首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 272 毫秒
1.
Lina Herhaus  Ivan Dikic 《EMBO reports》2015,16(9):1071-1083
Ubiquitylation is among the most prevalent post‐translational modifications (PTMs) and regulates numerous cellular functions. Interestingly, ubiquitin (Ub) can be itself modified by other PTMs, including acetylation and phosphorylation. Acetylation of Ub on K6 and K48 represses the formation and elongation of Ub chains. Phosphorylation of Ub happens on multiple sites, S57 and S65 being the most frequently modified in yeast and mammalian cells, respectively. In mammals, the PINK1 kinase activates ubiquitin ligase Parkin by phosphorylating S65 of Ub and of the Parkin Ubl domain, which in turn promotes the amplification of autophagy signals necessary for the removal of damaged mitochondria. Similarly, TBK1 phosphorylates the autophagy receptors OPTN and p62 to initiate feedback and feedforward programs for Ub‐dependent removal of protein aggregates, mitochondria and pathogens (such as Salmonella and Mycobacterium tuberculosis). The impact of PINK1‐mediated phosphorylation of Ub and TBK1‐dependent phosphorylation of autophagy receptors (OPTN and p62) has been recently linked to the development of Parkinson's disease and amyotrophic lateral sclerosis, respectively. Hence, the post‐translational modification of Ub and its receptors can efficiently expand the Ub code and modulate its functions in health and disease.  相似文献   

2.
3.
Lysine‐free ubiquitin (K0‐Ub) is commonly used to study the ubiquitin‐signaling pathway, where it is assumed to have the same structure and function as wild‐type ubiquitin (wt‐Ub). However, the K0‐Ub 15N heteronuclear single quantum correlation NMR spectrum differs significantly from wt‐Ub and the melting temperature is depressed by 19°C, raising the question of the structural integrity and equivalence to wt‐Ub. The three‐dimensional structure of K0‐Ub was determined by solution NMR, using chemical shift and residual dipolar coupling data. K0‐Ub adopts the same backbone structure as wt‐Ub, and all significant chemical shifts can be related to interactions impacted by the K to R mutations.  相似文献   

4.
Addition of ammonium ions to yeast cells growing on proline as the sole nitrogen source induces rapid inactivation and degradation of the general amino acid permease Gap1 through a process requiring the Npi1/Rsp5 ubiquitin (Ub) ligase. In this study, we show that NH4+ induces endocytosis of Gap1, which is then delivered into the vacuole where it is degraded. This down-regulation is accompanied by increased conversion of Gap1 to ubiquitinated forms. Ubiquitination and subsequent degradation of Gap1 are impaired in the npi1 strain. In this mutant, the amount of Npi1/Rsp5 Ub ligase is reduced >10-fold compared with wild-type cells. The C-terminal tail of Gap1 contains sequences, including a di-leucine motif, which are required for NH4+-induced internalization and degradation of the permease. We show here that mutant Gap1 permeases affected in these sequences still bind Ub. Furthermore, we provide evidence that only a small fraction of Gap1 is modified by Ub after addition of NH4+ to mutants defective in endocytosis.  相似文献   

5.
A series of nonhydrolyzable ubiquitin dimer analogues has been synthesized and evaluated as inhibitors of ubiquitin-dependent processes. Dimer analogues were synthesized by cross-linking ubiquitin containing a terminal cysteine (G76C) to ubiquitin containing cysteine at position 11 ((76-11)Ub(2)), 29 ((76-29)Ub(2)), 48 ((76-48)Ub(2)), or 63 ((76-63)Ub(2)). A head-to-head dimer of cysteine G76C ((76-76)Ub(2)) served as a control. These analogues are mimics of the different chain linkages observed in natural polyubiquitin chains. All analogues showed weak inhibition toward the catalytic domain of UCH-L3 and a UBP pseudogene. In the absence of ubiquitin, isopeptidase T was inhibited only by the dimer linked through residue 29. In the presence of 0.5 microM ubiquitin, isopeptidase T was inhibited by several of the dimer analogues, with the (76-29)Ub(2) dimer exhibiting a K(i) of 1.8 nM. However, USP14, the human homologue of yeast Ubp6, was not inhibited at the concentrations tested. Some analogues of ubiquitin dimer also acted as selective inhibitors of conjugation and deconjugation of ubiquitin catalyzed by reticulocyte fraction II. (76-76)Ub(2) and (76-11)Ub(2) did not inhibit the conjugation of ubiquitin, while (76-29)Ub(2), (76-48)Ub(2), and (76-63)Ub(2) were potent inhibitors of conjugation. This specificity is consistent with the known ability of cells to form K29-, K48-, and K63-linked polyubiquitin chains. While (76-11)Ub(2), (76-29)Ub(2), and (76-63)Ub(2) inhibited release of ubiquitin from a pool of total conjugates, (76-48)Ub(2) and (76-76)Ub(2) showed no significant inhibition. Isopeptidase T was shown to specifically disassemble two conjugates (assumed to be di- and triubiquitin with masses of 26 and 17 kDa) formed in the reticulocyte lysate system. This activity was inhibited differentially by all dimer analogues. The inhibitor selectivity for deconjugation of the 26 and 17 kDa conjugates was similar to that observed for isopeptidase T. The observations suggest that these two conjugated proteins of the reticulocyte lysate are specific substrates for isopeptidase T in lysates.  相似文献   

6.
SUMOylation and ubiquitination are two essential post translational modifications (PTMs) involved in the regulation of important biological processes in eukaryotic cells. Identification of ubiquitin (Ub) and small ubiquitin-related modifier (SUMO)-conjugated lysine residues in proteins is critical for understanding the role of ubiquitination and SUMOylation, but remains experimentally challenging. We have developed a powerful in vitro Ub/SUMO assay using a novel high density peptide array incorporated within a microfluidic device that allows rapid identification of ubiquitination and SUMOylation sites on target proteins. We performed the assay with a panel of human proteins and a microbial effector with known target sites for Ub or SUMO modifications, and determined that 80% of these proteins were modified by Ub or specific SUMO isoforms at the sites previously determined using conventional methods. Our results confirm the specificity for both SUMO isoform and individual target proteins at the peptide level. In summary, this microfluidic high density peptide array approach is a rapid screening assay to determine sites of Ub and SUMO modification of target substrates, which will provide new insights into the composition, selectivity and specificity of these PTM target sites.  相似文献   

7.
Mutations in PINK1 and PARKIN cause recessive, early‐onset Parkinson's disease (PD). Together, these two proteins orchestrate a protective mitophagic response that ensures the safe disposal of damaged mitochondria. The kinase PINK1 phosphorylates ubiquitin (Ub) at the conserved residue S65, in addition to modifying the E3 ubiquitin ligase Parkin. The structural and functional consequences of Ub phosphorylation (pS65‐Ub) have already been suggested from in vitro experiments, but its (patho‐)physiological significance remains unknown. We have generated novel antibodies and assessed pS65‐Ub signals in vitro and in cells, including primary neurons, under endogenous conditions. pS65‐Ub is dependent on PINK1 kinase activity as confirmed in patient fibroblasts and postmortem brain samples harboring pathogenic mutations. We show that pS65‐Ub is reversible and barely detectable under basal conditions, but rapidly induced upon mitochondrial stress in cells and amplified in the presence of functional Parkin. pS65‐Ub accumulates in human brain during aging and disease in the form of cytoplasmic granules that partially overlap with mitochondrial, lysosomal, and total Ub markers. Additional studies are now warranted to further elucidate pS65‐Ub functions and fully explore its potential for biomarker or therapeutic development.  相似文献   

8.
The ubiquitin hybrid genes Uba80 and Uba52 encode ubiquitin (Ub), which is fused to the ribosomal proteins S27a (RPS27a) and L40 (RPL40), respectively. Here, we show that these genes are preferentially over-expressed during hepatoma cell apoptosis. Experiments using the tet-inducible transgenic system revealed that over-expression of the ubiquitin hybrid genes sensitized the cells to apoptosis. Further analysis suggested that Ub, and not RPS27a or RPL40, was associated with apoptotic cell death. Cleavage-resistant mutation analysis revealed that the N-terminal portion and the last two amino acids (GG) of Ub are critical for cleavage at the junction between the two protein moieties. An apoptogenic stimulus enhances the nuclear targeting and aggregation of Ub in the nucleus, resulting in histone H2A deubiquitylation followed by abnormal ubiquitylation of the nuclear envelope and the lamina. These events accompany the apoptotic nuclear morphology in the late stage of apoptosis. Each fused RP is localized in the nucleoli. These results suggest a role for Ub hybrid proteins in the altered nuclear dynamics of Ub during tumor cell apoptosis induced by apoptogenic stimuli.  相似文献   

9.
Ubiquitin (Ub) and the ubiquitin‐like proteins (Ubls) comprise a remarkable assortment of polypeptides that are covalently conjugated to target proteins (or other biomolecules) to modulate their intracellular localization, half‐life, and/or activity. Identification of Ub/Ubl conjugation sites on a protein of interest can thus be extremely important for understanding how it is regulated. While MS has become a powerful tool for the study of many classes of PTMs, the identification of Ub/Ubl conjugation sites presents a number of unique challenges. Here, we present an improved Ub/Ubl conjugation site identification strategy, utilizing SUMmOn analysis and an additional protease (lysyl endopeptidase C), as a complement to standard approaches. As compared with standard trypsin proteolysis‐database search protocols alone, the addition of SUMmOn analysis can (i) identify Ubl conjugation sites that are not detected by standard database searching methods, (ii) better preserve Ub/Ubl conjugate identity, and (iii) increase the number of identifications of Ub/Ubl modifications in lysine‐rich protein regions. Using this methodology, we characterize for the first time a number of novel Ubl linkages and conjugation sites, including alternative yeast (K54) and mammalian small ubiquitin‐related modifier (SUMO) chain (SUMO‐2 K42, SUMO‐3 K41) assemblies, as well as previously unreported NEDD8 chain (K27, K33, and K54) topologies.  相似文献   

10.
11.
Ubiquitination, deubiquitination, and the formation of specific ubiquitin chain topologies have been implicated in various cellular processes. Little is known, however, about the role of ubiquitin in the development of cellular organelles. Here, we identify and characterize the deubiquitinating enzyme AMSH3 from Arabidopsis thaliana. AMSH3 hydrolyzes K48- and K63-linked ubiquitin chains in vitro and accumulates both ubiquitin chain types in vivo. amsh3 mutants fail to form a central lytic vacuole, accumulate autophagosomes, and mis-sort vacuolar protein cargo to the intercellular space. Furthermore, AMSH3 is required for efficient endocytosis of the styryl dye FM4-64 and the auxin efflux facilitator PIN2. We thus present evidence for a role of deubiquitination in intracellular trafficking and vacuole biogenesis.  相似文献   

12.
13.
Upon Mycobacterium tuberculosis (Mtb) infection, protein kinase G (PknG), a eukaryotic‐type serine‐threonine protein kinase (STPK), is secreted into host macrophages to promote intracellular survival of the pathogen. However, the mechanisms underlying this PknG–host interaction remain unclear. Here, we demonstrate that PknG serves both as a ubiquitin‐activating enzyme (E1) and a ubiquitin ligase (E3) to trigger the ubiquitination and degradation of tumor necrosis factor receptor‐associated factor 2 (TRAF2) and TGF‐β‐activated kinase 1 (TAK1), thereby inhibiting the activation of NF‐κB signaling and host innate responses. PknG promotes the attachment of ubiquitin (Ub) to the ubiquitin‐conjugating enzyme (E2) UbcH7 via an isopeptide bond (UbcH7 K82‐Ub), rather than the usual C86‐Ub thiol‐ester bond. PknG induces the discharge of Ub from UbcH7 by acting as an isopeptidase, before attaching Ub to its substrates. These results demonstrate that PknG acts as an unusual ubiquitinating enzyme to remove key components of the innate immunity system, thus providing a potential target for tuberculosis treatment.  相似文献   

14.
Nitric oxide (NO) and NO-derived reactive nitrogen species (RNS) are present in the food vacuole (FV) of Plasmodium falciparum trophozoites. The product of PFL1555w, a putative cytochrome b5, localizes in the FV membrane, similar to what was previously observed for the product of PF13_0353, a putative cytochrome b5 reductase. These two gene products may contribute to NO generation by denitrification chemistry from nitrate and/or nitrite present in the erythrocyte cytosol. The possible coordination of NO to heme species present in the food vacuole was probed by resonance Raman spectroscopy. The spectroscopic data revealed that in situ generated NO interacts with heme inside the intact FVs to form ferrous heme nitrosyl complexes that influence intra-vacuolar heme solubility. The formation of heme nitrosyl complexes within the FV is a previously unrecognized factor that could affect the equilibrium between soluble and crystallized heme within the FV in vivo.  相似文献   

15.
Post-replication DNA repair in eukaryotes is regulated by ubiquitination of proliferating cell nuclear antigen (PCNA). Monoubiquitination catalyzed by RAD6–RAD18 (an E2–E3 complex) stimulates translesion DNA synthesis, whereas polyubiquitination, promoted by additional factors such as MMS2–UBC13 (a UEV–E2 complex) and HLTF (an E3 ligase), leads to template switching in humans. Here, using an in vitro ubiquitination reaction system reconstituted with purified human proteins, we demonstrated that PCNA is polyubiquitinated predominantly via en bloc transfer of a pre-formed ubiquitin (Ub) chain rather than by extension of the Ub chain on monoubiquitinated PCNA. Our results support a model in which HLTF forms a thiol-linked Ub chain on UBC13 (UBC13∼Ubn) and then transfers the chain to RAD6∼Ub, forming RAD6∼Ubn+1. The resultant Ub chain is subsequently transferred to PCNA by RAD18. Thus, template switching may be promoted under certain circumstances in which both RAD18 and HLTF are coordinately recruited to sites of stalled replication.  相似文献   

16.
目的 为了制备不同链种类、不同链长及磷酸化修饰的泛素样品。方法 本文主要以生物酶法为手段对以上样品的制备路线进行阐述。制备的主要方法分为两种,一是采用逐次添加的方式达到泛素链延长的目的,二是通过一次酶反应制备混合的多聚泛素链,然后对不同链长的泛素链进行纯化分离。结果 以上两种策略都能达到制备多聚泛素链的目的。进一步,通过对泛素进行磷酸化修饰,制备了磷酸化的泛素样品。通过K11和K48的泛素酶制备了K11/K48分支链泛素。结论 基于以上泛素链的制备路线,可以进一步对不同链接形式的不同亚基进行磷酸化修饰等翻译后修饰,也可以通过在特定亚基进行同位素标记及在特定位点引入小分子探针,进而进行NMR和FRET的测定。综上所述,本方法将为从事泛素信号通路和泛素生化研究的科学家提供借鉴和帮助。  相似文献   

17.
18.
Ubiquitination refers to the covalent addition of ubiquitin (Ub) to substrate proteins or other Ub molecules via the sequential action of three enzymes (E1, E2, and E3). Recent advances in mass spectrometry proteomics have made it possible to identify and quantify Ub linkages in biochemical and cellular systems. We used these tools to probe the mechanisms controlling linkage specificity for UbcH5A. UbcH5A is a promiscuous E2 enzyme with an innate preference for forming polyubiquitin chains through lysine 11 (K11), lysine 48 (K48), and lysine 63 (K63) of Ub. We present the crystal structure of a noncovalent complex between Ub and UbcH5A. This structure reveals an interaction between the Ub surface flanking K11 and residues adjacent to the E2 catalytic cysteine and suggests a possible role for this surface in formation of K11 linkages. Structure-guided mutagenesis, in vitro ubiquitination and quantitative mass spectrometry have been used to characterize the ability of residues in the vicinity of the E2 active site to direct synthesis of K11- and K63-linked polyubiquitin. Mutation of critical residues in the interface modulated the linkage specificity of UbcH5A, resulting in generation of more K63-linked chains at the expense of K11-linkage synthesis. This study provides direct evidence that the linkage specificity of E2 enzymes may be altered through active-site mutagenesis.  相似文献   

19.
Although exact causes of Parkinson disease (PD) remain enigmatic, mitochondrial dysfunction is increasingly appreciated as a key determinant of dopaminergic neuron susceptibility in both familial and sporadic PD. Two genes associated with recessive, early-onset PD encode the ubiquitin (Ub) kinase PINK1 and the E3 Ub ligase PRKN/PARK2/Parkin, which together orchestrate a protective mitochondrial quality control (mitoQC) pathway. Upon stress, both enzymes cooperatively identify and decorate damaged mitochondria with phosphorylated poly-Ub (p-S65-Ub) chains. This specific label is subsequently recognized by autophagy receptors that further facilitate mitochondrial degradation in lysosomes (mitophagy). Here, we analyzed human post-mortem brain specimens and identified distinct pools of p-S65-Ub-positive structures that partially colocalized with markers of mitochondria, autophagy, lysosomes and/or granulovacuolar degeneration bodies. We further quantified levels and distribution of the ‘mitophagy tag’ in 2 large cohorts of brain samples from normal aging and Lewy body disease (LBD) cases using unbiased digital pathology. Somatic p-S65-Ub structures independently increased with age and disease in distinct brain regions and enhanced levels in LBD brain were age- and Braak tangle stage-dependent. Additionally, we observed significant correlations of p-S65-Ub with LBs and neurofibrillary tangle levels in disease. The degree of co-existing p-S65-Ub signals and pathological PD hallmarks increased in the pre-mature stage, but decreased in the late stage of LB or tangle aggregation. Altogether, our study provides further evidence for a potential pathogenic overlap among different forms of PD and suggests that p-S65-Ub can serve as a biomarker for mitochondrial damage in aging and disease.

Abbreviations: BLBD: brainstem predominant Lewy body disease; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; DLB: dementia with Lewy bodies; DLBD: diffuse neocortical Lewy body disease; EOPD: early-onset Parkinson disease; GVB: granulovacuolar degeneration body; LB: Lewy body; LBD: Lewy body disease; mitoQC: mitochondrial quality control; nbM: nucleus basalis of Meynert; PD: Parkinson disease; PDD: Parkinson disease with dementia; p-S65-Ub: PINK1-phosphorylated serine 65 ubiquitin; SN: substantia nigra; TLBD: transitional Lewy body disease; Ub: ubiquitin  相似文献   


20.
Schizosaccharomyces pombe Rpn10 (SpRpn10) is a proteasomal ubiquitin (Ub) receptor located within the 19 S regulatory particle where it binds to subunits of both the base and lid subparticles. We have solved the structure of full-length SpRpn10 by determining the crystal structure of the von Willebrand factor type A domain and characterizing the full-length protein by NMR. We demonstrate that the single Ub-interacting motif (UIM) of SpRpn10 forms a 1:1 complex with Lys48-linked diUb, which it binds selectively over monoUb and Lys63-linked diUb. We further show that the SpRpn10 UIM binds to SpRpn12, a subunit of the lid subparticle, with an affinity comparable with Lys48-linked diUb. This is the first observation of a UIM binding other than a Ub fold and suggests that SpRpn12 could modulate the activity of SpRpn10 as a proteasomal Ub receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号