbits fed with a conventional (CD group; n=20) or a 0.5% cholesterol (ChD group; n=20) diet. Four weeks after balloon injury of the femoral arteries, we examined vascular wall alterations, localization of macrophages and matrix metalloproteases (MMP)-1, -2, -9, and extracellular matrix. Neointimal formation with luminal stenosis was evident in both groups, while expansive remodeling was observed only in the ChD group. Areas immunopositive for macrophages, MMP-1, -2 and -9 were larger not only in the neointima, but also in the media and/or adventitia in the injured arterial walls of the ChD, than in the CD group. Areas containing smooth muscle cells (SMCs), elastin and collagen were smaller in the injured arterial walls of the ChD group. MMP-1, -2 and -9 were mainly localized in infiltrating macrophages. MMP-2 was also found in SMCs and adventitial fibroblasts. Vasa vasorum density was significantly increased in injured arteries of ChD group than in those of CD group. These results suggest that macrophages in the media and adventitia play an important role in expansive atherosclerotic remodeling via extracellular matrix degradation and SMC reduction.  相似文献   

16.
17.
Transforming growth factor-β (TGF-β) is upregulated at the time of arterial injury; however, the mechanism through which TGF-β enhances the development of intimal hyperplasia is not clear. Recent studies from our laboratory suggest that in the presence of elevated levels of Smad3, TGF-β stimulates smooth muscle cell (SMC) proliferation. This is a novel phenomenon in that TGF-β has traditionally been known as a potent inhibitor of cellular proliferation. In these studies we explore the signaling pathways through which TGF-β mediates its proliferative effect in vascular SMCs. We found that TGF-β phosphorylates and activates Akt in a time-dependent manner, and this effect is significantly enhanced by overexpression of Smad3. Furthermore, both chemical and molecular inhibition of Smad3 can reverse the effect of TGF-β on Akt. Although we found numerous signaling pathways that might function as intermediates between Smad3 and Akt, p38 appeared the most promising. Overexpression of Smad3 enhanced p38 phosphorylation and inhibition of p38 with a chemical inhibitor or a small interfering RNA blocked TGF-β-induced Akt phosphorylation. Moreover, TGF-β/Smad3 enhancement of SMC proliferation was blocked by inhibition of p38. Phosphorylation of Akt by TGF-β/Smad3 was not dependent on gene expression or protein synthesis, and immunoprecipitation studies revealed a physical association among p38, Akt, and Smad3 suggesting that activation requires a direct protein-protein interaction. Our findings were confirmed in vivo where overexpression of Smad3 in a rat carotid injury model led to enhancement of p-p38, p-Akt, as well as SMC proliferation. Furthermore, inhibition of p38 in vivo led to decreased Akt phosphorylation and SMC proliferation. In summary, our studies reveal a novel pathway whereby TGF-β/Smad3 stimulates SMC proliferation through p38 and Akt. These findings provide a potential mechanism for the substantial effect of TGF-β on intimal hyperplasia and suggest new targets for chemical or molecular prevention of vascular restenosis.  相似文献   

18.
Of the four known protease-activated receptors (PARs), PAR1 and PAR4 are expressed by human platelets and mediate thrombin signaling. Whether these receptors are redundant, interact, or play at least partially distinct roles is unknown. It is possible that PAR1 and/or PAR4 might confer responsiveness to proteases other than thrombin. The neutrophil granule protease, cathepsin G, is known to cause platelet secretion and aggregation. We now report that this action of cathepsin G is mediated by PAR4. Cathepsin G triggered calcium mobilization in PAR4-transfected fibroblasts, PAR4-expressing Xenopus oocytes, and washed human platelets. An antibody raised against the PAR4 thrombin cleavage site blocked platelet activation by cathepsin G but not other agonists. Desensitization with a PAR4 activating peptide had a similar effect. By contrast, inhibition of PAR1 function had no effect on platelet responses to cathepsin G. When neutrophils were present, the neutrophil agonist fMet-Leu-Phe triggered calcium signaling in Fura-2-loaded platelets. Strikingly, this neutrophil-dependent platelet activation was blocked by the PAR4 antibody. These data show that PAR4 mediates platelet responses to cathepsin G and support the hypothesis that cathepsin G might mediate neutrophil-platelet interactions at sites of vascular injury or inflammation.  相似文献   

19.
Phosphatidylinositol 3-kinase (PI3K) is required for smooth muscle cell (SMC) proliferation. This study reports that inhibitors of PI3K also prevent SMC migration and block neointimal hyperplasia in an organ culture model of restenosis. Inhibition of neointimal formation by LY-294002 was concentration and time dependent, with 10 muM yielding the maximal effect. Continuous exposure for at least the first 4-7 days of culture was essential for significant inhibition. To assess the role of matrix metalloproteinases (MMPs) in this process, we monitored MMP secretion by injured vessels in culture. Treatment with LY-294002 selectively reduced active MMP-2 in media samples according to zymography and Western blot analysis without concomitant changes in latent MMP-2. Parallel results with wortmannin indicate that MMP-2 activation is PI3K dependent. Previous research has shown a role for both furin and membrane-type 1 (MT1)-MMP (MMP-14) in the activation of MMP-2. The furin inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethylketone did not prevent MMP-2 activation after balloon angioplasty. In contrast, balloon angioplasty induced a significant increase in the levels of MT1-MMP, which was suppressed by LY-294002. No change in MT1-MMP mRNA was observed with LY-294002, because equivalent amounts of this mRNA were present in both injured and noninjured vessels. These results implicate PI3K-dependent regulation of MT1-MMP protein synthesis and subsequent activation of latent MMP-2 as critical events in neointimal hyperplasia after vascular injury.  相似文献   

20.
Intimal hyperplasia is the main cause of restenosis after carotid artery injury, and the underlying mechanism involves the proliferation and migration of vascular smooth muscle cells (VSMCs). Angiotensin II Type 1 Receptor-Associated Protein (ATRAP) has been reported to withstand intimal hyperplasia by inhibiting VSMCs proliferation and migration; however, whether the beneficial effect of ATRAP associates with VSMCs apoptosis remains unclarified. We demonstrated that the adenoviral-mediated overexpression of ATRAP induced VSMC apoptosis, alleviating the balloon injury-induced neointima formation in rats. Under the condition of Angiotensin-II stimulation, ATRAP overexpression induced the apoptosis of rat VSMCs by depressing the PI3K-Akt signaling; whereas up-regulation of Akt by PTEN inhibitor abolished the apoptotic death. Thus, ATRAP regulates carotid intimal hyperplasia through controlling the PI3K-Akt signal-mediated VSMCs apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号