首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The galectin CvGal1 from the eastern oyster (Crassostrea virginica), which possesses four tandemly arrayed carbohydrate recognition domains, was previously shown to display stronger binding to galactosamine and N-acetylgalactosamine relative to d-galactose. CvGal1 expressed by phagocytic cells is “hijacked” by the parasite Perkinsus marinus to enter the host, where it proliferates and causes systemic infection and death. In this study, a detailed glycan array analysis revealed that CvGal1 preferentially recognizes type 2 blood group A oligosaccharides. Homology modeling of the protein and its oligosaccharide ligands supported this preference over type 1 blood group A and B oligosaccharides. The CvGal ligand models were further validated by binding, inhibition, and competitive binding studies of CvGal1 and ABH-specific monoclonal antibodies with intact and deglycosylated glycoproteins, hemocyte extracts, and intact hemocytes and by surface plasmon resonance analysis. A parallel glycomic study carried out on oyster hemocytes (Kurz, S., Jin, C., Hykollari, A., Gregorich, D., Giomarelli, B., Vasta, G. R., Wilson, I. B. H., and Paschinger, K. (2013) J. Biol. Chem. 288,) determined the structures of oligosaccharides recognized by CvGal1. Proteomic analysis of the hemocyte glycoproteins identified β-integrin and dominin as CvGal1 “self”-ligands. Despite strong CvGal1 binding to P. marinus trophozoites, no binding of ABH blood group antibodies was observed. Thus, parasite glycans structurally distinct from the blood group A oligosaccharides on the hemocyte surface may function as potentially effective ligands for CvGal1. We hypothesize that carbohydrate-based mimicry resulting from the host/parasite co-evolution facilitates CvGal1-mediated cross-linking to β-integrin, located on the hemocyte surface, leading to cell activation, phagocytosis, and host infection.  相似文献   

2.
Invertebrates display effective innate immune responses for defense against microbial infection. However, the protozoan parasite Perkinsus marinus causes Dermo disease in the eastern oyster Crassostrea virginica and is responsible for catastrophic damage to shellfisheries and the estuarine environment in North America. The infection mechanisms remain unclear, but it is likely that, while filter feeding, the healthy oysters ingest P. marinus trophozoites released to the water column by the infected neighboring individuals. Inside oyster hemocytes, trophozoites resist oxidative killing, proliferate, and spread throughout the host. However, the mechanism(s) for parasite entry into the hemocyte are unknown. In this study, we show that oyster hemocytes recognize P. marinus via a novel galectin (C. virginica galectin (CvGal)) of unique structure. The biological roles of galectins have only been partly elucidated, mostly encompassing embryogenesis and indirect roles in innate and adaptive immunity mediated by the binding to endogenous ligands. CvGal recognized a variety of potential microbial pathogens and unicellular algae, and preferentially, Perkinsus spp. trophozoites. Attachment and spreading of hemocytes to foreign surfaces induced localization of CvGal to the cell periphery, its secretion and binding to the plasma membrane. Exposure of hemocytes to Perkinsus spp. trophozoites enhanced this process further, and their phagocytosis could be partially inhibited by pretreatment of the hemocytes with anti-CvGal Abs. The evidence presented indicates that CvGal facilitates recognition of selected microbes and algae, thereby promoting phagocytosis of both potential infectious challenges and phytoplankton components, and that P. marinus subverts the host's immune/feeding recognition mechanism to passively gain entry into the hemocytes.  相似文献   

3.
Cell surface glycans vary widely, depending on cell properties. We hypothesized that glycan expression on induced pluripotent stem cells (iPSCs) might change during cardiomyogenic differentiation toward the myocardial phenotype. N-glycans were isolated from iPSCs, iPSC-derived cardiomyocytes (iPSC-CM), and original C57BL/6 mouse myocardium (Heart). Their structures were analyzed by a mapping technique based on HPLC elution times and MALDI-TOF/MS spectra. Sixty-eight different N-glycans were isolated; the structures of 60 of these N-glycans were identified. The quantity of high-mannose type (immature) N-glycans on the iPSCs decreased with cardiomyogenic differentiation, but did not reach the low levels observed in the heart. We observed a similar reduction in neutral N-glycans and an increase in fucosylated or sialyl N-glycans. Some structural differences were detected between iPSC-CM and Heart. No N-glycolyl neuraminic acid (NeuGc) structures were detected in iPSC-CM, whereas the heart contained numerous NeuGc structures, corresponding to the expression of cytidine monophosphate-N-acetylneuraminic acid hydroxylase. Furthermore, several glycans containing Galα1-6 Gal, rarely identified in the other cells, were detected in the iPSC-CM. The expression of N-glycan on murine iPSCs changed toward the myocardial phenotype during cardiomyogenic differentiation, leaving the structural differences of NeuGc content or Galα1-6 Gal structures. Further studies will be warranted to reveal the meaning of the difference of N-glycans between the iPSC-CM and the myocardium.  相似文献   

4.
The cell surface glycoprotein γ-glutamyl transpeptidase (GGT) was isolated from healthy human kidney and liver to characterize its glycosylation in normal human tissue in vivo. GGT is expressed by a single cell type in the kidney. The spectrum of N-glycans released from kidney GGT constituted a subset of the N-glycans identified from renal membrane glycoproteins. Recent advances in mass spectrometry enabled us to identify the microheterogeneity and relative abundance of glycans on specific glycopeptides and revealed a broader spectrum of glycans than was observed among glycans enzymatically released from isolated GGT. A total of 36 glycan compositions, with 40 unique structures, were identified by site-specific glycan analysis. Up to 15 different glycans were observed at a single site, with site-specific variation in glycan composition. N-Glycans released from liver membrane glycoproteins included many glycans also identified in the kidney. However, analysis of hepatic GGT glycopeptides revealed 11 glycan compositions, with 12 unique structures, none of which were observed on kidney GGT. No variation in glycosylation was observed among multiple kidney and liver donors. Two glycosylation sites on renal GGT were modified exclusively by neutral glycans. In silico modeling of GGT predicts that these two glycans are located in clefts on the surface of the protein facing the cell membrane, and their synthesis may be subject to steric constraints. This is the first analysis at the level of individual glycopeptides of a human glycoprotein produced by two different tissues in vivo and provides novel insights into tissue-specific and site-specific glycosylation in normal human tissues.  相似文献   

5.
The bloodstream form of the human pathogen Trypanosoma brucei expresses oligomannose, paucimannose, and complex N-linked glycans, including some exceptionally large poly-N-acetyllactosamine-containing structures. Despite the presence of complex N-glycans in this organism, no homologues of the canonical N-acetylglucosaminyltransferase I or II genes can be found in the T. brucei genome. These genes encode the activities that initiate the elaboration of the Manα1–3 and Manα1–6 arms, respectively, of the conserved trimannosyl-N-acetylchitobiosyl core of N-linked glycans. Previously, we identified a highly divergent T. brucei N-acetylglucosaminyltransferase I (TbGnTI) among a set of putative T. brucei glycosyltransferase genes belonging to the β3-glycosyltransferase superfamily (Damerow, M., Rodrigues, J. A., Wu, D., Güther, M. L., Mehlert, A., and Ferguson, M. A. (2014) J. Biol. Chem. 289, 9328–9339). Here, we demonstrate that TbGT15, another member of the same β3-glycosyltransferase family, encodes an equally divergent N-acetylglucosaminyltransferase II (TbGnTII) activity. In contrast to multicellular organisms, where GnTII activity is essential, TbGnTII null mutants of T. brucei grow in culture and are still infectious to animals. Characterization of the large poly-N-acetyllactosamine containing N-glycans of the TbGnTII null mutants by methylation linkage analysis suggests that, in wild-type parasites, the Manα1–6 arm of the conserved trimannosyl core may carry predominantly linear poly-N-acetyllactosamine chains, whereas the Manα1–3 arm may carry predominantly branched poly-N-acetyllactosamine chains. These results provide further detail on the structure and biosynthesis of complex N-glycans in an important human pathogen and provide a second example of the adaptation by trypanosomes of β3-glycosyltransferase family members to catalyze β1–2 glycosidic linkages.  相似文献   

6.
The parasite Trypanosoma brucei exists in both a bloodstream form (BSF) and a procyclic form (PCF), which exhibit large carbohydrate extensions on the N-linked glycans and glycosylphosphatidylinositol (GPI) anchors, respectively. The parasite''s glycoconjugate repertoire suggests at least 38 glycosyltransferase (GT) activities, 16 of which are currently uncharacterized. Here, we probe the function(s) of the uncharacterized GT67 glycosyltransferase family and a β3 glycosyltransferase (β3GT) superfamily gene, TbGT10. A BSF-null mutant, created by applying the diCre/loxP method in T. brucei for the first time, showed a fitness cost but was viable in vitro and in vivo and could differentiate into the PCF, demonstrating nonessentiality of TbGT10. The absence of TbGT10 impaired the elaboration of N-glycans and GPI anchor side chains in BSF and PCF parasites, respectively. Glycosylation defects included reduced BSF glycoprotein binding to the lectin ricin and monoclonal antibodies mAb139 and mAbCB1. The latter bind a carbohydrate epitope present on lysosomal glycoprotein p67 that we show here consists of (-6Galβ1-4GlcNAcβ1-)≥4 poly-N-acetyllactosamine repeats. Methylation linkage analysis of Pronase-digested glycopeptides isolated from BSF wild-type and TbGT10 null parasites showed a reduction in 6-O-substituted- and 3,6-di-O-substituted-Gal residues. These data define TbGT10 as a UDP-GlcNAc:βGal β1-6 GlcNAc-transferase. The dual role of TbGT10 in BSF N-glycan and PCF GPI-glycan elaboration is notable, and the β1-6 specificity of a β3GT superfamily gene product is unprecedented. The similar activities of trypanosome TbGT10 and higher-eukaryote I-branching enzyme (EC 2.4.1.150), which belong to glycosyltransferase families GT67 and GT14, respectively, in elaborating N-linked glycans, are a novel example of convergent evolution.  相似文献   

7.
Proper N- and O-glycosylation of recombinant proteins is important for their biological function. Although the N-glycan processing pathway of different expression hosts has been successfully modified in the past, comparatively little attention has been paid to the generation of customized O-linked glycans. Plants are attractive hosts for engineering of O-glycosylation steps, as they contain no endogenous glycosyltransferases that perform mammalian-type Ser/Thr glycosylation and could interfere with the production of defined O-glycans. Here, we produced mucin-type O-GalNAc and core 1 O-linked glycan structures on recombinant human erythropoietin fused to an IgG heavy chain fragment (EPO-Fc) by transient expression in Nicotiana benthamiana plants. Furthermore, for the generation of sialylated core 1 structures constructs encoding human polypeptide:N-acetylgalactosaminyltransferase 2, Drosophila melanogaster core 1 β1,3-galactosyltransferase, human α2,3-sialyltransferase, and Mus musculus α2,6-sialyltransferase were transiently co-expressed in N. benthamiana together with EPO-Fc and the machinery for sialylation of N-glycans. The formation of significant amounts of mono- and disialylated O-linked glycans was confirmed by liquid chromatography-electrospray ionization-mass spectrometry. Analysis of the three EPO glycopeptides carrying N-glycans revealed the presence of biantennary structures with terminal sialic acid residues. Our data demonstrate that N. benthamiana plants are amenable to engineering of the O-glycosylation pathway and can produce well defined human-type O- and N-linked glycans on recombinant therapeutics.  相似文献   

8.
The major plasma protein of the eastern oyster, Crassostrea virginica, was purified, characterized and named dominin. SDS-PAGE analyses revealed that dominin consistently made up more than 40% of eastern oyster plasma and extrapallial fluid proteins. Three different forms of dominin were observed under non-reducing conditions. PCR and RACE primers designed from partial amino acid sequences obtained by tandem mass spectrometry of purified dominin identified 720 bp of complete cDNA encoding 192 amino acid residues. Based on the deduced amino acid sequence of mature dominin, its molecular mass was calculated to be 19,389 Da and was lower than the molecular mass of purified dominin measured by MALDI. This difference is likely due to post-translational modifications of dominin as the purified protein was found to be glycolysated, phosphorylated and likely sulfated. The amino acid sequence showed high similarity to the major plasma protein of the Pacific oyster (Crassostrea gigas), cavortin, and of the green-lipped mussel (Perna canaliculus), pernin, and to a recently described protein labeled as an extracellular superoxide dismutase from the Sydney rock oyster Saccostrea glomerata. While dominin was found to possess a Cu/Zn superoxide dismutase (SOD) domain, the domain was not completely conserved which explained why purified dominin lacked SOD activity. Dominin mRNA was detected in hemocytes by in situ hybridization and its expression measured by quantitative real time RT-PCR was significantly higher in winter than summer. Although the function(s) of dominin and homologous proteins is uncertain, the reported ability of cavortin to sequester iron and possibly limit the availability of this essential metal to pathogens suggests a potential role in host defense for this group of dominant plasma proteins. Other possible functions of dominin in antioxidation, wound repair, metal transport and shell mineralization are discussed leading us to conclude that dominin is likely a multifunctional protein.  相似文献   

9.
The HIV envelope glycoprotein gp120 contains nine disulphide bridges and is highly glycosylated, carrying on average 24 N-linked glycans. Using a probability calculation, we here demonstrate that there is a co-localization of disulphide bridges and N-linked glycans in HIV-1 gp120, with a predominance of N-linked glycans in close proximity to disulphide bridges, at the C-terminal side of the involved cysteines. Also, N-glycans are frequently found immediately adjacent to disulphide bridges in gp120 at the N-terminal side of the involved cysteines. In contrast, N-glycans at positions close to, but not immediately neighboring disulphide bridges seem to be disfavored at the N-terminal side of the involved cysteines. Such a pronounced co-localization of disulphide bridges and N-glycans was also found for the N-glycans on glycoprotein E1 of the hepatitis C virus (HCV) but not for other heavily glycosylated proteins such as E2 from HCV and the surface GP from Ebola virus. The potential functional role of the presence of N-glycans near disulphide bridges in HIV-1 gp120 was studied using site-directed mutagenesis, either by deleting conserved N-glycans or by inserting new N-glycosylation sites near disulphide bridges. The generated HIV-1NL4.3 mutants were subjected to an array of assays, determining the envelope glycoprotein levels in mutant viral particles, their infectivity and the capture and transmission efficiencies of mutant virus particles by DC-SIGN. Three N-glycans located nearby disulphide bridges were found to be crucial for the preservation of several of these functions of gp120. In addition, introduction of new N-glycans upstream of several disulphide bridges, at locations where there was a significant absence of N-glycans in a broad variety of virus strains, was found to result in a complete loss of viral infectivity. It was shown that the N-glycan environment around well-defined disulphide bridges of gp120 is highly critical to allow efficient viral infection and transmission.  相似文献   

10.
Identifying biological roles for mammalian glycans and the pathways by which they are synthesized has been greatly facilitated by investigations of glycosylation mutants of cultured cell lines and model organisms. Chinese hamster ovary (CHO) glycosylation mutants isolated on the basis of their lectin resistance have been particularly useful for glycosylation engineering of recombinant glycoproteins. To further enhance the application of these mutants, and to obtain insights into the effects of altering one specific glycosyltransferase or glycosylation activity on the overall expression of cellular glycans, an analysis of the N-glycans and major O-glycans of a panel of CHO mutants was performed using glycomic analyses anchored by matrix-assisted laser desorption ionization-time of flight/time of flight mass spectrometry. We report here the complement of the major N-glycans and O-glycans present in nine distinct CHO glycosylation mutants. Parent CHO cells grown in monolayer versus suspension culture had similar profiles of N- and O-GalNAc glycans, although the profiles of glycosylation mutants Lec1, Lec2, Lec3.2.8.1, Lec4, LEC10, LEC11, LEC12, Lec13, and LEC30 were consistent with available genetic and biochemical data. However, the complexity of the range of N-glycans observed was unexpected. Several of the complex N-glycan profiles contained structures of m/z ∼13,000 representing complex N-glycans with a total of 26 N-acetyllactosamine (Galβ1–4GlcNAc)n units. Importantly, the LEC11, LEC12, and LEC30 CHO mutants exhibited unique complements of fucosylated complex N-glycans terminating in Lewisx and sialyl-Lewisx determinants. This analysis reveals the larger-than-expected complexity of N-glycans in CHO cell mutants that may be used in a broad variety of functional glycomics studies and for making recombinant glycoproteins.  相似文献   

11.
An N-glycomic analysis of plasma proteins was performed in Japanese semisupercentenarians (SSCs) (mean 106.7 years), aged controls (mean 71.6 years), and young controls (mean 30.2 years) by liquid chromatography/mass spectrometry (LC/MS) using a graphitized carbon column. Characteristic N-glycans in SSCs were discriminated using a multivariate analysis; orthogonal projections to latent structures (O-PLS). The results obtained showed that multi-branched and highly sialylated N-glycans as well as agalacto- and/or bisecting N-glycans were increased in SSCs, while biantennary N-glycans were decreased. Since multi-branched and highly sialylated N-glycans have been implicated in anti-inflammatory activities, these changes may play a role in the enhanced chronic inflammation observed in SSCs. The levels of inflammatory proteins, such as CRP, adiponectin, IL-6, and TNF-α, were elevated in SSCs. These results suggested that responses to inflammation may play an important role in extreme longevity and healthy aging in humans. This is the first study to show that the N-glycans of plasma proteins were associated with extreme longevity and healthy aging in humans.  相似文献   

12.
Trypanosoma brucei protein disulfide isomerase 2 (TbPDI2) is a bloodstream stage-specific lumenal endoplasmic reticulum (ER) glycoprotein. ER localization is dependent on the TbPDI2 C-terminal tetrapeptide (KQDL) and is mediated by TbERD2, an orthologue of the yeast ER retrieval receptor. Consistent with this function, TbERD2 localizes prominently to ER exit sites, and RNA interference (RNAi) knockdown results in specific secretion of a surrogate ER retention reporter, BiPN:KQDL. TbPDI2 is highly N-glycosylated and is reactive with tomato lectin, suggesting the presence of poly-N-acetyllactosamine modifications, which are common on lyso/endosomal proteins in trypanosomes but are inconsistent with ER localization. However, TbPDI2 is reactive with tomato lectin immediately following biosynthesis—far too rapidly for transport to the Golgi compartment, the site of poly-N-acetyllactosamine addition. TbPDI2 also fails to react with Erythrina cristagalli lectin, confirming the absence of terminal N-acetyllactosamine units. We propose that tomato lectin binds the Manβ1-4GlcNAcβ1-4GlcNAc trisaccharide core of paucimannose glycans on both newly synthesized and mature TbPDI2. Consistent with this proposal, α-mannosidase treatment renders oligomannose N-glycans on the T. brucei cathepsin L orthologue TbCatL reactive with tomato lectin. These findings resolve contradictory evidence on the location and glycobiology of TbPDI2 and provide a cautionary note on the use of tomato lectin as a poly-N-acetyllactosamine-specific reagent.  相似文献   

13.
14.
15.
The fungal cell wall is the first point of interaction between an invading fungal pathogen and the host immune system. The outer layer of the cell wall is comprised of GPI anchored proteins, which are post-translationally modified by both N- and O-linked glycans. These glycans are important pathogen associated molecular patterns (PAMPs) recognised by the innate immune system. Glycan synthesis is mediated by a series of glycosyl transferases, located in the endoplasmic reticulum and Golgi apparatus. Mnn2 is responsible for the addition of the initial α1,2-mannose residue onto the α1,6-mannose backbone, forming the N-mannan outer chain branches. In Candida albicans, the MNN2 gene family is comprised of six members (MNN2, MNN21, MNN22, MNN23, MNN24 and MNN26). Using a series of single, double, triple, quintuple and sextuple mutants, we show, for the first time, that addition of α1,2-mannose is required for stabilisation of the α1,6-mannose backbone and hence regulates mannan fibril length. Sequential deletion of members of the MNN2 gene family resulted in the synthesis of lower molecular weight, less complex and more uniform N-glycans, with the sextuple mutant displaying only un-substituted α1,6-mannose. TEM images confirmed that the sextuple mutant was completely devoid of the outer mannan fibril layer, while deletion of two MNN2 orthologues resulted in short mannan fibrils. These changes in cell wall architecture correlated with decreased proinflammatory cytokine induction from monocytes and a decrease in fungal virulence in two animal models. Therefore, α1,2-mannose of N-mannan is important for both immune recognition and virulence of C. albicans.  相似文献   

16.
The oyster Crassostrea ariakensis is an economically important bivalve species in China, unfortunately it has suffered severe mortalities in recent years caused by rickettsia-like organism (RLO) infection. Prevention and control of this disease is a priority for the development of oyster aquaculture. Allograft inflammatory factor-1 (AIF-1) was identified as a modulator of the immune response during macrophage activation and a key gene in host immune defense reaction and inflammatory response. Therefore we investigated the functions of C. ariakensis AIF-1 (Ca-AIF1) and its antibody (anti-CaAIF1) in oyster RLO/LPS-induced disease and inflammation. Ca-AIF1 encodes a 149 amino acid protein containing two typical Ca2+ binding EF-hand motifs and shares a 48–95% amino acid sequence identity with other animal AIF-1s. Tissue-specific expression analysis indicates that Ca-AIF1 is highly expressed in hemocytes. Significant and continuous up-regulation of Ca-AIF1 is detected when hemocytes are stimulated with RLO/LPS (RLO or LPS). Treatment with recombinant Ca-AIF1 protein significantly up-regulates the expression levels of LITAF, MyD88 and TGFβ. When anti-CaAIF1 antibody is added to RLO/LPS-challenged hemocyte monolayers, a significant reduction of RLO/LPS-induced LITAF is observed at 1.5–12 h after treatment, suggesting that interference with Ca-AIF1 can suppress the inflammatory response. Furthermore, flow cytometric analysis indicated that anti-CaAIF1 administration reduces RLO/LPS-induced apoptosis and necrosis rates of hemocytes. Collectively these findings suggest that Ca-AIF1 functions as a pro-inflammatory cytokine in the oyster immune response and is a potential target for controlling RLO infection and LPS-induced inflammation.  相似文献   

17.
Ovotransferrin (OT), a multifunctional glycoprotein with defensive and protective activities, accounts for approximately 13 % of chicken egg white proteins and is known as a major egg-associated allergen along with ovomucoid (OM). In contrast to the well-characterized N-glycans of OM, the N-glycan structure of OT has not been reported. Here, using HPLC equipped with a fluorescence detector and mass spectrometric analysis in combination with exoglycosidase digestion, we investigated the N-glycan type and branched pattern of OT, and compared them with those of OM. The HPLC peak area was used to calculate the relative quantity (%) of each glycan. Seventeen N-glycans, including 11 glycans (1 core structure and 10 complex-type oligosaccharides), that commonly exist in ovotransferrin and ovomucoid were identified. Six characteristic glycans (2 truncated structures, 1 complex-type, and 3 hybrid-type oligosaccharides) in OT and eight characteristic glycans in OM were classified. OT contains the following branched complex-type structures: mono-(13.2 %), bi-(23.9 %), tri-(9.0 %), tetra-(2.7 %), and penta-(2.8 %) antennary oligosaccharides. However, OM contained mostly tri-(33.5 %) and penta-(31.2 %) antennary oligosaccharides. The N-glycan–containing bisecting N-acetylglucosamine comprised 43.4 % and 79.8 % of the total glycans in OT and OM, respectively. Moreover, using circular dichroism analysis, we observed that the secondary structure of the deglycosylated OT is quite different from that of the intact protein. To our knowledge, this is the first study to analyze N-glycans in OT in comparison with those of OM.  相似文献   

18.
To better understand influenza virus infection of pigs, we examined primary swine respiratory epithelial cells (SRECs, the primary target cells of influenza viruses in vivo), as a model system. Glycomic profiling of SRECs by mass spectrometry revealed a diverse range of glycans terminating in sialic acid or GalαGal. In terms of sialylation, α2–6 linkage was more abundant than α2–3, and NeuAc was more abundant than NeuGc. Virus binding and infection experiments were conducted to determine functionally important glycans for influenza virus infection, with a focus on recently emerged swine viruses. Infection of SRECs with swine and human viruses resulted in different infectivity levels. Glycan microarray analysis with a high infectivity “triple reassortant” virus ((A/Swine/MN/593/99 (H3N2)) that spread widely throughout the North American swine population and a lower infectivity human virus isolated from a single pig (A/Swine/ONT/00130/97 (H3N2)) showed that both viruses bound exclusively to glycans containing NeuAcα2–6, with strong binding to sialylated polylactosamine and sialylated N-glycans. Treatment with mannosamine precursors of sialic acid (to alter NeuAc/NeuGc abundances) and linkage-specific sialidases prior to infection indicated that the influenza viruses tested preferentially utilize NeuAcα2–6-sialylated glycans to infect SRECs. Our data indicate that NeuAcα2–6-terminated polylactosamine and sialylated N-glycans are important determinants for influenza viruses to infect SRECs. As NeuAcα2–6 polylactosamine glycans play major roles in human virus infection, the importance of these receptor components in virus infection of swine cells has implications for transmission of viruses between humans and pigs and for pigs as possible adaptation hosts of novel human influenza viruses.  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1) entry is mediated by the interaction between a variably glycosylated envelope glycoprotein (gp120) and host-cell receptors. Approximately half of the molecular mass of gp120 is contributed by N-glycans, which serve as potential epitopes and may shield gp120 from immune recognition. The role of gp120 glycans in the host immune response to HIV-1 has not been comprehensively studied at the molecular level. We developed a new approach to characterize cell-specific gp120 glycosylation, the regulation of glycosylation, and the effect of variable glycosylation on antibody reactivity. A model oligomeric gp120 was expressed in different cell types, including cell lines that represent host-infected cells or cells used to produce gp120 for vaccination purposes. N-Glycosylation of gp120 varied, depending on the cell type used for its expression and the metabolic manipulation during expression. The resultant glycosylation included changes in the ratio of high-mannose to complex N-glycans, terminal decoration, and branching. Differential glycosylation of gp120 affected envelope recognition by polyclonal antibodies from the sera of HIV-1-infected subjects. These results indicate that gp120 glycans contribute to antibody reactivity and should be considered in HIV-1 vaccine design.  相似文献   

20.
The evolution of TLR-mediated innate immunity is a fundamental question in immunology. Here, we report the characterization and functional analysis of four TLR members in the lophotrochozoans Crassostrea gigas (CgTLRs). All CgTLRs bear a conserved domain organization and have a close relationship with TLRs in ancient non-vertebrate chordates. In HEK293 cells, every CgTLR could constitutively activate NF-κB responsive reporter, but none of the PAMPs tested could stimulate CgTLR-activated NF-κB induction. Subcellular localization showed that CgTLR members have similar and dual distribution on late endosomes and plasma membranes. Moreover, CgTLRs and CgMyD88 mRNA show a consistent response to multiple PAMP challenges in oyster hemocytes. As CgTLR-mediated NF-κB activation is dependent on CgMyD88, we designed a blocking peptide for CgTLR signaling that would inhibit CgTLR-CgMyD88 dependent NF-κB activation. This was used to demonstrate that a Vibrio parahaemolyticus infection-induced enhancement of degranulation and increase of cytokines TNF mRNA in hemocytes, could be inhibited by blocking CgTLR signaling. In summary, our study characterized the primitive TLRs in the lophotrocozoan C . gigas and demonstrated a fundamental role of TLR signaling in infection-induced hemocyte activation. This provides further evidence for an ancient origin of TLR-mediated innate immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号