首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 127 毫秒
1.
Many studies have demonstrated plant response to warming temperatures, both as advancement in the timing of phenological events and in range shifts. Mountain gradients are ideal laboratories for studying species range changes. In this study of 363 plant species in bloom collected in five segments across a 1200 m (4158 ft) elevation gradient, we look for changes in species flowering ranges over a 20-year period. Ninety-three species (25.6%) exhibited a significant change in the elevation at which they flowered from the first half to the second half of the record, with many of these changes occurring at higher elevations. Most of the species exhibiting the changes were perennial plants. Interestingly, though many changes in flowering range were specific to higher elevations, range changes occurred all across the gradient. The changes reported in this study are concurrent with significant increases in summer temperatures across the region and are consistent with observed changes around the globe.  相似文献   

2.
Climate change can cause changes in expression of organismal traits that influence fitness. In flowering plants, floral traits can respond to drought, and that phenotypic plasticity has the potential to affect pollination and plant reproductive success. Global climate change is leading to earlier snow melt in snow-dominated ecosystems as well as affecting precipitation during the growing season, but the effects of snow melt timing on floral morphology and rewards remain unknown. We conducted crossed manipulations of spring snow melt timing (early vs. control) and summer monsoon precipitation (addition, control, and reduction) that mimicked recent natural variation, and examined plastic responses in floral traits of Ipomopsis aggregata over 3 years in the Rocky Mountains. We tested whether increased summer precipitation compensated for earlier snow melt, and if plasticity was associated with changes in soil moisture and/or leaf gas exchange. Lower summer precipitation decreased corolla length, style length, corolla width, sepal width, and nectar production, and increased nectar concentration. Earlier snow melt (taking into account natural and experimental variation) had the same effects on those traits and decreased inflorescence height. The effect of reduced summer precipitation was stronger in earlier snow melt years for corolla length and sepal width. Trait reductions were explained by drier soil during the flowering period, but this effect was only partially explained by how drier soils affected plant water stress, as measured by leaf gas exchange. We predicted the effects of plastic trait changes on pollinator visitation rates, pollination success, and seed production using prior studies on I. aggregata. The largest predicted effect of drier soil on relative fitness components via plasticity was a decrease in male fitness caused by reduced pollinator rewards (nectar production). Early snow melt and reduced precipitation are strong drivers of phenotypic plasticity, and both should be considered when predicting effects of climate change on plant traits in snow-dominated ecosystems.  相似文献   

3.
Global climate change is predicted to alter growing season rainfall patterns, potentially reducing total amounts of growing season precipitation and redistributing rainfall into fewer but larger individual events. Such changes may affect numerous soil, plant, and ecosystem properties in grasslands and ultimately impact their productivity and biological diversity. Rainout shelters are useful tools for experimental manipulations of rainfall patterns, and permanent fixed-location shelters were established in 1997 to conduct the Rainfall Manipulation Plot study in a mesic tallgrass prairie ecosystem in northeastern Kansas. Twelve 9 x 14–m fixed-location rainfall manipulation shelters were constructed to impose factorial combinations of 30% reduced rainfall quantity and 50% greater interrainfall dry periods on 6 x 6–m plots, to examine how altered rainfall regimes may affect plant species composition, nutrient cycling, and above- and belowground plant growth dynamics. The shelters provided complete control of growing season rainfall patterns, whereas effects on photosynthetic photon flux density, nighttime net radiation, and soil temperature generally were comparable to other similar shelter designs. Soil and plant responses to the first growing season of rainfall manipulations (1998) suggested that the interval between rainfall events may be a primary driver in grassland ecosystem responses to altered rainfall patterns. Aboveground net primary productivity, soil CO2 flux, and flowering duration were reduced by the increased interrainfall intervals and were mostly unaffected by reduced rainfall quantity. The timing of rainfall events and resulting temporal patterns of soil moisture relative to critical times for microbial activity, biomass accumulation, plant life histories, and other ecological properties may regulate longer-term responses to altered rainfall patterns.  相似文献   

4.
Recent changes in climate have led to significant shifts in phenology, with many studies demonstrating advanced phenology in response to warming temperatures. The rate of temperature change is especially high in the Arctic, but this is also where we have relatively little data on phenological changes and the processes driving these changes. In order to understand how Arctic plant species are likely to respond to future changes in climate, we monitored flowering phenology in response to both experimental and ambient warming for four widespread species in two habitat types over 21 years. We additionally used long‐term environmental records to disentangle the effects of temperature increase and changes in snowmelt date on phenological patterns. While flowering occurred earlier in response to experimental warming, plants in unmanipulated plots showed no change or a delay in flowering over the 21‐year period, despite more than 1 °C of ambient warming during that time. This counterintuitive result was likely due to significantly delayed snowmelt over the study period (0.05–0.2 days/yr) due to increased winter snowfall. The timing of snowmelt was a strong driver of flowering phenology for all species – especially for early‐flowering species – while spring temperature was significantly related to flowering time only for later‐flowering species. Despite significantly delayed flowering phenology, the timing of seed maturation showed no significant change over time, suggesting that warmer temperatures may promote more rapid seed development. The results of this study highlight the importance of understanding the specific environmental cues that drive species’ phenological responses as well as the complex interactions between temperature and precipitation when forecasting phenology over the coming decades. As demonstrated here, the effects of altered snowmelt patterns can counter the effects of warmer temperatures, even to the point of generating phenological responses opposite to those predicted by warming alone.  相似文献   

5.
Understanding species responses to global change will help predict shifts in species distributions as well as aid in conservation. Changes in the timing of seasonal activities of organisms over time may be the most responsive and easily observable indicator of environmental changes associated with global climate change. It is unknown how global climate change will affect species distributions and developmental events in subtropical ecosystems or if climate change will differentially favor nonnative species. Contrary to previously observed trends for earlier flowering onset of plant species with increasing spring temperatures from mid and higher latitudes, we document a trend for delayed seasonal flowering among plants in Florida. Additionally, there were few differences in reproductive responses by native and nonnative species to climatic changes. We argue that plants in Florida have different reproductive cues than those from more northern climates. With global change, minimum temperatures have become more variable within the temperate-subtropical zone that occurs across the peninsula and this variation is strongly associated with delayed flowering among Florida plants. Our data suggest that climate change varies by region and season and is not a simple case of species responding to consistently increasing temperatures across the region. Research on climate change impacts need to be extended outside of the heavily studied higher latitudes to include subtropical and tropical systems in order to properly understand the complexity of regional and seasonal differences of climate change on species responses.  相似文献   

6.
Arid and semi-arid environments are dynamic ecosystems with highly variable precipitation, resulting in diverse plant communities. Changes in the timing and magnitude of precipitation due to global climate change may further alter plant community composition in desert regions. In this study, we assessed changes in species richness and plant density at the community, functional group, and species level in response to variation in the magnitude of natural seasonal precipitation and 25% increases in seasonal precipitation [e.g., supplemental watering in summer, winter, or summer and winter (SW)] over a 5-year period in a sotol grassland in the Chihuahuan Desert. Community species richness was higher with increasing winter precipitation while community plant density increased with greater amounts of winter and summer precipitation, suggesting winter precipitation was important for species recruitment and summer precipitation promoted growth of existing species. Herb and grass density increased with increasing winter and summer precipitation, but only grass density showed a significant response to supplemental watering treatments (SW treatment plots had higher grass density). Shrubs and succulents did not exhibit changes in richness or density in response to natural or supplemental precipitation. In this 5-year study, changes in community species richness and density were driven by responses of herb and grass species that favored more frequent small precipitation events, shorter inter-pulse duration, and higher soil moisture. However, due to the long life spans of the shrub and succulent species within this community, 5 years may be insufficient to accurately evaluate their response to variable timing and magnitude of precipitation in this mid-elevation grassland.  相似文献   

7.
? Premise of the study: Climate change has affected species worldwide, including alterations in phenology, migration patterns, distribution, and survival. Because Erythronium grandiflorum is an early-season bloomer, alterations in its phenology may have serious implications for many North American Rocky Mountain communities, including changes in resource availability for pollinators and herbivores. ? Methods: We investigated whether changes in the snowmelt date, summer temperature, and summer precipitation have altered the timing and abundance of flowering in E. grandiflorum by collecting long-term data on floral abundance from 1975-2008 in a series of 2 × 2 m plots at the Rocky Mountain Biological Laboratory (RMBL) in Gothic, Colorado in the United States. ? Key results: Snowmelt date and mean summer temperature were negatively correlated. Over the 30-yr study, the snowmelt date advanced by 4.14 d/decade, and mean summer temperature increased by 0.38°C/decade. Summer precipitation was variable, showing no change. The first, peak, and last flowering dates of E. grandiflorum advanced an average of 3.2 d/decade. Furthermore, earlier snowmelt and greater summer precipitation in the previous year led to earlier flowering in E. grandiflorum. There was no change in flowering abundance in this species, indicating it may be controlled by a complex set of abiotic and biotic variables. ? Conclusions: Our study indicates that snowmelt is arriving earlier at the RMBL, which has caused earlier flowering in E. grandiflorum. Because alterations in phenology can disrupt important ecological interactions, information on potential phenological shifts in species that interact with E. grandiflorum is essential in determining the net effect of climate-driven alterations in phenology.  相似文献   

8.
Within-season breaks in flowering have been reported in a wide range of highly variable ecosystems including deserts, tropical forests and high-elevation meadows. A tendency for interruptions in flowering has also been documented in southwestern US “Sky Island” plant communities, which encompass xeric to mesic conditions. Seasonal breaks in flowering have implications for plant reproductive success, population structure, and gene flow as well as resource availability for pollinators and dependent animals. Most reports of multiple within-season flowering events describe only two distinct flowering episodes. In this study, we set out to better quantify distinct within-season flowering events in highly variable Sky Islands plant communities. Across a >1,200 m elevation gradient, we documented a strong tendency for multiple within-season flowering events. In both distinct spring and summer seasons, we observed greater than two distinct within-season flowering in more than 10 % of instances. Patterns were clearly mediated by the different climate factors at work in the two seasons. The spring season, which is influenced by both temperature and precipitation, showed a mixed response, with the greatest tendency for multiple flowering events occurring at mid-elevations and functional types varying in their responses across the gradient. In the summer season, during which flowering across the gradient is limited by localized precipitation, annual plants exhibited the fewest within-season flowering events and herbaceous perennial plants showed the greatest. Additionally, more distinct events occurred at lower elevations. The patterns documented here provide a baseline for comparison of system responses to changing climate conditions.  相似文献   

9.
Shifts in flowering phenology of plants are indicators of climate change. The great majority of existing phenological studies refer solely to gradual warming. However, knowledge on how flowering phenology responds to changes in seasonal variation of warming and precipitation regimes is missing. We report the onset of 22 early (flowering before/within May) and 23 late flowering (flowering after May) species in response to manipulated seasonal warming (equal to + 1.2°C; last 100-year summer/winter warming), additional winter rainfall, and modified precipitation variability (including a 1000-year extreme drought event followed by heavy rainfall) over the growing season in two consecutive years for a species-rich temperate grassland ecosystem. The average onset of flowering (over 2 years) was significantly advanced 3.1 days by winter warming and 1.5 days by summer warming compared to control. Early flowering species responded to seasonal warming in both years, while late-flowering species responded in only 1 year to summer warming. The average onset of early flowering species was significantly advanced, 4.9 days by winter warming and 2.3 days by summer warming. Species-specific analysis showed that even within the early flowering community there were divergences. A positive correlation between plant height and shift in flowering onset was detected under winter warming (R2 = 0.20, p = 0.005). The average onsets of early and late flowering community were affected by neither winter rain nor growing season precipitation variability. Seasonal differences in warming, and particularly winter warming, might alter community dynamics among early and late flowering species which can cause shifts in the seasonal performances of temperate ecosystems.  相似文献   

10.
The phenology and morphology of Mediterranean plants are constrained by drought in summer and cold temperatures in winter. In this study we examine how climatic factors and phylogenetic constraints have shaped variation in the phenology and morphology of 17 species of the genus Cyclamen cultivated in uniform garden conditions. We quantify the extent to which traits differ among subgenera and thus represent conserved traits within evolutionary lineages. We also explore whether leaf, flowering and seed-release phenology are correlated among species, and thus whether variation in flowering phenology results from selection on dispersal phenology. Our results show a significant influence of subgenus membership on leaf and flowering phenology but not on morphological traits or the timing of seed release. Among-species variation in foliage height, leaf size and seed mass (but not in floral traits) is correlated with chromosome number. Leaf traits show that species with a shorter vegetative period have a higher capacity for resource acquisition. Major phenological shifts, i.e. spring vs. autumn flowering and a decoupling of leaf and flower phenology in autumnal flowering species, thus occurred prior to the diversification of species in each subgenus and not as a response to selection on dispersal timing. Leaf and flowering phenology illustrate a gradient of strategies from autumn flowering in the absence of leaves (hysteranthous species) to spring flowering with fully developed foliage (synanthous species). In the former, flowering is uncoupled from resource acquisition by simultaneous photosynthesis, indicative that hysteranthy is a response to temporal unpredictability in the onset of rain after the summer drought. Our results support the idea that whereas leaf development is controlled primarily by moisture availability and secondarily by temperature, flowering is temperature dependent, above a minimum moisture threshold. © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society, 2004, 145 , 469–484.  相似文献   

11.
Arid and semi-arid ecosystems of the southwestern US are undergoing changes in vegetation composition and are predicted to experience shifts in climate. To understand implications of these current and predicted changes, we conducted a precipitation manipulation experiment on the Santa Rita Experimental Range in southeastern Arizona. The objectives of our study were to determine how soil surface and seasonal timing of rainfall events mediate the dynamics of leaf-level photosynthesis and plant water status of a native and non-native grass species in response to precipitation pulse events. We followed a simulated precipitation event (pulse) that occurred prior to the onset of the North American monsoon (in June) and at the peak of the monsoon (in August) for 2002 and 2003. We measured responses of pre-dawn water potential, photosynthetic rate, and stomatal conductance of native (Heteropogon contortus) and non-native (Eragrostis lehmanniana) C4 bunchgrasses on sandy and clay-rich soil surfaces. Soil surface did not always amplify differences in plant response to a pulse event. A June pulse event lead to an increase in plant water status and photosynthesis. Whereas the August pulse did not lead to an increase in plant water status and photosynthesis, due to favorable soil moisture conditions facilitating high plant performance during this period. E. lehmanniana did not demonstrate heightened photosynthetic performance over the native species in response to pulses across both soil surfaces. Overall accumulated leaf-level CO2 response to a pulse event was dependent on antecedent soil moisture during the August pulse event, but not during the June pulse event. This work highlights the need to understand how desert species respond to pulse events across contrasting soil surfaces in water-limited systems that are predicted to experience changes in climate.  相似文献   

12.
Global and regional climate models predict higher air temperature and less frequent, but larger precipitation events in arid regions within the next century. While many studies have addressed the impact of variable climate in arid ecosystems on plant growth and physiological responses, fewer studies have addressed soil microbial community responses to seasonal shifts in precipitation and temperature in arid ecosystems. This study examined the impact of a wet (2004), average (2005), and dry (2006) year on subsequent responses of soil microbial community structure, function, and linkages, as well as soil edaphic and nutrient characteristics in a mid-elevation desert grassland in the Chihuahuan Desert. Microbial community structure was classified as bacterial (Gram-negative, Gram-positive, and actinomycetes) and fungal (saprophytic fungi and arbuscular mycorrhiza) categories using (fatty acid methyl ester) techniques. Carbon substrate use and enzymic activity was used to characterize microbial community function annually and seasonally (summer and winter). The relationship between saprophytic fungal community structure and function remained consistent across season independent of the magnitude or frequency of precipitation within any given year. Carbon utilization by fungi in the cooler winter exceeded use in the warmer summer each year suggesting that soil temperature, rather than soil moisture, strongly influenced fungal carbon use and structure and function dynamics. The structure/function relationship for AM fungi and soil bacteria notably changed across season. Moreover, the abundance of Gram-positive bacteria was lower in the winter compared to Gram-negative bacteria. Bacterial carbon use, however, was highest in the summer and lower during the winter. Enzyme activities did not respond to either annual or seasonal differences in the magnitude or timing of precipitation. Specific structural components of the soil microbiota community became uncoupled from total microbial function during different seasons. This change in the microbial structure/function relationship suggests that different components of the soil microbial community may provide similar ecosystem function, but differ in response to seasonal temperature and precipitation. As soil microbes encounter increased soil temperatures and altered precipitation amounts and timing that are predicted for this region, the ability of the soil microbial community to maintain functional resilience across the year may be reduced in this Chihuahuan Desert ecosystem.  相似文献   

13.
Mountain plants are particularly sensitive to climate warming because snowmelt timing exerts a direct control on their reproduction. Current warming is leading to earlier snowmelt dates and longer snow-free periods. Our hypothesis is that high-mountain Mediterranean plants are not able to take advantage of a lengthened snow-free period because this leads to longer drought that truncates the growing season. However, reproductive timing may somewhat mitigate these negative effects through temporal shifts. We assessed the effects of flowering phenology on the reproductive success of Silene ciliata, a Mediterranean high-mountain plant, across an altitudinal gradient during two climatically contrasting years. The species showed a late-flowering pattern hampering the use of snowmelt water. Plant fitness was largely explained by the elapsed time from snowmelt to onset of flowering, suggesting a selective pressure towards early flowering caused by soil moisture depletion. The proportion of flowering plants decreased at the lowest population, especially in the drier year. Plants produced more flowers, fruits and seeds at the highest population and in the mild year. Our results indicate that water deficit in dry years could threaten the lowland populations of this mountainous species, while high-altitude environments are more stable over time.  相似文献   

14.
Soil moisture is a critical variable in grassland function, yet how fire regimes influence ecohydrology is poorly understood. By altering productivity, species composition, and litter accumulation, fire can indirectly increase or decrease soil water depletion on a range of time scales and depths in the soil profile. To better understand how fire influences soil moisture in grasslands, we analyzed 28 years of soil moisture data from two watersheds in a central North American grassland which differ in their long-term fire frequency. Across 28 years, cessation of prescribed burning initially led to wetter soils, likely as litter accumulated and both transpiration and evaporation were suppressed. Long-term, cessation of burning led to soils drying more, especially at depths greater than 75 cm. The long-term drying of deep soils is consistent with the increase in woody species in the infrequently burned grassland as woody species likely have a greater reliance on soil water from deeper soil layers compared to co-occurring herbaceous species. Despite the ecohydrological changes associated with the cessation of prescribed burning, watersheds with different burn regimes responded similarly to short-term variation in climate variation. In both watersheds, low precipitation and high temperatures led to drier soils with greater responses in soil moisture to climate variation later in the season than earlier. There is no current evidence that the cessation of burning in this ecosystem will qualitatively alter how evapotranspiration responds to climate variation, but the use of deeper soil water by woody plants has the potential for greater transpiration during dry times. In all, modeling the depth-specific responses of soil moisture and associated ecosystem processes to changes in burn regimes will likely require including responses of plant community composition over short and long time scales.  相似文献   

15.
Warmer temperatures are accelerating the phenology of organisms around the world. Temperature sensitivity of phenology might be greater in colder, higher latitude sites than in warmer regions, in part because small changes in temperature constitute greater relative changes in thermal balance at colder sites. To test this hypothesis, we examined up to 20 years of phenology data for 47 tundra plant species at 18 high‐latitude sites along a climatic gradient. Across all species, the timing of leaf emergence and flowering was more sensitive to a given increase in summer temperature at colder than warmer high‐latitude locations. A similar pattern was seen over time for the flowering phenology of a widespread species, Cassiope tetragona. These are among the first results highlighting differential phenological responses of plants across a climatic gradient and suggest the possibility of convergence in flowering times and therefore an increase in gene flow across latitudes as the climate warms.  相似文献   

16.
Under climate warming, plants will undergo novel selective pressures to adjust reproductive timing. Adjustment between reproductive phenology and environment is expected to be higher in arctic and alpine habitats because the growing season is considerably short. As early- and late-flowering species reproduce under very different environmental conditions, selective pressures on flowering phenology and potential effects of climate change are likely to differ between them. However, there is no agreement on the magnitude of the benefits and costs of early- vs. late-flowering species under a global warming scenario. In spite of its relevance, phenotypic selection on flowering phenology has rarely been explored in alpine plants and never in Mediterranean high mountain species, where selective pressures are very different due to the summer drought imposed over the short growth season. We hypothesized that late-flowering plants in Mediterranean mountains should present stronger selective pressures towards early onset of reproduction than early-flowering species, because less water is available in the soil as growing season progresses. We performed selection analyses on flowering onset and duration in two high mountain species of contrasting phenology. Since phenotypic selection can be highly context-dependent, we studied several populations of each species for 2 years, covering their local altitudinal ranges and their different microhabitats. Surrogates of biotic selective agents, like fruitset for pollinators and flower and fruit loss for flower and seed predators, were included in the analysis. Differences between the early- and the late-flowering species were less than expected. A consistent negative correlational selection of flowering onset and duration was found affecting plant fitness, i.e., plants that bloomed earlier flowered for longer periods improving plant fitness. Nevertheless, the late-flowering species may experience higher risks under climate warming because in extremely warm and dry years the earlier season does not bring about a longer flowering duration due to summer drought.  相似文献   

17.
Background and AimsWarmer temperatures and altered precipitation patterns are expected to continue to occur as the climate changes. How these changes will impact the flowering phenology of herbaceous perennials in northern forests is poorly understood but could have consequences for forest functioning and species interactions. Here, we examine the flowering phenology responses of five herbaceous perennials to experimental warming and reduced summer rainfall over 3 years.MethodsThis study is part of the B4WarmED experiment located at two sites in northern Minnesota, USA. Three levels of warming (ambient, +1.6 °C and +3.1 °C) were crossed with two rainfall manipulations (ambient and 27 % reduced growing season rainfall).Key ResultsWe observed species-specific responses to the experimental treatments. Warming alone advanced flowering for four species. Most notably, the two autumn blooming species showed the strongest advance of flowering to warming. Reduced rainfall alone advanced flowering for one autumn blooming species and delayed flowering for the other, with no significant impact on the three early blooming species. Only one species, Solidago spp., showed an interactive response to warming and rainfall manipulation by advancing in +1.6 °C warming (regardless of rainfall manipulation) but not advancing in the warmest, driest treatment. Species-specific responses led to changes in temporal overlap between species. Most notably, the two autumn blooming species diverged significantly in their flowering timing. In ambient conditions, these two species flowered within the same week. In the warmest, driest treatment, flowering occurred over a month apart.ConclusionsHerbaceous species may differ in how they respond to future climate conditions. Changes to phenology may lead to fewer resources for insects or a mismatch between plants and pollinators.  相似文献   

18.
The cool and short growing season that characterizes Arctic climates puts severe constraints on life cycles and reproduction in the Arctic flora. The timing of flowering is particularly critical and may affect both breeding system and reproductive success through the heavy penalties associated with later flowering. An 11-year study of 75 species in the central highland of Iceland showed that the onset of flowering varies greatly among years. The number of species in flower by the first week of July was closely correlated with air temperature (degree days above zero) in the preceding 5 weeks, but no correlations were found with degree days in May or with total degree days in the previous growing season. Time of snowmelt, which has widely been regarded as the environmental event initiating growth and flowering in alpine and arctic tundra, only had a significant effect when two exceptionally cold and late summers were included. The species studied, most of which have a wide distribution in the Arctic, are predicted to respond quickly to warmer spring and early summer temperatures. Accelerated phenologies may alter patterns of resource allocation, have implications for pollinators and pollinator-competition, and could increase the size, species richness and intraspecific genetic diversity of the soil seed bank. Received: 15 February 1997 / Accepted: 25 October 1997  相似文献   

19.
A better understanding of growth-climate responses of high-elevation tree species across their distribution range is essential to devise an appropriate forest management and conservation strategies against adverse impacts of climate change. The present study evaluates how radial growth of Himalayan fir (Abies spectabilis D. Don) and its relation to climate varies with elevation in the Manaslu Mountain range in the central Himalaya. We developed tree-ring width chronologies of Himalayan fir from three elevational belts at the species’upper distribution limit (3750−3900 m), in the middle range (3500−3600 m), and at the lower distribution limit (3200−3300 m), and analyzed their associations with climatic factors. Tree growth of Himalayan fir varied synchronously across elevational belts, with recent growth increases observed at all elevations. Across the elevation gradient, radial growth correlated positively (negatively) with temperature (precipitation and standardized precipitation-evapotranspiration index, SPEI-03) during the summer (July to September) season. However, the importance of summer (July to September) temperatures on radial growth decreased with elevation, whereas correlations with winter (previous November to current January) temperatures increased. Correlations with spring precipitation and SPEI-03 changed from positive to negative from low to high elevations. Moving correlation analysis revealed a persistent response of tree growth to May and August temperatures. However, growth response to spring moisture availability has strongly increased in recent decades, indicating that intensified spring drought may reduce growth rates of Himalayan fir at lower elevations. Under sufficient moisture conditions, increasing summer temperature might be beneficial for fir trees growing at all elevations, while trees growing at the upper treeline will take additional benefit from winter warming.  相似文献   

20.
Ofir M  Kigel J 《Annals of botany》2006,97(4):659-666
BACKGROUND AND AIMS: The timing of flowering and summer dormancy induction plays a central role in the adaptation of Mediterranean geophytes to changes in the length of the growth season along rainfall gradients. Our aim was to analyse the role of the variation in the responses of flowering and summer dormancy to vernalization, daylength and growth temperature for the adaptation of Poa bulbosa, a perennial geophytic grass, to increasing aridity. METHODS: Flowering and dormancy were studied under controlled daylengths [9 h short day (SD) vs. 16 h long day (LD)] and temperatures (16/10, 22/16 and 28/22 degrees C day/night) in four ecotypes originating in arid, semi-arid and mesic habitats (110, 276 and 810 mm rain year(-1), respectively) and differing in flowering capacity under natural conditions: arid-flowering, semi-arid-flowering, semi-arid-non-flowering and mesic-non-flowering. KEY RESULTS: Flowering and dormancy were affected in opposite ways by daylength and growth temperature. Flowering occurred almost exclusively under SD. In contrast, plants became dormant much earlier under LD than under SD. In both daylengths, high temperature and pre-chilling (6 weeks at 5 degrees C) enhanced dormancy imposition, but inhibited or postponed flowering, respectively. Induction of flowering and dormancy in the different ecotypes showed differential responsiveness to daylength and temperature. Arid and semi-arid ecotypes had a higher proportion of flowering plants and flowering tillers as well as more panicles per plant than mesic ecotypes. 'Flowering' ecotypes entered dormancy earlier than 'non-flowering' ecotypes, while the more arid the site of ecotype origin, the earlier the ecotype entered dormancy. CONCLUSIONS: Variation in the flowering capacity of ecotypes differing in drought tolerance was interpreted as the result of balanced opposite effects of daylength and temperature on the flowering and dormancy processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号