首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different types of plant pathogens may cause enormous losses in agriculture and also have an ecological impact in the nature. On molecular level, disease resistance is acquired through the action of tightly interconnected signaling pathways that may induce highly specific immune reactions in plant cells. Controlled protein dephosphorylation through protein phosphatase 2A activity is emerging as a crucial mechanism that regulates diverse signaling events in plants. PP2A is predominantly trimeric, and consists of a catalytic subunit, a scaffold subunit A, and a variable regulatory subunit B, which determines the target specificity of the PP2A holoenzyme.1 Recently, we uncovered a specific role for a regulatory subunit B’γ of PP2A as a negative regulator of immune reactions in Arabidopsis thaliana (hereafter Arabidopsis).2 Knock-down pp2a-b’γ mutants show constitutive activation of defense related genes, imbalanced antioxidant metabolism and premature disintegration of chloroplasts upon ageing. Proteomic analysis of soluble leaf extracts further revealed that the constitutive defense response in pp2a-b’γ leaves associates with increased levels of Cu/Zn superoxide dismutase, aconitase as well as components of the methionine-salvage pathway, suggesting PP2A-B’γ modulates methionine metabolism in leaves.  相似文献   

2.
Protein phosphatase 2A (PP2A), a ubiquitous and pleiotropic regulator of intracellular signaling, is composed of a core dimer (AC) bound to a variable (B) regulatory subunit. PP2A is an enzyme family of dozens of heterotrimers with different subcellular locations and cellular substrates dictated by the B subunit. B′β is a brain-specific PP2A regulatory subunit that mediates dephosphorylation of Ca2+/calmodulin-dependent protein kinase II and tyrosine hydroxylase. Unbiased proteomic screens for B′β interactors identified Cullin3 (Cul3), a scaffolding component of E3 ubiquitin ligase complexes, and the previously uncharacterized Kelch-like 15 (KLHL15). KLHL15 is one of ∼40 Kelch-like proteins, many of which have been identified as adaptors for the recruitment of substrates to Cul3-based E3 ubiquitin ligases. Here, we report that KLHL15-Cul3 specifically targets B′β to promote turnover of the PP2A subunit by ubiquitylation and proteasomal degradation. Comparison of KLHL15 and B′β tissue expression profiles suggests that the E3 ligase adaptor contributes to selective expression of the PP2A/B′β holoenzyme in the brain. We mapped KLHL15 residues critical for homodimerization as well as interaction with Cul3 and B′β. Explaining PP2A subunit selectivity, the divergent N terminus of B′β was found necessary and sufficient for KLHL15-mediated degradation, with Tyr-52 having an obligatory role. Although KLHL15 can interact with the PP2A/B′β heterotrimer, it only degrades B′β, thus promoting exchange with other regulatory subunits. E3 ligase adaptor-mediated control of PP2A holoenzyme composition thereby adds another layer of regulation to cellular dephosphorylation events.  相似文献   

3.
Fibroblast growth factor (FGF)-induced growth arrest of chondrocytes is a unique cell type-specific response which contrasts with the proliferative response of most cell types and underlies several genetic skeletal disorders caused by activating FGF receptor (FGFR) mutations. We have shown that one of the earliest key events in FGF-induced growth arrest is dephosphorylation of the retinoblastoma protein (Rb) family member p107 by protein phosphatase 2A (PP2A), a ubiquitously expressed multisubunit phosphatase. In this report, we show that the PP2A-B55α holoenzyme (PP2A containing the B55α subunit) is responsible for this phenomenon. Only the B55α (55-kDa regulatory subunit, alpha isoform) regulatory subunit of PP2A was able to bind p107, and this interaction was induced by FGF in chondrocytes but not in other cell types. Small interfering RNA (siRNA)-mediated knockdown of B55α prevented p107 dephosphorylation and FGF-induced growth arrest of RCS (rat chondrosarcoma) chondrocytes. Importantly, the B55α subunit bound with higher affinity to dephosphorylated p107. Since the p107 region interacting with B55α is also the site of cyclin-dependent kinase (CDK) binding, B55α association may also prevent p107 phosphorylation by CDKs. FGF treatment induces dephosphorylation of the B55α subunit itself on several serine residues that drastically increases the affinity of B55α for the PP2A A/C dimer and p107. Together these observations suggest a novel mechanism of p107 dephosphorylation mediated by activation of PP2A through B55α dephosphorylation. This mechanism might be a general signal transduction pathway used by PP2A to initiate cell cycle arrest when required by external signals.  相似文献   

4.
Protein phosphatase 2A (PP2A) is a heterotrimeric complex comprising a catalytic, scaffolding, and regulatory subunit. The regulatory subunits are essential for substrate specificity and localization of the complex and are classified into B/B55, B'', and B” non-related families in higher plants. In Arabidopsis thaliana, the close paralogs B''η, B''θ, B''γ, and B''ζ were further classified into a subfamily of B'' called B''η. Here we present results that consolidate the evidence for a role of the B''η subfamily in regulation of innate immunity, energy metabolism and flowering time. Proliferation of the virulent Pseudomonas syringae in B''θ knockout mutant decreased in comparison with wild type plants. Additionally, B''θ knockout plants were delayed in flowering, and this phenotype was supported by high expression of FLC (FLOWERING LOCUS C). B''ζ knockout seedlings showed growth retardation on sucrose-free medium, indicating a role for B''ζ in energy metabolism. This work provides insight into functions of the B''η subfamily members, highlighting their regulation of shared physiological traits while localizing to distinct cellular compartments.  相似文献   

5.
Nerve growth factor (NGF) is critical for the differentiation and maintenance of neurons in the peripheral and central nervous system. Sustained autophosphorylation of the TrkA receptor tyrosine kinase and long-lasting activation of downstream kinase cascades are hallmarks of NGF signaling, yet our knowledge of the molecular mechanisms underlying prolonged TrkA activity is incomplete. Protein phosphatase 2A (PP2A) is a heterotrimeric Ser/Thr phosphatase composed of a scaffolding, catalytic, and regulatory subunit (B, B′, and B" gene families). Here, we employ a combination of pharmacological inhibitors, regulatory subunit overexpression, PP2A scaffold subunit exchange, and RNA interference to show that PP2A containing B′ family regulatory subunits participates in sustained NGF signaling in PC12 cells. Specifically, two neuron-enriched regulatory subunits, B′β and B′δ, recruit PP2A into a complex with TrkA to dephosphorylate the NGF receptor on Ser/Thr residues and to potentiate its intrinsic Tyr kinase activity. Acting at the receptor level, PP2A/ B′β and B′δ enhance NGF (but not epidermal growth factor or fibroblast growth factor) signaling through the Akt and Ras-mitogen-activated protein kinase cascades and promote neuritogenesis and differentiation of PC12 cells. Thus, select PP2A heterotrimers oppose desensitization of the TrkA receptor tyrosine kinase, perhaps through dephosphorylation of inhibitory Ser/Thr phosphorylation sites on the receptor itself, to maintain neurotrophin-mediated developmental and survival signaling.  相似文献   

6.
Protein phosphatase 2A (PP2A) is a family of multifunctional serine/threonine phosphatases consisting of a catalytic C, a structural A, and a regulatory B subunit. The substrate and therefore the functional specificity of PP2A are determined by the assembly of the enzyme complex with the appropriate regulatory B subunit families, namely B55, B56, PR72, or PR93/PR110. It has been suggested that additional levels of regulating PP2A function may result from the phosphorylation of B56 isoforms. In this study, we identified a novel phosphorylation site at Ser41 of B56α. This phosphoamino acid residue was efficiently phosphorylated in vitro by PKCα. We detected a 7-fold higher phosphorylation of B56α in failing human hearts compared with nonfailing hearts. Purified PP2A dimeric holoenzyme (subunits C and A) was able to dephosphorylate PKCα-phosphorylated B56α. The potency of B56α for PP2A inhibition was markedly increased by PKCα phosphorylation. PP2A activity was also reduced in HEK293 cells transfected with a B56α mutant, where serine 41 was replaced by aspartic acid, which mimics phosphorylation. More evidence for a functional role of PKCα-dependent phosphorylation of B56α was derived from Fluo-4 fluorescence measurements in phenylephrine-stimulated Flp293 cells. The endoplasmic reticulum Ca2+ release was increased by 23% by expression of the pseudophosphorylated form compared with wild-type B56α. Taken together, our results suggest that PKCα can modify PP2A activity by phosphorylation of B56α at Ser41. This interplay between PKCα and PP2A represents a new mechanism to regulate important cellular functions like cellular Ca2+ homeostasis.  相似文献   

7.
8.
Protein Phosphatase 2A (PP2A) is a major Ser/Thr phosphatase involved in the regulation of various cellular processes. PP2A assembles into diverse trimeric holoenzymes, which consist of a scaffolding (A) subunit, a catalytic (C) subunit and various regulatory (B) subunits. Here we report a 2.0 Å crystal structure of the free B’’/PR70 subunit and a SAXS model of an A/PR70 complex. The crystal structure of B’’/PR70 reveals a two domain elongated structure with two Ca2+ binding EF-hands. Furthermore, we have characterized the interaction of both binding partner and their calcium dependency using biophysical techniques. Ca2+ biophysical studies with Circular Dichroism showed that the two EF-hands display different affinities to Ca2+. In the absence of the catalytic C-subunit, the scaffolding A-subunit remains highly mobile and flexible even in the presence of the B’’/PR70 subunit as judged by SAXS. Isothermal Titration Calorimetry studies and SAXS data support that PR70 and the A-subunit have high affinity to each other. This study provides additional knowledge about the structural basis for the function of B’’ containing holoenzymes.  相似文献   

9.
The nucleus/cytoplasm (N/C) ratio controls S phase dynamics in many biological systems, most notably the abrupt remodeling of the cell cycle that occurs at the midblastula transition in early Xenopus laevis embryos. After an initial series of rapid cleavage cycles consisting only of S and M phases, a critical N/C ratio is reached, which causes a sharp increase in the length of S phase as the cell cycle is reconfigured to resemble somatic cell cycles. How the N/C ratio determines the length of S phase has been a longstanding problem in developmental biology. Using Xenopus egg extracts, we show that DNA replication at high N/C ratio is restricted by one or more limiting substances. We report here that the protein phosphatase PP2A, in conjunction with its B55α regulatory subunit, becomes limiting for replication origin firing at high N/C ratio, and this in turn leads to reduced origin activation and an increase in the time required to complete S phase. Increasing the levels of PP2A catalytic subunit or B55α experimentally restores rapid DNA synthesis at high N/C ratio. Inversely, reduction of PP2A or B55α levels sharply extends S phase even in low N/C extracts. These results identify PP2A-B55α as a link between DNA replication and N/C ratio in egg extracts and suggest a mechanism that may influence the onset of the midblastula transition in vivo.  相似文献   

10.
11.
Protein phosphatase 2A (PP2A) is a heterotrimeric enzyme consisting of a scaffold subunit (A), a catalytic subunit (C), and a variable regulatory subunit (B). The regulatory B subunits determine the substrate specificity and subcellular localization of the PP2A holoenzyme. Here, we demonstrate that the subcellular localization of the B56γ3 regulatory subunit is regulated in a cell cycle-specific manner. Notably, B56γ3 becomes enriched in the nucleus at the G1/S border and in S phase. The S phase-specific nuclear enrichment of B56γ3 is accompanied by increases of nuclear A and C subunits and nuclear PP2A activity. Overexpression of B56γ3 promotes nuclear localization of the A and C subunits, whereas silencing both B56γ2 and B56γ3 blocks the S phase-specific increase in the nuclear localization and activity of PP2A. In NIH3T3 cells, B56γ3 overexpression reduces p27 phosphorylation at Thr-187, concomitantly elevates p27 protein levels, delays the G1 to S transition, and retards cell proliferation. Consistently, knockdown of endogenous B56γ3 expression reduces p27 protein levels and increases cell proliferation in HeLa cells. These findings demonstrate that the dynamic nuclear distribution of the B56γ3 regulatory subunit controls nuclear PP2A activity, which regulates cell cycle controllers, such as p27, to restrain cell cycle progression, and may be responsible for the tumor suppressor function of PP2A.  相似文献   

12.
To establish infection, a retrovirus must insert a DNA copy of its RNA genome into host chromatin. This reaction is catalysed by the virally encoded enzyme integrase (IN) and is facilitated by viral genus-specific host factors. Herein, cellular serine/threonine protein phosphatase 2A (PP2A) is identified as a functional IN binding partner exclusive to δ-retroviruses, including human T cell lymphotropic virus type 1 and 2 (HTLV-1 and HTLV-2) and bovine leukaemia virus (BLV). PP2A is a heterotrimer composed of a scaffold, catalytic and one of any of four families of regulatory subunits, and the interaction is specific to the B′ family of the regulatory subunits. B′-PP2A and HTLV-1 IN display nuclear co-localization, and the B′ subunit stimulates concerted strand transfer activity of δ-retroviral INs in vitro. The protein–protein interaction interface maps to a patch of highly conserved residues on B′, which when mutated render B′ incapable of binding to and stimulating HTLV-1 and -2 IN strand transfer activity.  相似文献   

13.
The protein phosphatase 2A (PP2A) family of heterotrimeric serine-threonine phosphatases participates in human cell transformation. Each functional PP2A complex contains one structural A subunit (Aα or Aβ), and mutations of both are found to occur at low frequency in human tumors. We have shown that Aα functions as haploinsufficient tumor suppressor gene by regulating in part phosphatidylinositol 3-kinase (PI3K) signaling. In contrast, loss of Aβ function due to biallelic alterations contributes to cancer progression through dysregulation of small GTPase RalA activity. These observations provide evidence that dysfunction of particular PP2A complexes regulate specific phosphorylation event necessary for cancer initiation.Key Words: protein phosphatase 2A, RalA, cancer, transformationReversible phosphorylation plays a key role in the regulation of signaling pathways relevant to cell transformation. Dysregulation of several kinase oncogenes have been shown to be required for cancer development, and several targeted therapies focused on inhibiting particular kinases have now been approved for clinical use. Although it is clear that phosphorylation is also regulated by phosphatases, initial biochemical studies suggested that unlike kinases, phosphatases act promiscuously and constitutively in vitro. However, recent work indicates that phosphatases play essential roles in malignant transformation by acting on specific substrates in vivo.Protein phosphatase 2A (PP2A) is a family of serine-threonine phosphatases implicated in the control of a diverse array of cellular processes. The PP2A core enzyme consists of a catalytic C subunit and a structural A subunit. In mammals, two distinct genes encode closely related versions of both the PP2A A and C subunits. The AC dimer recruits a third regulatory B subunit that has been predicted to dictate the substrate specificity and function of the PP2A heterotrimeric complex. Four unrelated families of B subunits have identified to date: B/B55/PR55/PPP2R2, B′/B56/PR61/PPP2R5, B″/PR72/PPP2R3 and Striatin1 (Fig. 1). Recent genetic and proteomic studies implicate clear roles for PP2A subunits in regulating physiological functions and one emerging view is that specific PP2A complexes play critical roles in cell transformation by regulating particular substrates.Open in a separate windowFigure 1Disruption of PP2A complexes induces transformation. PP2A is a heterotrimeric protein complex, and several isoforms exist for each of the three subunits, creating a diverse family of related enzymes that regulate specific physiological functions. Alterations of PP2A structural subunits, Aα and Aβ, contribute to spontaneously arising human cancers by distinct mechanisms. Cancer-associated Aα haploinsufficiency may induce human cell transformation by activating PI3K/AKT pathway while PP2A Aβ loss-of-function permits the accumulation of activated RalA.Somatic alterations of the PP2A structural subunit Aβ (PPP2R1B) have been found to occur in colon, lung and breast cancers.25 Notably, point mutations in one Aβ allele are commonly accompanied by loss of the second Aβ allele. We confirmed previous work6 that showed cancer-associated Aβ mutants form functionally null alleles.7 These studies indicate that Aβ is genetically inactivated in a subset of human cancers. In addition, we found that suppression of Aβ was found to cooperate with H-Ras, telomerase catalytic subunit hTERT and the SV40 Large T antigen to induce transformation of normal human cells while introduction of wild type Aβ into lung carcinoma cells lacking functional Aβ partially reverses this tumorigenic phenotype.7 Together, these data provide evidence that PP2A Aβ functions as a tumor suppressor gene.Previous work has shown cancer derived Aβ mutants exhibit markedly impaired ability to form complexes with the catalytic C subunit and the regulatory PR72 subunit.6 We have found that Aβ mutants also showed decreased ability to bind to regulatory Bα subunit and several members of B′ family. These data indicate that cancer-associated alterations of PP2A Aβ result in disruption of most if not all PP2A Aβ-containing complexes. Considering that distinct Aβ-B complexes are likely regulate the phosphorylation of particular substrates involved in transformation, further work is required to identify which B subunits participate in malignant transformation.Somatic mutations of the more abundant PP2A structural Aα subunit have also been reported in human cancers, although at low frequency.2,8 We previously showed that cancer-associated PP2A Aα mutations contribute to cell transformation by creating a state of haploinsufficiency.9 Although these two distinct PP2A structural isoforms, Aα and Aβ, are 86% identical,10 it was unclear whether these two isoforms share overlapping functions.11 We found that overexpression of Aα failed to revert the tumorigenic phenotype induced by Aβ suppression, suggesting that PP2A complexes containing Aα or Aβ are functionally distinct.To identify substrates specific for PP2A Aβ, we performed large scale immunopurification of PP2A Aα- and Aβ-containing complexes. We have found that PP2A Aβ complex, but not the PP2A Aα complex, binds to and inhibits activity of the small GTPase RalA through direct dephosphorylation at Ser183 and Ser 194. Cancer-associated Aβ mutants are unable to dephosphorylate RalA, suggesting that loss of Aβ function impairs the formation of complexes with RalA and deregulates its activity. Consistent with previous reports that implicated RalA in regulation of several signaling pathways relevant to cell transformation,1214 loss of function experiments revealed that RalA is crucial for transformation mediated by Aβ dysfunction. These findings strongly suggest that accumulation of phospho-RalA in PP2A Aβ deficient cells promotes tumorigenic phenotype (Fig. 1). However, we cannot exclude that other substrates of PP2A Aβ complexes also contribute to cell transformation.These observations also implicate phosphorylation of RalA as an alternative mechanism that may regulate RalA activity and cell transformation. Prior work has shown Aurora A kinase as one kinase that can induce RalA phosphorylation at Ser 194.15 However, further studies are required to identify the kinase(s) that are responsible for RalA phosphorylation at Ser 183 and Ser 194.While Aβ loss-of-function permits the accumulation of activated RalA, Aα haploinsufficiency seems to induce human cell transformation by activating AKT/PI3K signaling pathway9 (Fig. 1). However, it remains unclear whether PP2A A subunits determine the substrate specificity of heterotrimeric complexes by direct substrate binding, or by forming complex with particular set of B and C subunits. In consonance with the latter idea, Aα and Aβ have been reported to have different affinity to Cα, Bα, B''α1 and PR72 subunits.17 The systematic characterization of PP2A complex composition necessary for RalA dephosphorylation and Akt activation and further structural studies to resolve PP2A in complex with specific substrates will help elucidate the mechanistic details of how PP2A acts as a tumor suppressor.  相似文献   

14.
Kirchner J  Gross S  Bennett D  Alphey L 《Genetics》2007,176(1):273-281
Protein serine/threonine phosphatase type 1 (PP1) has been found in all eukaryotes examined to date and is involved in the regulation of many cellular functions, including glycogen metabolism, muscle contraction, and mitosis. In Drosophila, four genes code for the catalytic subunit of PP1 (PP1c), three of which belong to the PP1α subtype. PP1β9C (flapwing) encodes the fourth PP1c gene and has a specific and nonredundant function as a nonmuscle myosin phosphatase. PP1α87B is the major form and contributes ~80% of the total PP1 activity. We describe the first mutant alleles of PP1α96A and show that PP1α96A is not an essential gene, but seems to have a function in the regulation of nonmuscle myosin. We show that overexpression of the PP1α isozymes does not rescue semilethal PP1β9C mutants, whereas overexpression of either PP1α96A or PP1β9C does rescue a lethal PP1α87B mutant combination, showing that the lethality is due to a quantitative reduction in the level of PP1c. Overexpression of PP1β9C does not rescue a PP1α87B, PP1α96A double mutant, suggesting an essential PP1α-specific function in Drosophila.  相似文献   

15.
We have previously shown that Greatwall kinase (Gwl) is required for M phase entry and maintenance in Xenopus egg extracts. Here, we demonstrate that Gwl plays a crucial role in a novel biochemical pathway that inactivates, specifically during M phase, “antimitotic” phosphatases directed against phosphorylations catalyzed by cyclin-dependent kinases (CDKs). A major component of this phosphatase activity is heterotrimeric PP2A containing the B55δ regulatory subunit. Gwl is activated during M phase by Cdk1/cyclin B (MPF), but once activated, Gwl promotes PP2A/B55δ inhibition with no further requirement for MPF. In the absence of Gwl, PP2A/B55δ remains active even when MPF levels are high. The removal of PP2A/B55δ corrects the inability of Gwl-depleted extracts to enter M phase. These findings support the hypothesis that M phase requires not only high levels of MPF function, but also the suppression, through a Gwl-dependent mechanism, of phosphatase(s) that would otherwise remove MPF-driven phosphorylations.  相似文献   

16.
17.
Eukaryal translation initiation factor 2B (eIF2B) acts as guanine nucleotide exchange factor (GEF) for eIF2 and forms a central target for pathways regulating global protein synthesis. eIF2B consists of five non-identical subunits (α–ϵ), which assemble into a catalytic subcomplex (γ, ϵ) responsible for the GEF activity, and a regulatory subcomplex (α, β, δ) which regulates the GEF activity under stress conditions. Here, we provide new structural and functional insight into the regulatory subcomplex of eIF2B (eIF2BRSC). We report the crystal structures of eIF2Bβ and eIF2Bδ from Chaetomium thermophilum as well as the crystal structure of their tetrameric eIF2B(βδ)2 complex. Combined with mutational and biochemical data, we show that eIF2BRSC exists as a hexamer in solution, consisting of two eIF2Bβδ heterodimers and one eIF2Bα2 homodimer, which is homologous to homohexameric ribose 1,5-bisphosphate isomerases. This homology is further substantiated by the finding that eIF2Bα specifically binds AMP and GMP as ligands. Based on our data, we propose a model for eIF2BRSC and its interactions with eIF2 that is consistent with previous biochemical and genetic data and provides a framework to better understand eIF2B function, the molecular basis for Gcn, Gcd and VWM/CACH mutations and the evolutionary history of the eIF2B complex.  相似文献   

18.
The phosphorylation state of pocket proteins during the cell cycle is determined at least in part by an equilibrium between inducible cyclin-dependent kinases (CDKs) and serine/threonine protein phosphatase 2A (PP2A). Two trimeric holoenzymes consisting of the core PP2A catalytic/scaffold dimer and either the B55α or PR70 regulatory subunit have been implicated in the activation of p107/p130 and pRB, respectively. While the phosphorylation state of p107 is very sensitive to forced changes of B55α levels in human cell lines, regulation of p107 in response to physiological modulation of PP2A/B55α has not been elucidated. Here we show that fibroblast growth factor 1 (FGF1), which induces maturation and cell cycle exit in chondrocytes, triggers rapid accumulation of p107-PP2A/B55α complexes coinciding with p107 dephosphorylation. Reciprocal solution-based mass spectrometric analysis identified the PP2A/B55α complex as a major component in p107 complexes, which also contain E2F/DPs, DREAM subunits, and/or cyclin/CDK complexes. Of note, p107 is one of the preferred partners of B55α, which also associates with pRB in RCS cells. FGF1-induced dephosphorylation of p107 results in its rapid accumulation in the nucleus and formation of larger complexes containing p107 and enhances its interaction with E2F4 and other p107 partners. Consistent with a key role of B55α in the rapid activation of p107 in chondrocytes, limited ectopic expression of B55α results in marked dephosphorylation of p107 while B55α knockdown results in hyperphosphorylation. More importantly, knockdown of B55α dramatically delays FGF1-induced dephosphorylation of p107 and slows down cell cycle exit. Moreover, dephosphorylation of p107 in response to FGF1 treatment results in early recruitment of p107 to the MYC promoter, an FGF1/E2F-regulated gene. Our results suggest a model in which FGF1 mediates rapid dephosphorylation and activation of p107 independently of the CDK activities that maintain p130 and pRB hyperphosphorylation for several hours after p107 dephosphorylation in maturing chondrocytes.  相似文献   

19.
Evidence that protein phosphatase 2A (PP2A) is a tumor suppressor in humans came from the discovery of mutations in the genes encoding the Aα and Aβ subunits of the PP2A trimeric holoenzymes, Aα-B-C and Aβ-B-C. One point mutation, Aα-E64D, was found in a human lung carcinoma. It renders Aα specifically defective in binding regulatory B′ subunits. Recently, we reported a knock-in mouse expressing Aα-E64D and an Aα knockout mouse. The mutant mice showed a 50–60% increase in the incidence of lung cancer induced by benzopyrene. Importantly, PP2A''s tumor suppressor activity depended on p53. These data provide the first direct evidence that PP2A is a tumor suppressor in mice. In addition, they suggest that PP2A is a tumor suppressor in humans. Here, we report that PP2A functions as a tumor suppressor in mice that develop lung cancer triggered by oncogenic K-ras. We discuss whether PP2A may function as a tumor suppressor in diverse tissues, with emphasis on endometrial and ovarian carcinomas, in which Aα mutations were detected at a high frequency. We propose suitable mouse models for examining whether PP2A functions as tumor suppressor in major growth-stimulatory signaling pathways, and we discuss the prospect of using the PP2A activator FTY720 as a drug against malignancies that are driven by these pathways.Key words: lung cancer, oncogenic K-ras, p53, Aα mutations in endometrial cancerUnderstanding how protein phosphatase 2A (PP2A) functions as a tumor suppressor requires knowledge of its complex structure and the roles its numerous regulatory subunits play. The trimeric holoenzyme is composed of a catalytic C subunit, a scaffolding A subunit and one of many regulatory B subunits. The catalytic C subunit exists as two isoforms, Cα and Cβ, that are 96% identical. The scaffolding A subunit also exists as two isoforms, Aα and Aβ, and they are 87% identical. The B subunits fall into four families designated B, B′, B″ and B‴. The B or PR55 family has four members; the B'' family (also designated B56 or PR61) consists of five isoforms and additional splice variants, and the B” or PR72 family has four members including splice variants. B, B′ and B″ are largely unrelated by sequence. The combination of all subunits could give rise to over 70 distinct holoenzymes. In addition, the ability of PP2A to associate with approximately 150 other proteins further increases its regulatory potential.15 Figure 1B shows a schematic diagram of the holoenzyme whose subunit interactions and structure have been revealed initially by biochemical studies17,18 and subsequently in great detail by crystal structure analyses.1923 Through this work and numerous other investigations, it has become increasingly clear over the past 25 years that PP2A is not just a nonspecific phosphatase, as it was thought to be initially, but a highly sophisticated enzyme involved in most, if not all, fundamental cellular processes. One of the most challenging properties of PP2A is its role as a tumor suppressor, which has been covered by excellent reviews in references 2428. The present report highlights recently developed mouse models for investigating PP2A''s tumor suppressor activity.Open in a separate windowFigure 1Model of PP2A holoenzyme; location of human cancer-associated Aα mutations; high frequency of Aα mutations in endometrial cancer. (B) Trimeric PP2A holoenzyme consists of one catalytic subunit (Cα or Cβ), one scaffolding subunit (Aα or Aβ) and one of several regulatory subunits (B, B'' or B”). Aα and Aβ consist of 15 repeats connected by inter-repeat loops. Each repeat consists of two antiparallel α-helices connected by intra-repeat loops. (A) Aα mutations in endometrial (endo) or ovarian (ovary) cancer are clustered at or near intra-repeat loop 5 of repeat 5 (from P179 to R183) and at or near intra-repeat loop 7 of repeat 7 (from R249 to R258). Numbers in parentheses represent number of tumors with a mutation at a particular site.69 E64D, E64G and R418W were found in lung, breast and skin cancer, respectively.10 Shown in (C and D) are C-terminal truncations, Δ171–589 from breast cancer missing repeats 6 to 1510 and Δ375–589 from kidney cancer missing repeats 11 to 15.11 (E) Frequency of Aα mutations in endometrial (18%, 31/171) and ovarian (6%, 27/470) cancers in comparison to K-ras, Arf, p53 and PI3K.69 (F) Loss of Bα, B''γ3 (formerly known as B''α1),12 and B”/PR72 binding to mutant Aα. Note: All Aα mutants are defective in B''γ3 binding.13,14 For E393Q, see reference 15; for R183W in pancreatic (pa) cancer, see reference 16; *indicates synthetic mutant.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号