首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin (IL)-17A, a proinflammatory cytokine produced by T-helper (Th)17 cells, has been associated with autoimmune diseases. Type 1 diabetes (T1D) is caused either due to mutation of insulin gene or developed as an autoimmune disease. Studies have shown that IL-17A expression is upregulated in the pancreas in T1D patients and animal models. However, role or importance of IL-17A in T1D pathogenesis needs elucidation. Particularly, evidence for a direct injury of IL-17A to pancreatic β cells through activating IL-17 receptor A (IL-17RA) is lacking. Ins2Akita (Akita) mouse, a T1D model with spontaneous mutation in insulin 2 gene leading to β-cell apoptosis, was crossed with IL-17A-knockout mouse and male IL-17A-deficient Akita mice were used. Streptozotocin, a pancreatic β-cell-specific cytotoxin, was employed to induce a diabetic model in MIN6 cells, a mouse insulinoma cell line. IL-17A expression in the pancreas was upregulated in both Akita and streptozotocin-induced diabetic mice. IL-17A-knockout Akita mice manifested reduced blood glucose concentration and raised serum insulin level. IL-17A deficiency also decreased production of the proinflammatory cytokines tumor necrosis factor (TNF)-α, IL-1β, and interferon (IFN)-γ in Akita mice. IL-17RA expression in MIN6 cells was upregulated by IL-17A. IL-17A enhanced expression of TNF-α, IL-1β, IFN-γ, and inducible nitric oxide synthase (iNOS) and further increased streptozotocin-induced expression of the inflammatory factors in MIN6 cells. IL-17A exacerbated streptozotocin-induced MIN6 cell apoptosis and insulin secretion impairment. Blocking IL-17RA with anti-IL-17RA-neutralizing antibody reduced all these deleterious effects of IL-17A on MIN6 cells. Collectively, IL-17A deficiency alleviated hyperglycemia, hypoinsulinemia, and inflammatory response in Akita mice that are characteristic for T1D. IL-17A exerted an alone and synergistic destruction with streptozotocin to pancreatic β cells through IL-17RA pathway. Thus, the data suggest that targeting IL-17A and/or IL-17RA is likely to preserve remaining β-cell function and treat T1D.Impact statementThe participation of interleukin (IL)-17A in diabetic pathogenesis is suggested in animal models of autoimmune diabetes and in patients with type 1 diabetes (T1D), but with some contradictory results. Particularly, evidence for a direct injury of IL-17A to pancreatic β cells is lacking. We showed that IL-17A deficiency alleviated diabetic signs including hyperglycemia, hypoinsulinemia, and inflammatory response in Ins2Akita (Akita) mice, a T1D model with spontaneous mutation in insulin 2 gene leading to β-cell apoptosis. IL-17A enhanced inflammatory reaction, oxidative stress, and cell apoptosis but attenuated insulin level in mouse insulin-producing MIN6 cells. IL-17A had also a synergistic destruction to MIN6 cells with streptozotocin (STZ), a pancreatic β-cell-specific cytotoxin. Blocking IL-17 receptor A (IL-17RA) reduced all these deleterious effects of IL-17A on MIN6 cells. The results demonstrate the role and the importance of IL-17A in T1D pathogenesis and suggest a potential therapeutic strategy for T1D targeting IL-17A and/or IL-17RA.  相似文献   

2.
Discovery of the T-helper (Th) 17 cell lineage and functions in immune responses of mouse and man prompted us to investigate the role of transforming growth factor-beta (TGF-β) and interleukin (IL)-17 in innate resistance to murine schistosomiasis mansoni. Schistosoma mansoni-infected BALB/c and C57BL/6 mice were administered with recombinant TGF-β or mouse monoclonal antibody to TGF-β to evaluate the impact of this cytokine on host immune responses against lung-stage schistosomula, and subsequent effects on adult worm parameters. Developing schistosomula elicited increase in peripheral blood mononuclear cells (PBMC) mRNA expression and/or plasma levels of IL-4, IL-17, and interferon-gamma (IFN-γ), cytokines known to antagonize each other, resulting in impaired Th1/Th2, and Th17 immune responses and parasite evasion. Mice treated with TGF-β showed elevated PBMC mRNA expression of IL-6, IL-17, TGF-β, and TNF-α mRNA and increased IL-23 and IL-17 or TGF-β plasma levels, associated with significantly (< 0.02–<0.0001) lower S. mansoni adult worm burden compared to controls in both mouse strains, thus suggesting that TGF-β led to heightened Th17 responses that mediated resistance to the infection. Mice treated with antibody to TGF-β showed increase in PBMC mRNA expression and plasma levels of IL-4, IL-12p70, and IFN-γ, and significantly (< 0.02 and <0.0001) reduced worm burden and liver worm egg counts than untreated mice, indicating that Th1/Th2 immune responses were potentiated, resulting in significant innate resistance to schistosomiasis. The implications of these observations for schistosome immune evasion and vaccination were discussed.  相似文献   

3.
Complex interactions between effector T cells and Foxp3+ regulatory T cells (Treg) contribute to clinical outcomes in cancer, and autoimmune and infectious diseases. Previous work showed that IL-12 reversed Treg-mediated suppression of CD4+Foxp3 T cell (Tconv) proliferation. We and others have also shown that Tregs express T-bet and IFN-γ at sites of Th1 inflammation and that IL-12 induces IFN-γ production by Tregs in vitro. To investigate whether loss of immunosuppression occurs when IFN-γ is expressed by Tregs we treated mouse lymphocyte cultures with IL-12. IFN-γ expression did not decrease the ability of Tregs to suppress Tconv proliferation. Rather, IL-12 treatment decreased Treg frequency and Foxp3 levels in Tregs. We further showed that IL-12 increased IL-2R expression on Tconv and CD8 T cells, diminished its expression on Tregs and decreased IL-2 production by Tconv and CD8 T cells. Together, these IL-12 mediated changes favored the outgrowth of non-Tregs. Additionally, we showed that treatment with a second cytokine, IL-27, decreased IL-2 expression without augmenting Tconv and CD8 T cell proliferation. Notably, IL-27 only slightly modified levels of IL-2R on non-Treg T cells. Together, these results show that IL-12 has multiple effects that modify the balance between Tregs and non-Tregs and support an important role for relative levels of IL-2R but not for IFN-γ expression in IL-12-mediated reversal of Treg immunosuppression.  相似文献   

4.
The mechanisms of inflammation in acne are currently subject of intense investigation. This study focused on the activation of adaptive and innate immunity in clinically early visible inflamed acne lesions and was performed in two independent patient populations. Biopsies were collected from lesional and non-lesional skin of acne patients. Using Affymetrix Genechips, we observed significant elevation of the signature cytokines of the Th17 lineage in acne lesions compared to non-lesional skin. The increased expression of IL-17 was confirmed at the RNA and also protein level with real-time PCR (RT-PCR) and Luminex technology. Cytokines involved in Th17 lineage differentiation (IL-1β, IL-6, TGF-β, IL23p19) were remarkably induced at the RNA level. In addition, proinflammatory cytokines and chemokines (TNF-α, IL-8, CSF2 and CCL20), Th1 markers (IL12p40, CXCR3, T-bet, IFN-γ), T regulatory cell markers (Foxp3, IL-10, TGF-β) and IL-17 related antimicrobial peptides (S100A7, S100A9, lipocalin, hBD2, hBD3, hCAP18) were induced. Importantly, immunohistochemistry revealed significantly increased numbers of IL-17A positive T cells and CD83 dendritic cells in the acne lesions. In summary our results demonstrate the presence of IL-17A positive T cells and the activation of Th17-related cytokines in acne lesions, indicating that the Th17 pathway is activated and may play a pivotal role in the disease process, possibly offering new targets of therapy.  相似文献   

5.
IFN-γ is a signature Th1 cell associated cytokine critical for the inflammatory response in autoimmunity with both pro-inflammatory and potentially protective functions. IL-17A is the hallmark of T helper 17 (Th17) cell subsets, produced by γδT, CD8+ T, NK and NKT cells. We have taken advantage of our colony of IL-2Rα−/− mice that spontaneously develop both autoimmune cholangitis and inflammatory bowel disease. In this model CD8+ T cells mediate biliary ductular damage, whereas CD4+ T cells mediate induction of colon-specific autoimmunity. Importantly, IL-2Rα−/− mice have high levels of interferon γ (IFN-γ), and interleukin-17A (IL-17A). We produced unique double deletions of mice that were either IL-17A−/−IL-2Rα−/− or IFN-γ−/−IL-2Rα−/− to specifically address the precise role of these two cytokines in the natural history of autoimmune cholangitis and colitis. Of note, deletion of IL-17A in IL-2Rα−/− mice led to more severe liver inflammation, but ameliorated colitis. In contrast, there were no significant changes in the immunopathology of double knock-out IFN-γ−/− IL-2Rα−/− mice, compared to single knock-out IL-2Rα−/− mice with respect to cholangitis or colitis. Furthermore, there was a significant increase in pathogenetic CD8+ T cells in the liver of IL-17A−/−IL-2Rα−/− mice. Our data suggest that while IL-17A plays a protective role in autoimmune cholangitis, it has a pro-inflammatory role in inflammatory bowel disease. These data take on particular significance in the potential use of anti-IL-17A therapy in humans with primary biliary cirrhosis.  相似文献   

6.
Cytokines interleukin (IL)-12 and IL-23 are implicated in the pathogenesis of psoriasis. IL-12 causes differentiation of CD4+ T cells to interferon-gamma (IFN-gamma)-producing T helper 1 (Th1) cells, while IL-23 induces differentiation to IL-17-producing pathogenic Th17 cells. The effects of the monoclonal antibody to IL-12/23 p40 subunit (CNTO 1275) on IL-12 receptor (IL-12R) expression, markers associated with skin homing, activation, and cytokine secretion were investigated in vitro using human peripheral blood mononuclear cells (PBMCs) from healthy donors. PBMCs were activated in the presence or absence of recombinant human (rh) IL-12 or rhIL-23, with or without CNTO 1275. CNTO 1275 inhibited upregulation of CLA, IL-12R, IL-2Ralpha and CD40L expression and also inhibited IL-12- and IL-23-induced IFN-gamma, IL-17A, tumor necrosis factor (TNF)-alpha, IL-2, and IL-10 secretion. Thus, the therapeutic effect of CNTO 1275 may be attributed to the IL-12/23 neutralization, resulting in decreased expression of skin homing and activation markers, and IL-12- and IL-23-induced cytokine secretion.  相似文献   

7.
A major limitation of most animal models of autoimmune diseases is that they do not reproduce the chronic or relapsing-remitting pattern characteristic of many human autoimmune diseases. This problem has been overcome in our rat models of experimentally induced monophasic or relapsing-remitting autoimmune uveitis (EAU), which depend on the inducing antigen peptides from retinal S-Antigen (monophasic EAU) or interphotoreceptor retinoid-binding protein (relapsing EAU). These models enable us to compare autoreactive and regulatory T cell populations. Intraocular, but not peripheral T cells differ in their cytokine profiles (IFN-γ, IL-17 and IL-10) at distinct time points during monophasic or relapsing EAU. Only intraocular T cells concomitantly produced IFN-γ, IL-17 and/or IL-10. Monophasic EAU presented rising numbers of cells expressing IFN-γ and IL-17 (Th1/Th17) and cells expressing IL-10 or Foxp3. During relapsing uveitis an increase of intraocular IFN-γ+ cells and a concomitant decrease of IL-17+ cells was detected, while IL-10+ populations remained stable. Foxp3+ cells and cells expressing IL-10, even in combination with IFN-γ or IL-17, increased during the resolution of monophasic EAU, suggesting a regulatory role for these T cells. In general, cells producing multiple cytokines increased in monophasic and decreased in relapsing EAU. The distinct appearance of certain intraocular populations with characteristics of regulatory cells points to a differential influence of the ocular environment on T cells that induce acute and monophasic or relapsing disease. Here we provide evidence that different autoantigens can elicit distinct and differently regulated immune responses. IFN-γ, but not IL-17 seems to be the key player in relapsing-remitting uveitis, as shown by increased, synchronized relapses after intraocular application of IFN-γ. We demonstrated dynamic changes of the cytokine pattern during monophasic and relapsing-remitting disease with strongly increasing IL-10 expression in intraocular T cells during monophasic uveitis.  相似文献   

8.
IL-17-producing CD4+ T helper 17 (Th17) cells are pathogenic in a range of human autoimmune diseases and corresponding animal models. We now demonstrate that such T cells infiltrating the target organ during the induction of experimental autoimmune encephalomyelitis (EAE) and experimental autoimmune uveoretinitis (EAU) specifically express NR4A2. Further, we reveal a critical involvement of NR4A2 in Th17 cell functions and Th17 cell-driven autoimmune diseases. When NR4A2 expression was blocked with siRNA, full Th17 differentiation was prevented in vitro: although cells expressed the master Th17 regulator, RORγt, they expressed reduced levels of IL-23R and were unable to produce IL-17 and IL-21. Notably, Th17 differentiation in the absence of NR4A2 was restored by exogenous IL-21, indicating that NR4A2 controls full maturation of Th17 cells via autocrine IL-21 signalling. Preventing NR4A2 expression in vivo by systemic treatment with NR4A2-specific siRNA also reduced Th17 effector responses and furthermore protected mice from EAE induction. In addition, the lack of disease was associated with a reduction in autocrine IL-21 production and IL-23R expression. Similar modulation of NR4A2 expression was also effective as an intervention, reversing established autoimmune responses and ameliorating clinical disease symptoms. Thus, NR4A2 appears to control Th17 differentiation and so plays an essential role in the development of Th17-mediated autoimmune disease. As NR4A2 is also upregulated during human autoimmune disease, targeting NR4A2 may provide a new therapeutic approach in treating autoimmune disease.  相似文献   

9.

Purpose

It has been shown that IL-9 plays a proinflammatory role in the pathogenesis of certain autoimmune diseases. This study was designed to investigate the possible role of IL-9 in the development of experimental autoimmune uveoretinitis (EAU) and the effect of IFN-β on its expression.

Methods

EAU was induced in B10RIII mice by immunization with interphotoreceptor retinoid-binding protein peptide 161–180 (IRBP161–180). IFN-β was administered subcutaneously to IRBP161–180 immunized mice every other day from day one before immunization to the end of the study. Splenocytes and draining lymph node (DLN) cells from EAU mice or control mice or EAU mice treated with IFN-β or PBS were stimulated with anti-CD3/CD28 or IRBP161–180 for 3 days. Naïve T cells cultured under Th1 or Th17 polarizing conditions were incubated in the presence or absence of IFN-β for 4 days. Effector/memory T cells were activated by anti-CD3/CD28 in the presence or absence of IFN-β for 3 days. IFN-β-treated monocytes were cocultured with naïve T cells or effector/memory T cells for 3 days. Culture supernatants were collected and IL-9 was detected by ELISA.

Results

IL-9 expression in splenocytes and DLN cells was increased in EAU mice during the inflammatory phase and returned back to lower levels during the recovery phase. IFN-β in vivo treatment significantly inhibited EAU activity in association with a down-regulated expression of IL-9. In vitro polarized Th1 and Th17 cells both secreted IL-9 and the addition of IFN-β suppressed production of IL-9 by both Th subsets. Beside its effect on polarized Th cells, IFN-β also suppressed the secretion of IL-9 by effector/memory T cells. However, IFN-β-treated monocytes had no effect on the production of IL-9 when cocultured with naïve or effector/memory T cells.

Conclusion

IL-9 expression is increased during EAU which could be suppressed by IFN-β.  相似文献   

10.
Hosts infected with Fasciola hepatica experience immunosuppression during the acute and chronic phases of the disease. This immunosuppression may allow parasite survival in the face of an ongoing immune response. In bovine hosts early IL-4 and continued IgG1 production is one of the few remaining features of the characteristic type 0/2 helper (Th0/2) response present in the chronic stage of disease. Here we demonstrate elevated levels of parasite-specific, in vitro peripheral blood mononuclear cell (PBMC)-derived transforming growth factor (TGF)-β1 from the early phases of infection and increasing levels of IL-10 as the infection becomes chronic. In vitro neutralisation of these cytokines during culture of PBMCs from experimentally-infected cattle increased IL-4 and IFN-γ production in response to parasite-specific and non-specific stimulation. At 4 weeks p.i. neutralisation of TGF-β results in an increase in parasite driven IL-4, while also having a greater role, compared with IL-10, in influencing specific and non-specific IFN-γ. At 12 weeks p.i. ex vivo parasite driven IL-4 was not restored by inhibiting either IL-10 or TGF-β. However IL-10 influenced both parasite-specific and non-specific IFN-γ production at this time. This highlights the roles of IL-10 and TGF-β in fasciolosis, however the cellular sources of these have yet to be defined. This suggests that suppression of IFN-γ production by parasite molecules occurs during infection and it is possible that the suppression of IFN-γ production may mediate parasite survival in this disease.  相似文献   

11.
12.

Background

Chagas disease is a neglected disease caused by the intracellular parasite Trypanosoma cruzi. Around 30% of the infected patients develop chronic cardiomyopathy or megasyndromes, which are high-cost morbid conditions. Immune response against myocardial self-antigens and exacerbated Th1 cytokine production has been associated with the pathogenesis of the disease. As IL-17 is involved in the pathogenesis of several autoimmune, inflammatory and infectious diseases, we investigated its role during the infection with T. cruzi.

Methodology/Principal Findings

First, we detected significant amounts of CD4, CD8 and NK cells producing IL-17 after incubating live parasites with spleen cells from normal BALB/c mice. IL-17 is also produced in vivo by CD4+, CD8+ and NK cells from BALB/c mice on the early acute phase of infection. Treatment of infected mice with anti-mouse IL-17 mAb resulted in increased myocarditis, premature mortality, and decreased parasite load in the heart. IL-17 neutralization resulted in increased production of IL-12, IFN-γ and TNF-α and enhanced specific type 1 chemokine and chemokine receptors expression. Moreover, the results showed that IL-17 regulates T-bet, RORγt and STAT-3 expression in the heart, showing that IL-17 controls the differentiation of Th1 cells in infected mice.

Conclusion/Significance

These results show that IL-17 controls the resistance to T. cruzi infection in mice regulating the Th1 cells differentiation, cytokine and chemokine production and control parasite-induced myocarditis, regulating the influx of inflammatory cells to the heart tissue. Correlations between the levels of IL-17, the extent of myocardial destruction, and the evolution of cardiac disease could identify a clinical marker of disease progression and may help in the design of alternative therapies for the control of chronic morbidity of chagasic patients.  相似文献   

13.
Interleukin (IL)-12 and IL-23 are composite cytokines consisting of p35/p40 and p19/p40, respectively, which signal via the common IL-12 receptor β1 (IL-12Rβ1) and the cytokine-specific receptors IL-12Rβ2 and IL-23R. Previous data showed that the p40 component interacts with IL-12Rβ1, whereas p19 and p35 subunits solely bind to IL-23R and IL-12Rβ2, resulting in tetrameric signaling complexes. In the absence of p19 and p35, p40 forms homodimers and may induce signaling via IL-12Rβ1 homodimers. The critical amino acids of p19 and p35 required for binding to IL-23R and IL-12Rβ2 are known, and two regions of p40 critical for binding to IL-12Rβ1 have recently been identified. In order to characterize the involvement of the N-terminal region of p40 in binding to IL-12Rβ1, we generated deletion variants of the p40-p19 fusion cytokine. We found that an N-terminal deletion variant missing amino acids M23 to P39 failed to induce IL-23-dependent signaling and did not bind to IL-12Rβ1, whereas binding to IL-23R was maintained. Amino acid replacements showed that p40W37K largely abolished IL-23-induced signal transduction and binding to IL-12Rβ1, but not binding to IL-23R. Combining p40W37K with D36K and T38K mutations eliminated the biological activity of IL-23. Finally, homodimeric p40D36K/W37K/T38K did not interact with IL-12Rβ1, indicating binding of homodimeric p40 to IL-12Rβ1 is comparable to the interaction of IL-23/IL-12 and IL-12Rβ1. In summary, we have defined D36, W37, and T38 as hotspot amino acids for the interaction of IL-12/IL-23 p40 with IL-12Rβ1. Structural insights into cytokine–cytokine receptor binding are important to develop novel therapeutic strategies.  相似文献   

14.
CD4 T cells acquire functional properties including cytokine production upon antigenic stimulation through the T cell receptor (TCR) and differentiate into T helper (Th) cells. Th1 cells produce interferon (IFN)-γ and Th2 cells produce interleukin (IL)-4. Th1 and 2 cells utilize IFN-γ and IL-4 for further maturation and maintenance, respectively. Promyelocytic leukemia zinc finger (PLZF)-expressing invariant natural killer T (iNKT) cells develop in the thymus and acquire functional ability to produce IL-4 and IFN-γ in the thymus in the absence of antigenic stimulation. In response to antigenic stimulation, iNKT cells rapidly produce IFN-γ and IL-4. However, it is still unknown as to whether iNKT cells require these cytokines for maturation or survival in vivo. In this study, using IL-4- and IL-4 receptor- (IL-4R) deficient mice, we demonstrate that IL-4 as well as IL-4R expression is dispensable for the development, function and maintenance of iNKT cells.  相似文献   

15.

Background

Chronic obstructive pulmonary disease (COPD) is an inflammatory disorder marked by relative resistance to steroids. The IL-17 superfamily, which mediates cross-talk between the adaptive and innate immune systems, has been associated with diminished responses to steroids. Increasing evidence supports elevated IL-17 expression in the lung of COPD subjects. However, whether cells of the immune system (systemic) and/or local lung cells are contributing to the elevated IL-17 remains unclear. To address this issue, we utilized a human parenchymal lung tissue explant culture system with cigarette smoke exposure to investigate the expression of IL-17 and the mechanisms involved.

Methods

Parenchymal lung tissue removed from 10 non-COPD and 8 COPD patients was sectioned and cultured with different concentrations of cigarette smoke extract (CSE) for 3 or 6 hours. Tissue viability was evaluated by LDH (lactate dehydrogenase) in culture supernatants. Western blot and real-time PCR were performed to evaluate IL-17A/F expression. To investigate the mechanisms, pharmacological inhibitors for MAPK p38, ERK1/2, NF-κB and PI3K pathways were added into the culture media.

Results

No tissue damage was observed after the cigarette smoke exposure for 3 h or 6 h compared with the control media. At the protein level, the expression of both IL-17A (2.4 ± 0.6 fold) and IL-17 F (3.7 ± 0.7 fold) in the tissue from non-COPD subjects was significantly increased by 5% of CSE at 3 h. For COPD subjects, IL-17A/F expression were significantly increased only at 6 h with 10% of CSE (IL-17A: 4.2 ± 0.8 fold; IL-17 F: 3.3 ± 0.8 fold). The increased expression of IL-17A/F is also regulated at the mRNA level. The inhibitors for NF-κB and PI3K pathways significantly inhibited CSE-induced IL-17A/F expression from lung tissue of non-COPD subjects.

Conclusions

We found the evidence that the expression of both IL-17A and IL-17 F is increased by the cigarette smoke exposure in explants from both non-COPD and COPD subjects, supporting that local lung cells contribute IL-17 production. The elevated IL-17A/F expression is dependent on NF-κB and PI3K pathways. These observations add to the growing evidence which suggests that Th17 cytokines play a significant role in COPD.  相似文献   

16.
17.
Modification of the innate immune cell environment has recently been recognized as a viable treatment strategy for reducing autoimmune disease pathology. MIS416 is a microparticulate immune response modifier that targets myeloid cells, activating cytosolic receptors NOD2 and TLR9, and has completed a phase 1b/2a trial for the treatment of secondary progressive multiple sclerosis. Using a mouse model of multiple sclerosis, we are investigating the pathways by which activation of TLR9 and NOD2 may modify the innate immune environment and the subsequent T cell-mediated autoimmune responses. We have found that MIS416 has profound effects on the Th subset balance by depressing antigen-specific Th1, Th17, and Th2 development. These effects coincided with an expansion of specific myeloid subpopulations and increased levels of MIS416-stimulated IFN-γ by splenocytes. Additionally, systemic IFN-γ serum levels were enhanced and correlated strongly with disease reduction, and the protective effect of MIS416 was abrogated in IFN-γ-deficient animals. Finally, treatment of secondary progressive MS patients with MIS416 similarly elevated the levels of IFN-γ and IFN-γ–associated proteins in the serum. Together, these studies demonstrate that administration of MIS416, which targets innate cells, reshapes autoimmune T cell responses and leads to a significant reduction in CNS inflammation and disease.  相似文献   

18.
Zhang C  Zhang J  Yang B  Wu C 《Cytokine》2008,42(3):345-352
Recent evidence from several studies indicated that IL-17-producing Th17 cells can represent the key effector cells in the induction and development of autoimmune disorders. Cyclosporine A (CsA) is a commonly used immunosuppressant to treat lots of autoimmune diseases including rheumatoid arthritis (RA). Here, we demonstrated that PBMCs and purified CD4+ T cells from healthy individuals and patients with RA could be induced to produce large amounts of IL-17 after stimulation with anti-CD3 plus anti-CD28 mAbs. Phenotypic analysis indicated that the majority of IL-17-producing cells were Th17 cells with memory phenotype. The addition of CsA into cell cultures significantly inhibited the IL-17 production by Th17 cells at protein and at mRNA levels. Compared to the PBMCs from normal individuals, PBMCs from the patients with RA produced higher levels of IL-17 that was also significantly inhibited by CsA both at protein and at mRNA levels. The mechanism might be the effect of CsA on the T cells activation because the expression of CD69 and CD25 molecules on T cells was markedly reduced in the presence of CsA. Taken together, these results demonstrated that CsA suppressed the IL-17 production and inhibited the Th17 cells differentiation from both healthy individuals and patients with RA.  相似文献   

19.
Interleukin 17 (IL-17), produced mainly by T helper 17 (Th17) cells, is increasingly recognized as a key regulator in various autoimmune diseases, including human multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Although several microRNAs (miRNAs) with aberrant expression have been shown to contribute to the pathogenesis of MS and EAE, the mechanisms underlying the regulation of abnormal miRNA expression in astrocytes upon IL-17 stimulation remain unclear. In the present study, we detected the changes of miRNA expression profiles both in the brain tissue of EAE mice and in cultured mouse primary astrocytes stimulated with IL-17 and identified miR-873 as one of the co-up-regulated miRNAs in vivo and in vitro. The overexpression of miR-873, demonstrated by targeting A20 (TNFα-induced protein 3, TNFAIP3), remarkably reduced the A20 level and promoted NF-κB activation in vivo and in vitro as well as increasing the production of inflammatory cytokines and chemokines (i.e. IL-6, TNF-α, MIP-2, and MCP-1/5). More importantly, silencing the endogenous miR-873 or A20 gene with lentiviral vector of miR-873 sponge (LV-miR-873 sponge) or short hairpin RNA (shRNA) of A20 (LV-A20 shRNA) in vivo significantly lessened or aggravated inflammation and demyelination in the central nervous system (CNS) of EAE mice, respectively. Taken together, these findings indicate that miR-873 induced by IL-17 stimulation promotes the production of inflammatory cytokines and aggravates the pathological process of EAE mice through the A20/NF-κB pathway, which provides a new insight into the mechanism of inflammatory damage in MS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号