首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in human cationic trypsinogen (PRSS1) cause autosomal dominant hereditary pancreatitis. Increased intrapancreatic autoactivation of trypsinogen mutants has been hypothesized to initiate the disease. Autoactivation of cationic trypsinogen is proteolytically regulated by chymotrypsin C (CTRC), which mitigates the development of trypsin activity by promoting degradation of both trypsinogen and trypsin. Paradoxically, CTRC also increases the rate of autoactivation by processing the trypsinogen activation peptide to a shorter form. The aim of this study was to investigate the effect of CTRC on the autoactivation of clinically relevant trypsinogen mutants. We found that in the presence of CTRC, trypsinogen mutants associated with classic hereditary pancreatitis (N29I, N29T, V39A, R122C, and R122H) autoactivated at increased rates and reached markedly higher active trypsin levels compared with wild-type cationic trypsinogen. The A16V mutant, known for its variable disease penetrance, exhibited a smaller increase in autoactivation. The mechanistic basis of increased activation was mutation-specific and involved resistance to degradation (N29I, N29T, V39A, R122C, and R122H) and/or increased N-terminal processing by CTRC (A16V and N29I). These observations indicate that hereditary pancreatitis is caused by CTRC-dependent dysregulation of cationic trypsinogen autoactivation, which results in elevated trypsin levels in the pancreas.  相似文献   

2.
Evolution of trypsinogen activation peptides   总被引:2,自引:0,他引:2  
The activation peptide of mammalian trypsinogens contains a highly conserved tetra-aspartate sequence (D19-D20-D21-D22) preceding the K23-I24 scissile peptide bond, which is hydrolyzed as the first step in the activation process. Here, we examined the evolution and function of trypsinogen activation peptides through integrating functional characterization of disease-associated mutations with comparative genomic analysis. Activation properties of three chronic pancreatitis-associated activation peptide mutants (the novel D19A and the previously reported D22G and K23R) were simultaneously analyzed, for the first time, in the context of recombinant human cationic trypsinogen. A dramatic increase in autoactivation of cationic trypsinogen was observed in all three mutants, with D22G and K23R exhibiting the most marked increases. The physiological activator enteropeptidase activated the D19A mutant normally, activated the D22G mutant very poorly, and stimulated activation of the K23R mutant. The biochemical and structural data, taken together with a comprehensive sequence comparison, indicates that the tetra-aspartate sequence in mammalian trypsinogen activation peptides has evolved not only for optimal enteropeptidase recognition in the duodenum but also for efficient inhibition of trypsinogen autoactivation within the pancreas. Moreover, the use of lysine instead of arginine at the P1 position of activation peptides also has an advantageous effect against trypsinogen autoactivation. Finally, fixed substitutions in the key residues of the trypsinogen activation peptide may suggest the evolution of new functions unrelated to digestion, as found in the group III trypsinogens of cold-adapted fishes.  相似文献   

3.
Since the identification in 1996 of a "gain of function" missense mutation, R122H, in the cationic trypsinogen gene (PRSS1) as a cause of hereditary pancreatitis, continued screening of this gene in both hereditary and sporadic pancreatitis has found more disease-associated missense mutations than expected. In addition, functional analysis has yielded interesting findings regarding their underlying mechanisms resulting in a gain of trypsin. A critical review of these data, in the context of the complicated biogenesis and complex autoactivation and autolysis of trypsin(ogen), highlights that PRSS1 mutations cause the disease by various mechanisms depending on which biochemical process they affect. The discovery of these mutations also modifies the classical perception of the disease and, more importantly, reveals fascinating new aspects of the molecular evolution and normal physiology of trypsinogen. First, activation peptide of trypsinogen is under strong selection pressure to minimize autoactivation in higher vertebrates. Second, the R122 primary autolysis site has further evolved in mammalian trypsinogens. Third, evolutionary divergence from threonine to asparagine at residue 29 in human cationic trypsinogen provides additional advantage. Accordingly, we tentatively assign, in human cationic trypsinogen, the strongly selected activation peptide as the first-line and the R122 autolysis site as the second-line of the built-in defensive mechanisms against premature trypsin activation within the pancreas, respectively, and the positively selected asparagine at residue 29 as an "amplifier" to the R122 "fail-safe" mechanism.  相似文献   

4.
The activation peptide of vertebrate trypsinogens contains a highly conserved tetra-aspartate sequence (Asp(19-22) in humans) preceding the Lys-Ile scissile bond. A large body of research has defined the primary role of this acidic motif as a specific recognition site for enteropeptidase, the physiological activator of trypsinogen. In addition, the acidic stretch was shown to contribute to the suppression of autoactivation. In the present study, we determined the relative importance of these two activation peptide functions in human cationic trypsinogen. Individual Ala replacements of Asp(19-22) had minimal or no effect on trypsinogen activation catalyzed by human enteropeptidase. Strikingly, a tetra-Ala(19-22) trypsinogen mutant devoid of acidic residues in the activation peptide was still a highly specific substrate for human, but not for bovine, enteropeptidase. In contrast, an intact Asp(19-22) motif was critical for autoactivation control. Thus, single Ala mutations of Asp(19), Asp(20) and Asp(21) resulted in 2-3-fold increased autoactivation, whereas the Asp(22) --> Ala mutant autoactivated at a 66-fold increased rate. These effects were multiplicative in the tri-Ala(19-21) and tetra-Ala(19-22) mutants. Structural modeling revealed that the conserved hydrophobic S2 subsite of trypsin and the unique Asp(218), which forms part of the S3-S4 subsite, participate in distinct inhibitory interactions with the activation peptide. Finally, mutagenesis studies confirmed the significance of the negative charge of Asp(218) in autoactivation control. The results demonstrate that in human cationic trypsinogen the Asp(19-22) motif per se is not required for enteropeptidase recognition, whereas it is essential for maximal suppression of autoactivation. The evolutionary selection of Asp(218), which is absent in the large majority of vertebrate trypsins, provides an additional mechanism of autoactivation control in the human pancreas.  相似文献   

5.
The formation of complexes between human trypsinogens and the basic pancreatic trypsin inhibitor is demonstrated by using affinity chromatography on Sepharose coupled to basic pancreatic trypsin inhibitor. This interaction indicates the pre-existence of the active site in human trypsinogens. This active site induces the proteolytic activity of the two zymogens which activate spontaneously at pH 5.6 and pH 8.0 before and after affinity chromatography. The effect of affinity-chromatography on trypsinogen spontaneous activation is not the same on trypsinogens 1 and 2. A striking difference appears between the activation of the two trypsinogens. In all cases, trypsinogen 1 autoactivates more rapidly than trypsinogen 2, except at pH 5.6 in the presence of 10 mM Ca2+, which inhibits the autoactivation of trypsinogen 1. The effect of inherent proteolytic activity of human trypsinogens is discussed in relation to pathological conditions of enterokinase deficiency and acute pancreatitis.  相似文献   

6.
Mutations Arg(117) --> His and Asn(21) --> Ile in human trypsinogen-I have been recently associated with hereditary pancreatitis (HP). The Arg(117) --> His substitution is believed to cause pancreatitis by stabilizing trypsin against autolytic degradation, while the mechanism of action of Asn(21) --> Ile has been unknown. In an effort to understand the effect(s) of this mutation, Thr(21) in the highly homologous rat trypsinogen-II was replaced with Asn or Ile, and the recombinant zymogens and their active trypsin forms were studied. Kinetic parameters of all three trypsins were comparable, and the active enzymes suffered autolysis at similar rates, indicating that neither catalytic properties nor proteolytic stability of trypsin are influenced by mutations at position 21. When incubated at pH 8.0, 37 degrees C, pure zymogens underwent autoactivation with concomitant trypsinolytic degradation in a Ca(2+)-dependent fashion. Thus, in the presence of 5 mM Ca(2+), autoactivation and digestion of the zymogens after Arg(117) and Lys(188) were observed, while in the presence of 1 mM EDTA autoactivation and cleavage at Lys(188) were reduced, and zymogenolysis at the Arg(117) site was enhanced. Overall rates of zymogen degradation in [Asn(21)]- and [Ile(21)]trypsinogens were higher in Ca(2+) than in EDTA, while [Thr(21)]trypsinogen demonstrated inverse characteristics. Remarkably, both in the presence and absence of Ca(2+), [Ile(21)]trypsinogen exhibited significantly higher stability against autoactivation and proteolysis than zymogens with Asn(21) or Thr(21). The observations suggest that autocatalytic trypsinogen degradation may be an important defense mechanism against excessive trypsin generation in the pancreas, and trypsinogen stabilization by the Asn(21) --> Ile mutation plays a role in the pathogenesis of HP.  相似文献   

7.
Human pancreatic secretions contain two major trypsinogen isoforms, cationic and anionic trypsinogen, normally at a ratio of 2 : 1. Pancreatitis, pancreatic cancer and chronic alcoholism lead to a characteristic reversal of the isoform ratio, and anionic trypsinogen becomes the predominant zymogen secreted. To understand the biochemical consequences of these alterations, we recombinantly expressed and purified both human trypsinogens and documented characteristics of autoactivation, autocatalytic degradation and Ca2+-dependence. Even though the two trypsinogens are approximately 90% identical in their primary structure, we found that human anionic trypsinogen and trypsin exhibited a significantly increased (10-20-fold) propensity for autocatalytic degradation, relative to cationic trypsinogen and trypsin. Furthermore, in contrast to the characteristic stimulation of the cationic proenzyme, acidic pH inhibited autoactivation of anionic trypsinogen. In mixtures of cationic and anionic trypsinogen, an increase in the proportion of the anionic proenzyme had no significant effect on the levels of trypsin generated by autoactivation or by enterokinase at pH 8.0 in 1 mm Ca2+- conditions that were characteristic of the pancreatic juice. In contrast, rates of trypsinogen activation were markedly reduced with increasing ratios of anionic trypsinogen under conditions that were typical of potential sites of pathological intra-acinar trypsinogen activation. Thus, at low Ca2+ concentrations at pH 8.0, selective degradation of anionic trypsinogen and trypsin caused diminished trypsin production; while at pH 5.0, inhibition of anionic trypsinogen activation resulted in lower trypsin yields. Taken together, the observations indicate that up-regulation of anionic trypsinogen in pancreatic diseases does not affect physiological trypsinogen activation, but significantly limits trypsin generation under potential pathological conditions.  相似文献   

8.
Ser-neotrypsinogen and Val-neotrypsinogen are two-chain modifications of bovine trypsinogen produced on limited proteolysis with trypsin. Ser-neotrypsinogen has Lys131-Ser132 cleaved in the connecting peptide (the autolysis loop) linking the amino- and carboxyl-terminal domains. Val-neotrypsinogen has Arg105-Val106 cleaved which is located within the amino-terminal domain. The mixed disulfide derivative of Ser-neotrypsinogen was successfully refolded. A functional molecule was regenerated from the polypeptide fragments with the correct molecular weight of neotrypsinogen in an overall yield of 7%. Val-Neotrypsinogen could not be refolded. The first-order rate constants for the regeneration of Ser-neotrypsinogen were determined from the formation of active enzyme molecules as a function of time and from the regain of the correct molecular weight. Both kinetic values were the same indicating that refolding of the polypeptide chains first forms globular domain structures. The two domains then associate and the disulfide bonds between the domains and the correct geometry of the active site residues are formed last. The same kinetic results were also found in refolding Thr-neochymotrypsinogen (Duda, C. T., and Light, A. (1982) J. Biol. Chem. 257, 9866-9871) where peptide bond cleavage also occurred in the connecting peptide. These observations support the hypothesis that the pathway of folding of serine proteinases proceeds with the independent refolding of domains.  相似文献   

9.
The activation of human trypsinogens 1 and 2 by porcine enterokinase at pH 5.6 shows that the two human zymogens are equivalent substrates for this enzyme and that both proteins are activated faster than the cationic bovine trypsinogen. At pH 8.0 and in the presence of 20 mM calcium the two human trypsinogens are activated by either human trypsin at the same rate but the affinity of both trypsins is higher for trypsinogen 1 than for trypsinogen 2. Two Ca2+ binding sites are identified in the two human zymogens and their pK(Ca2+) values determined. For trypsinogen 1 the values are respectively of 2.8 and 3.3 for the primary and secondary Ca2+ binding sites, and for trypsinogen 2 of 3.4 and 2.7. These values are markedly different from those obtained for bovine cationic trypsinogen, especially in the case of trypsinogen 1. These results point out a different degree of saturation of the calcium binding sites of the 2 human zymogens that must exist in physiological conditions, suggesting different biological activities of the two trypsinogens.  相似文献   

10.
Isolation and characterization of a cDNA encoding rat cationic trypsinogen   总被引:4,自引:0,他引:4  
A cDNA encoding rat cationic trypsinogen has been isolated by immunoscreening from a rat pancreas cDNA library. The protein encoded by this cDNA is highly basic and contains all of the structural features observed in trypsinogens. The amino acid sequence of rat cationic trypsinogen is 75% and 77% homologous to the two anionic rat trypsinogens. The homology of rat cationic trypsinogen to these anionic trypsinogens is lower than its homology to other mammalian cationic trypsinogens, suggesting that anionic and cationic trypsins probably diverged prior to the divergence of rodents and ungulates. The most unusual feature of this trypsinogen is the presence of an activation peptide containing five aspartic acid residues, in contrast to all other reported trypsinogen activation peptides which contain four acidic amino acid residues. Comparisons of cationic and anionic trypsins reveal that the majority of the charge changes occur in the C-terminal portion of the protein, which forms the substrate binding site. Several regions of conserved charge differences between cationic and anionic trypsins have been identified in this region, which may influence the rate of hydrolysis of protein substrates.  相似文献   

11.
The crystal structure of human pancreatic cationic trypsin showed the chemical modification of Tyr154, which was originally described as phosphorylation [Gaboriaud C, Serre L, Guy-Crotte O, Forest E & Fontecilla-Camps JC (1996) J Mol Biol259, 995-1010]. Here we report that Tyr154 is sulfated, not phosphorylated. Cationic and anionic trypsinogens were purified from human pancreatic juice and subjected to alkaline hydrolysis. Modified tyrosine amino acids were separated on a Dowex cation-exchange column and analyzed by thin layer chromatography. Both human cationic and anionic trypsinogens contained tyrosine sulfate, but no tyrosine phosphate, whereas bovine trypsinogen contained neither. Furthermore, incorporation of [(35)S]SO(4) into human cationic trypsinogen transiently expressed by human embryonic kidney 239T cells was demonstrated. Mutation of Tyr154 to Phe abolished radioactive sulfate incorporation, confirming that Tyr154 is the site of sulfation in cationic trypsinogen. Sulfated pancreatic cationic trypsinogen exhibited faster autoactivation than a nonsulfated recombinant form, suggesting that tyrosine sulfation of trypsinogens might enhance intestinal digestive zymogen activation in humans. Finally, sequence alignment revealed that the sulfation motif is only conserved in primate trypsinogens, suggesting that typsinogen sulfation is absent in other vertebrates.  相似文献   

12.
A group of peptides from the salivary gland of the tick Hyalomma marginatum rufipes, a vector of Crimean Congo hemorrhagic fever show weak similarity to the madanins, a group of thrombin-inhibitory peptides from a second tick species, Haemaphysalis longicornis. We have evaluated the anti-serine protease activity of one of these H. marginatum peptides that has been given the name hyalomin-1. Hyalomin-1 was found to be a selective inhibitor of thrombin, blocking coagulation of plasma and inhibiting S2238 hydrolysis in a competitive manner with an inhibition constant (Ki) of 12 nM at an ionic strength of 150 mM. It also blocks the thrombin-mediated activation of coagulation factor XI, thrombin-mediated platelet aggregation, and the activation of coagulation factor V by thrombin. Hyalomin-1 is cleaved at a canonical thrombin cleavage site but the cleaved products do not inhibit coagulation. However, the C-terminal cleavage product showed non-competitive inhibition of S2238 hydrolysis. A peptide combining the N-terminal parts of the molecule with the cleavage region did not interact strongly with thrombin, but a 24-residue fragment containing the cleavage region and the C-terminal fragment inhibited the enzyme in a competitive manner and also inhibited coagulation of plasma. These results suggest that the peptide acts by binding to the active site as well as exosite I or the autolysis loop of thrombin. Injection of 2.5 mg/kg of hyalomin-1 increased arterial occlusion time in a mouse model of thrombosis, suggesting this peptide could be a candidate for clinical use as an antithrombotic.  相似文献   

13.
Human chymotrypsin C (CTRC) protects against pancreatitis by degrading trypsinogen and thereby curtailing harmful intra-pancreatic trypsinogen activation. Loss-of-function mutations in CTRC increase the risk for chronic pancreatitis. Here we describe functional analysis of eight previously uncharacterized natural CTRC variants tested for potential defects in secretion, proteolytic stability, and catalytic activity. We found that all variants were secreted from transfected cells normally, and none suffered proteolytic degradation by trypsin. Five variants had normal enzymatic activity, whereas variant p.R29Q was catalytically inactive due to loss of activation by trypsin and variant p.S239C exhibited impaired activity possibly caused by disulfide mispairing. Surprisingly, variant p.G214R had increased activity on a small chromogenic peptide substrate but was markedly defective in cleaving bovine β-casein or the natural CTRC substrates human cationic trypsinogen and procarboxypeptidase A1. Mutation p.G214R is analogous to the evolutionary mutation in human mesotrypsin, which rendered this trypsin isoform resistant to proteinaceous inhibitors and conferred its ability to cleave these inhibitors. Similarly to the mesotrypsin phenotype, CTRC variant p.G214R was inhibited poorly by eglin C, ecotin, or a CTRC-specific variant of SGPI-2, and it readily cleaved the reactive-site peptide bonds in eglin C and ecotin. We conclude that CTRC variants p.R29Q, p.G214R, and p.S239C are risk factors for chronic pancreatitis. Furthermore, the mesotrypsin-like CTRC variant highlights how the same natural mutation in homologous pancreatic serine proteases can evolve a new physiological role or lead to pathology, determined by the biological context of protease function.  相似文献   

14.
Mutation Asn-21 --> Ile in human cationic trypsinogen (Tg-1) has been associated with hereditary pancreatitis. Recent studies with rat anionic Tg (Tg-2) indicated that the analogous Thr-21 --> Ile mutation stabilizes the zymogen against autoactivation, whereas it has no effect on catalytic properties or autolytic stability of trypsin (Sahin-Tóth, M. (1999) J. Biol. Chem. 274, 29699-29704). In the present paper, human cationic Tg (Asn-21-Tg) and mutants Asn-21 --> Ile (Ile-21-Tg) and Asn-21 --> Thr (Thr-21-Tg) were expressed in Escherichia coli, and zymogen activation, zymogen degradation, and trypsin autolysis were studied. Enterokinase activated Asn-21-Tg approximately 2-fold better than Ile-21-Tg or Thr-21-Tg, and catalytic parameters of trypsins were comparable. At 37 degrees C, in 5 mm Ca(2+), all three trypsins were highly stable. In the absence of Ca(2+), Asn-21- and Ile-21-trypsins suffered autolysis in an indistinguishable manner, whereas Thr-21-trypsin exhibited significantly increased stability. In sharp contrast to observations with the rat proenzyme, at pH 8.0, 37 degrees C, autoactivation kinetics of Asn-21-Tg and Ile-21-Tg were identical; however, at pH 5. 0, Ile-21-Tg autoactivated at an enhanced rate relative to Asn-21-Tg. Remarkably, at both pH values, Thr-21-Tg showed markedly higher autoactivation rates than the two other zymogens. Finally, autocatalytic proteolysis of human zymogens was limited to cleavage at Arg-117, and no digestion at Lys-188 was detected. The observations indicate that zymogen stabilization by Ile-21 as observed in rat Tg-2 is not characteristic of human Tg-1. Instead, an increased propensity to autoactivation under acidic conditions might be relevant to the pathomechanism of the Asn-21 --> Ile mutation in hereditary pancreatitis. In the same context, faster autoactivation and increased trypsin stability caused by the Asn-21 --> Thr mutation in human Tg-1 might provide a rationale for the evolutionary divergence from Thr-21 found in other mammalian trypsinogens.  相似文献   

15.
One of ostrich (Struthio camelus) trypsinogen genes was cloned from pancreatic cDNA. Its amino acid sequence compared to known trypsin sequences from other species shows high identity and suggests that it is a member of the phylogenetically anionic trypsinogen I subfamily. After cytoplasmic over expression in Escherichia coli and renaturation, the activation properties of ostrich trypsinogen were studied and compared to those of human trypsinogen 1 (also called as human cationic trypsinogen). Ostrich trypsinogen undergoes bovine enterokinase activation and autoactivation much faster than human trypsinogen 1 and exhibits on a synthetic substrate a somewhat higher enzymatic activity than the latter one. The most interesting property of ostrich trypsin is its relatively fast autolysis that can be explained via a mechanism different from the common mechanism for rat and human 1 trypsins. The latter proteases have a site, Arg117-Val118, where the autolysis starts and then goes on in a zipper-like fashion. This is absent from ostrich trypsin. Instead it has a couple of cleavage sites within regions 67-98, including two unusual ones, Arg76-Glu77 and Arg83-Ser84. These appear to be hydrolysed fast in a non-consecutive manner. Such an autolysis mechanism could not be inhibited by a single-site mutation which in humans is proposed to lead to pancreatitis.  相似文献   

16.
17.
Mutation of Arg(117), an autocatalytic cleavage site, is the most frequent amino acid change found in the cationic trypsinogen (Tg) of patients with hereditary pancreatitis. In the present study, the role of Arg(117) was investigated in wild-type cationic Tg and in the activation-resistant Lys(15) --> Gln mutant (K15Q-Tg), in which Tg-specific properties of Arg(117) can be examined selectively. We found that trypsinolytic cleavage of the Arg(117)-Val(118) bond did not proceed to completion, but due to trypsin-catalyzed re-synthesis an equilibrium was established between intact Tg and its cleaved, two-chain form. In the absence of Ca(2+), at pH 8.0, the hydrolysis equilibrium (K(hyd) = [cleaved Tg]/[intact Tg]) was 5.4, whereas 5 mm Ca(2+) reduced the rate of cleavage at Arg(117) at least 20-fold, and shifted K(hyd) to 0.7. These observations indicate that the Arg(117)-Val(118) bond exhibits properties analogous to the reactive site bond of canonical trypsin inhibitors and suggest that this surface loop might serve as a low affinity inhibitor of zymogen activation. Consistent with this notion, autoactivation of cationic Tg was inhibited by the cleaved form of K15Q-Tg, with an estimated K(i) of 80 microm, while no inhibition was observed with K15Q-Tg carrying the Arg(117) --> His mutation. Finally, zymogen breakdown due to other trypsinolytic pathways was shown to proceed almost 2000-fold slower than cleavage at Arg(117). Taken together, the findings suggest two independent, successively functional trypsin-mediated mechanisms against pathological Tg activation in the pancreas. At low trypsin concentrations, cleavage at Arg(117) results in inhibition of trypsin, whereas high trypsin concentrations degrade Tg, thus limiting further zymogen activation. Loss of Arg(117)-dependent trypsin inhibition can contribute to the development of hereditary pancreatitis associated with the Arg(117) --> His mutation.  相似文献   

18.
Rat P23 is an isoform of trypsin (ogens) synthesized by rat acinar cells. Expression of P23 is stimulated strongly by caerulein, an analogue of cholecystokinin (CCK). However, the physiological relevance of rat P23 in healthy and pathological conditions such as caerulein-induced pancreatitis is largely unknown. Using recombinant P23 trypsinogen and reconstitution analysis of zymogen autoactivation, unique inhibitor-resistance characteristics of P23 were elucidated. P23 cDNA was expressed in Escherichia coli periplasm, yielding recombinant P23 trypsinogen. Autoactivation of zymogen granule contents from caerulein-induced rat pancreas was also studied. Activation kinetics of P23 by enterokinase was similar to those of rat anionic trypsinogen, which is a major isoform of trypsinogen. Interestingly, rat pancreatic secretory trypsin inhibitor (PSTI), which protects against deleterious activation of trypsinogens in zymogen granules, failed to inhibit P23 trypsin even with four-fold molar excess, at which concentration it effectively inhibited rat anionic trypsin to almost 100%. P23 trypsin also showed marked resistance to proteinaceous trypsin inhibitors such as soybean trypsin inhibitor and aprotinin. P23 trypsin activated by enterokinase dramatically accelerated the cascade of autoactivation of anionic trypsinogen even in the presence of PSTI. Taken together with a previous observation that P23 is specifically upregulated 14-fold by 24-h caerulein infusion, these results suggest that elevated levels of P23 should be taken into consideration in the mechanism of trypsinogens within the pancreas in pathological conditions.  相似文献   

19.
M Rovery 《Biochimie》1988,70(9):1131-1135
In the 1950's, the specific cleavages of the peptide bonds occurring in bovine cationic chymotrypsinogen and trypsinogen were among the first examples of limited proteolyses. According to the split bond(s), the precursor is transformed into enzyme or different forms of zymogen or again into inert protein. The conversion of trypsinogen into trypsin triggers the activations of all the other enzyme precursors of pancreatic juice. In the pancreas, several factors oppose trypsinogen autoactivation, whereas, in the duodenum, all the conditions are favorable for trypsinogen activation by enteropeptidase.  相似文献   

20.
Hereditary pancreatitis has been found to be associated with germline mutations in the cationic trypsinogen (PRSS1) gene. Here we report a family with hereditary pancreatitis that carries a novel PRSS1 mutation (R122C). This mutation cannot be diagnosed with the conventional screening method using AflIII restriction enzyme digest. We therefore propose a new assay based on restriction enzyme digest with BstUI, a technique that permits detection of the novel R122C mutation in addition to the most common R122H mutation, and even in the presence of a recently reported neutral polymorphism that prevents its detection by the AflIII method. Recombinantly expressed R122C mutant human trypsinogen was found to undergo greatly reduced autoactivation and cathepsin B-induced activation, which is most likely caused by misfolding or disulfide mismatches of the mutant zymogen. The K(m) of R122C trypsin was found to be unchanged, but its k(cat) was reduced to 37% of the wild type. After correction for enterokinase activatable activity, and specifically in the absence of calcium, the R122C mutant was more resistant to autolysis than the wild type and autoactivated more rapidly at pH 8. Molecular modeling of the R122C mutant trypsin predicted an unimpaired active site but an altered stability of the calcium binding loop. This previously unknown trypsinogen mutation is associated with hereditary pancreatitis, requires a novel diagnostic screening method, and, for the first time, raises the question whether a gain or a loss of trypsin function participates in the onset of pancreatitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号