首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A newly designed molecularly imprinted polymer (MIP) material was fabricated and successfully utilized as recognition element to develop a quantum dots (QDs) based MIP-coated composite for selective recognition of the template cytochrome c (Cyt). The composites were synthesized by sol-gel reaction (imprinting process). The imprinting process resulted in an increased affinity of the composites toward the corresponding template. The fluorescence of MIP-coated QDs was stronger quenched by the template versus that of non-imprinted polymer (NIP)-coated QDs, which indicated the composites could recognize the corresponding template. The results of specific experiments further exhibited the recognition ability of the composites. Under optimum conditions, the linear range for Cyt is from 0.97 μM to 24 μM, and the detection limit is 0.41 μM. The new composites integrated the high selectivity of molecular imprinting technology and fluorescence property of QDs and could convert the specific interactions between imprinted cavities and corresponding template to the obvious changes of fluorescence signal. Therefore, a simple and selective sensing system for protein recognition has been realized.  相似文献   

2.
Molecular chemosensors have found increased utility in the development of precise and sensitive detection devices. However, chemosensors that report binding via fluorescence through UV excitation are susceptible to destruction via photodegradation of the fluorophore. In the following report, the dansyl fluorophore in a previously reported chemosensor for peptides is replaced with an acridone derivative that is highly resistant to photobleaching. Its spectral properties are closely matched to those of the original dansyl fluorophore, and although quite structurally dissimilar, the new more photostable acridone chemosensor analogue exhibits only minor differences in binding/detection characteristics.  相似文献   

3.
Fluorescent chemosensors of protein kinase activity provide a continuous, high-throughput sensing format for the study of the roles of these enzymes, which are crucial for regulating cellular function. Specifically, chemosensors using the nonnatural amino acid, Sox, and physiological Mg(2+) levels report phosphorylation with dramatic fluorescence changes that are amenable to real-time and high-throughput analysis. In this article, we report 15 probes for a total of six distinct serine/threonine kinases with large fluorescence increases and good reactivity toward the target kinase. The sensing mechanism is detailed, and the optimal sensing motif is determined. These versatile and powerful sensors provide tools for researchers studying the roles of the targeted kinases in signal transduction, and the design principles provide guidelines for the generation of future fluorescent chemosensors for any serine/threonine kinase.  相似文献   

4.
The development of fluorescent sensors for organic molecules is of great practical importance in chemical, biological, and pharmaceutical sciences. Using -tryptophan as an example, we have studied a new way of making polymeric fluorescent sensors using template polymerization or molecular imprinting techniques. The fluorescent polymers were prepared using functional monomers with a fluorescent probe attached to it. The fluorescence of this polymer could be quenched by 4-nitrobenzaldehyde. Addition of the template molecules, -tryptophan, increased the fluorescence intensity of the imprinted polymer/quencher mixture in a concentration-dependent fashion, presumably through the displacement of the quencher from the binding sites by -tryptophan. This fluorescence intensity change upon mixing with -tryptophan allows the binding event to be detected easily. The sensor also exhibited enantioselectivity for the template molecules. For example, the effect of -tryptophan on the fluorescence intensity of the polymer is about 70% that of its -enantiomer. Furthermore, the effect of -phenylalanine and -alanine on the fluorescence intensity change is much smaller than that of -tryptophan. Because the approach used does not require the de novo design of the complementary binding site and does not rely on any specific structural features of the template molecule or prior knowledge of its three-dimensional structure, the same principle could potentially be useful for the future construction of practical fluorescent sensors for many other compounds.  相似文献   

5.
Herein we present a simple, cost-effective TopDown (TD) gene synthesis method that eliminates the interference between the polymerase chain reactions (PCR) assembly and amplification in one-step gene synthesis. The method involves two key steps: (i) design of outer primers and assembly oligonucleotide set with a melting temperature difference of >10°C and (ii) utilization of annealing temperatures to selectively control the efficiencies of oligonucleotide assembly and full-length template amplification. In addition, we have combined the proposed method with real-time PCR to analyze the step-wise efficiency and the kinetics of the gene synthesis process. Gel electrophoresis results are compared with real-time fluorescence signals to investigate the effects of oligonucleotide concentration, outer primer concentration, stringency of annealing temperature, and number of PCR cycles. Analysis of the experimental results has led to insights into the gene synthesis process. We further discuss the conditions for preventing the formation of spurious DNA products. The TD real-time gene synthesis method provides a simple and efficient method for assembling fairly long DNA sequence, and aids in optimizing gene synthesis conditions. To our knowledge, this is the first report that utilizes real-time PCR for gene synthesis.  相似文献   

6.
In addition to its central role as a template for replication and translation, the viral plus-strand RNA genome also has nontemplate functions, such as recruitment to the site of replication and assembly of the viral replicase, activities that are mediated by cis-acting RNA elements within viral genomes. Two noncontiguous RNA elements, RII(+)-SL (located internally in the tombusvirus genome) and RIV (located at the 3'-terminus), are involved in template recruitment into replication and replicase assembly; however, the importance of each of these RNA elements for these two distinct functions is not fully elucidated. We used an in vitro replicase assembly assay based on yeast cell extract and purified recombinant tombusvirus replication proteins to show that RII(+)-SL, in addition to its known requirement for recruitment of the plus-strand RNA into replication, is also necessary for assembly of an active viral replicase complex. Additional studies using a novel two-component RNA system revealed that the recruitment function of RII(+)-SL can be provided in trans by a separate RNA and that the replication silencer element, located within RIV, defines the template that is used for initiation of minus-strand synthesis. Collectively, this work has revealed new functions for tombusvirus cis-acting RNA elements and provided insights into the pioneering round of minus-strand synthesis.  相似文献   

7.
The bacteriophage T4 DNA polymerase forms fluorescent complexes with DNA substrates labeled with 2-aminopurine (2AP) in the template strand; the fluorescence intensity depends on the position of 2AP. When preexonuclease complexes are formed, complexes at the crossroads between polymerase and exonuclease complexes, 2AP in the +1 position in the template strand is fully free of contacts with the adjacent bases as indicated by high fluorescence intensity and a long fluorescence lifetime of about 10.9 ns. Fluorescence intensity decreases for 2AP in the template strand when the primer end is transferred to the exonuclease active center to form exonuclease complexes, which indicates a change in DNA conformation; 2AP can now interact with adjacent bases, which quenches fluorescence emission. Some polymerase-induced base unstacking for 2AP in the template strand in exonuclease complexes is observed but is restricted primarily to the n and +1 positions, which indicates that the DNA polymerase holds the template strand in a way that forces base unstacking only in a small region near the primer terminus. A hold on the template strand will help to maintain the correct alignment of the template and primer strands during proofreading. Acrylamide quenches 2AP fluorescence in preexonuclease and in exonuclease complexes formed with DNA labeled with 2AP in the template strand, which indicates that the template strand remains accessible to solvent in both complexes. These studies provide new information about the conformation of the template strand in exonuclease complexes that is not available from structural studies.  相似文献   

8.
Two new rhodamine‐based fluorescent probes were synthesized and characterized by NMR, high resolution mass spectrometer (HR‐MS) and IR. The probes displayed a high selectivity for Fe3+ among environmentally and biologically relevant metal ions in aqueous solution (CH3OH–H2O = 3 : 2, v/v). The significant changes in the fluorescence color could be used for naked‐eye detection. Job's plot, IR and 1H NMR indicated the formation of 1: 1 complexes between sensor 1 and Fe3+. The reversibility establishes the potential of both probes as chemosensors for Fe3+ detection. The probe showed highly selectivity in aqueous solution and could be used over the pH range between 5 and 9. A simple paper test‐strip system for the rapid monitoring of Fe3+ was developed, indicating its convenient use in environmental samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Initiation of bacteriophage Mu DNA replication by transposition requires the disassembly of the transpososome that catalyses strand exchange and the assembly of a replisome promoted by PriA, PriB, PriC and DnaT proteins, which function in the host to restart stalled replication forks. Once the molecular chaperone ClpX weakens the very tight binding of the transpososome to the Mu ends, host disassembly factors (MRFalpha-DF) promote the dissociation of the transpososome from the DNA template and the assembly of a new nucleoprotein complex. Prereplisome factors (MRFalpha-PR) further alter the complex, allowing PriA binding and loading of major replicative helicase DnaB onto the template promoted by the restart proteins. MRFalpha-PR is essential for DnaB loading by restart proteins even on the deproteinized Mu fork whereas MRFalpha-DF is not required on the deproteinized template. When the transition from transpososome to replisome was reconstituted using MRFalpha-DF and MRFalpha-PR, initiation of Mu DNA replication was strictly dependent upon added PriC and PriA helicase. In contrast, initiation on the deproteinized template was predominantly dependent upon PriB and did not require PriA's helicase activity. The results indicate that transition mechanisms beginning with the transpososome disassembly can determine the pathway of replisome assembly by restart proteins.  相似文献   

10.
We have developed a new multicolor fluorescent sensing system to detect multiple analytes in one pot. This design is based on the noncovalent assembly of dye-labeled aptamer with single-walled carbon nanotubes (SWNTs) by π-stacking between the nucleotide bases and the SWNTs sidewalls. In the presence of the targets, the aptamer-target binding separates the assembly of dye-labeled aptamers and SWNTs, resulting in the restoration of fluorescence signal of the dye labeled with aptamers. As a proof of concept, we demonstrate that a two-color fluorescent system can simultaneously and selectively detect two targets (thrombin and adenosine triphosphate) in a single solution. Since the method is mix-and-detect manner, the present strategy is simple and cost-effective.  相似文献   

11.
The organization and proper assembly of proteins to the primer-template junction during DNA replication is essential for accurate and processive DNA synthesis. DNA replication in RB69 (a T4-like bacteriophage) is similar to those of eukaryotes and archaea and has been a prototype for studies on DNA replication and assembly of the functional replisome. To examine protein-protein interactions at the DNA replication fork, we have established solution conditions for the formation of a discrete and homogeneous complex of RB69 DNA polymerase (gp43), primer-template DNA, and RB69 single-stranded DNA-binding protein (gp32) using equilibrium fluorescence and light scattering. We have characterized the interaction between DNA polymerase and single-stranded DNA-binding protein and measured a 60-fold increase in the overall affinity of RB69 single-stranded DNA-binding protein (SSB) for template strand DNA in the presence of DNA polymerase that is the result of specific protein-protein interactions. Our data further suggest that the cooperative binding of the RB69 DNA polymerase and SSB to the primer-template junction is a simple but functionally important means of regulatory assembly of replication proteins at the site of action. We have also shown that a functional domain of RB69 single-stranded DNA-binding protein suggested previously to be the site of RB69 DNA polymerase-SSB interactions is dispensable. The data from these studies have been used to model the RB69 DNA polymerase-SSB interaction at the primer-template junction.  相似文献   

12.
We report the multi-functionalized cubic silsesquioxane (POSS) as the ratiometric multimodal chemosensors for monitoring solvent polarity with fluorescence and (19)F NMR. The alteration of the dispersion state of the modified POSS by changing solvent polarity can be reflected into the orthogonal signal responses for the fluorescence and (19)F NMR. In addition, the ratiometric dual monitoring for the enzymatic reaction was performed using the POSS-based chemosensor.  相似文献   

13.
Escherichia coli DNA polymerase III holoenzyme is a multisubunit composite containing the beta sliding clamp and clamp loading gamma complex. The gamma complex requires ATP to load beta onto DNA. A two-color fluorescence spectroscopic approach was utilized to study this system, wherein both assembly (red fluorescence; X-rhodamine labeled DNA anisotropy assay) and ATP hydrolysis (green fluorescence; phosphate binding protein assay) were simultaneously measured with millisecond timing resolution. The two temporally correlated stopped-flow signals revealed that a preassembled beta. gamma complex composite rapidly binds primer/template DNA in an ATP hydrolysis independent step. Once bound, two molecules of ATP are rapidly hydrolyzed (approximately 34 s(-1)). Following hydrolysis, gamma complex dissociates from the DNA ( approximately 22 s(-1)). Once dissociated, the next cycle of loading is severely compromised, resulting in steady-state ATP hydrolysis rates with a maximum of only approximately 3 s(-1). Two single-site beta dimer interface mutants were examined which had impaired steady-state rates of ATP hydrolysis. The pre-steady-state correlated kinetics of these mutants revealed a pattern essentially identical to wild type. The anisotropy data showed that these mutants decrease the steady-state rates of ATP hydrolysis by causing a buildup of "stuck" binary-ternary complexes on the primer/template DNA.  相似文献   

14.
The ribonucleoprotein telomerase holoenzyme is minimally composed of a catalytic subunit, hTERT, and its associated template RNA component, hTR. We have previously found two additional components of the telomerase holoenzyme, the chaperones p23 and heat shock protein (hsp) 90, both of which are required for efficient telomerase assembly in vitro and in vivo. Both hsp90 and p23 bind specifically to hTERT and influence its proper assembly with the template RNA, hTR. We report here that the hsp70 chaperone also associates with hTERT in the absence of hTR and dissociates when telomerase is folded into its active state, similar to what occurs with other chaperone targets. Our data also indicate that hsp90 and p23 remain associated with functional telomerase complexes, which differs from other hsp90-folded enzymes that require only a transient hsp90.p23 binding. Our data suggest that components of the hsp90 chaperone complex, while required for telomerase assembly, remain associated with active enzyme, which may ultimately provide critical insight into the biochemical properties of telomerase assembly.  相似文献   

15.
We have devised a simple high-throughput screening compatible fluorescence polarization-based assay that can be used to detect the elongation activity of nucleic acid polymerase enzymes. The assay uses a 5' end-labeled template strand and relies on an increase in the polarization signal from the fluorescent label as it is drawn in toward the active site by the action of the enzyme. If the oligonucleotide is sufficiently short, the fluorescence polarization signal can also be used to detect binding prior to elongation activity. We refer to the nucleic acid substrate as a polymerase elongation template element (PETE) and demonstrate the utility of this PETE assay in a microtiter plate format using the RNA-dependent RNA polymerase from poliovirus to extend a self-priming hairpin RNA. The PETE assay provides an efficient method for screening compounds that may inhibit the nucleic acid binding or elongation activities of polymerases.  相似文献   

16.
Bacteriophage Mu DNA synthesis is initiated during transposition by replication restart proteins PriA, DnaT and either PriB or PriC. The PriA-PriC pathway requires PriA's helicase activity and other host factors that promote the orderly transition from transpososome to replisome on the Mu DNA template. The host factor MRFalpha-PR, which removes obstacles to PriA binding and promotes the PriA-PriC pathway, was identified to be the translation initiation factor IF2. Purified isoform IF2-2, which is truncated at the N-terminal end, had full MRFalpha-PR activity whereas full-length IF2-1 was inactive. IF2-2 was bound to the Mu DNA template specifically at the step for prereplisome assembly. Prior steps in the orderly transition from transpososome were essential to promote efficient IF2-2 binding. Moreover, PriA helicase activity was subsequently needed to displace IF2-2, remodelling the template to permit replisome assembly. IF2's role in the transition mechanism as well as its function as G protein and translation factor suggest its potential to regulate DNA synthesis by this pathway.  相似文献   

17.
Microsomal triglyceride transfer protein (MTP) is critical for the assembly and secretion of apolipoprotein B (apoB) lipoproteins. Its activity is classically measured by incubating purified MTP or cellular homogenates with donor vesicles containing radiolabeled lipids, precipitating the donor vesicles, and measuring the radioactivity transferred to acceptor vesicles. Here, we describe a simple, rapid, and sensitive fluorescence assay for MTP. In this assay, purified MTP or cellular homogenates are incubated with small unilamellar donor vesicles containing quenched fluorescent lipids (triacylglycerols, cholesteryl esters, and phospholipids) and different types of acceptor vesicles made up of phosphatidylcholine or phosphatidylcholine and triacylglycerols. Increases in fluorescence attributable to MTP-mediated lipid transfer are measured after 30 min. MTP's lipid transfer activity could be assayed using apoB lipoproteins but not with high density lipoproteins as acceptors. The assay was used to measure MTP activity in cell and tissue homogenates. Furthermore, the assay was useful in studying the inhibition of the cellular as well as purified MTP by its antagonists. This new method is amenable to automation and can be easily adopted for large-scale, high-throughput screening.  相似文献   

18.
There is a need for simple and inexpensive methods for genotyping single nucleotide polymorphisms (SNPs) and short insertion/deletion variations (InDels). In this work, I demonstrate that a single-stranded DNA (ssDNA) binding dye can be used as a donor fluorophore for fluorescence resonance energy transfer (FRET). The method presented is a homogenous assay in which detection is based on the FRET from the fluorescence of the ssDNA dye bound to the unmodified detection primer to the fluorescent nucleotide analog incorporated into this detection primer during cyclic template directed primer extension reaction. Collection of the FRET emission spectrum with a scanning fluorescence spectrophotometer allows powerful data analysis. The fluorescence emission signal is modified by the optical properties of the assay vessel. This seems to be a completely neglected parameter. By proper selection of the optical properties of the assay plate one can improve the detection of the fluorescence emission signal.  相似文献   

19.
DNA polymerases with intrinsic proofreading activity interact with DNA primer/templates in two distinct modes, corresponding to the complexes formed during the 5'-3' polymerization or 3'-5' editing of a nascent DNA chain. Thermodynamic measurements designed to quantify the energetic contributions of individual DNA-protein contacts in either the polymerizing or editing complexes are complicated by the fact that both species exist in solution and are not resolved in conventional DNA-protein binding assays. To overcome this problem, we have developed a new binding analysis that combines information from steady-state and time-resolved fluorescence experiments and uses the Klenow fragment of Escherichia coli DNA polymerase I (KF) and fluorescently labeled primer/template oligonucleotides as a model polymerase-DNA system. Steady-state fluorescence titrations are used to evaluate the overall affinity of KF for the primer/template, while time-resolved fluorescence anisotropy is used to quantify the equilibrium fractions of the primer/template bound in the polymerizing and editing modes. From a combined analysis of both data, the equilibrium constant and hence standard free energy change associated with each binding mode can be obtained unequivocally. This method is initially used to determine the equilibrium constants describing binding of a correctly base-paired primer/template to the 5'-3' polymerase and 3'-5' exonuclease sites of KF. It is then extended to quantify the extent to which these parameters are affected by the introduction of mismatches into the primer/template, and by rearrangement of specific side-chains in the exonuclease domain of the protein. While these perturbants were originally designed to demonstrate the utility of our new approach, they are also relevant in their own right since they have helped identify some hitherto unknown determinants of polymerase fidelity.  相似文献   

20.
New methods to quantify protein kinase activities directly from complex cellular mixtures are critical for understanding biological regulatory pathways. Herein, a fluorescence-based chemosensor strategy for the direct measurement of kinase activities in crude mammalian cell lysates is described. We first designed a new fluorescent peptide reporter substrate for each target kinase. These kinase chemosensors were readily phosphorylated by recombinant target enzyme and underwent a several-fold fluorescence increase upon phosphorylation. Then, using unfractionated cell lysates, a homogeneous kinase assay was developed that was reproducible, linear and highly preferential for monitoring changes in cellular activity of the target kinase. The general protocol was developed for the kinase Akt and then easily extended to measure protein kinase A (PKA) and mitogen-activated protein kinase-associated protein kinase 2 (MK2) activities. This assay platform is immediately useful for studying protein kinase signaling in crude cellular extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号