首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The trafficking of lymphocyte populations is a complex process controlled by a vast array of molecules. In this process, cells must be able to sense small changes in chemoattractant gradients. Migration through a chemotactic gradient probably employs an on-off mechanism in which chemokine receptor desensitization, internalization, and recycling may be important steps. This multistep process requires the coordinated action of many factors, including G protein-coupled receptor kinases, arrestins, clathrin, and GTP-hydrolyzing proteins such as dynamin. In this report, we show that RANTES and its derivative, aminooxypentane (AOP)-RANTES, a potent RANTES antagonist as well as an inhibitor of HIV-1 infection, both promote CCR5 desensitization involving G protein-coupled receptor kinases-2 and beta-arrestin equally well. An important difference between the two molecules is that (AOP)-RANTES is more efficient than RANTES in promoting Ser/Thr phosphorylation of the receptor and association of G protein-coupled receptor kinases-2, beta-arrestin, and clathrin to the CCR5. After stimulation with either ligand, we observe rapid, transient association of dynamin to CCR5, implicating this protein in receptor sensitization, but this association is faster and longer-lasting following (AOP)-RANTES stimulation. In summary, we show that chemokine receptor internalization takes place through the formation of clathrin vesicles and involves dynamin activity. We provide compelling evidence that the differences between RANTES and (AOP)-RANTES in G alpha i activation condition subsequent signaling events, including internalization and receptor recycling.  相似文献   

2.
3.
Endocytosis and recycling of the HIV coreceptor CCR5   总被引:13,自引:0,他引:13  
The chemokine receptor CCR5 is a cofactor for the entry of R5 tropic strains of human immunodeficiency viruses (HIV)-1 and -2 and simian immunodeficiency virus. Cells susceptible to infection by these viruses can be protected by treatment with the CCR5 ligands regulated on activation, normal T cell expressed and secreted (RANTES), MIP-1alpha, and MIP-1beta. A major component of the mechanism through which chemokines protect cells from HIV infection is by inducing endocytosis of the chemokine receptor. Aminooxypentane (AOP)-RANTES, an NH(2)-terminal modified form of RANTES, is a potent inhibitor of infection by R5 HIV strains. AOP-RANTES efficiently downmodulates the cell surface expression of CCR5 and, in contrast with RANTES, appears to prevent recycling of CCR5 to the cell surface. Here, we investigate the cellular basis of this effect.Using CHO cells expressing human CCR5, we show that both RANTES and AOP-RANTES induce rapid internalization of CCR5. In the absence of ligand, CCR5 shows constitutive turnover with a half-time of 6-9 h. Addition of RANTES or AOP-RANTES has little effect on the rate of CCR5 turnover. Immunofluorescence and immunoelectron microscopy show that most of the CCR5 internalized after RANTES or AOP-RANTES treatment accumulates in small membrane-bound vesicles and tubules clustered in the perinuclear region of the cell. Colocalization with transferrin receptors in the same clusters of vesicles indicates that CCR5 accumulates in recycling endosomes. After the removal of RANTES, internalized CCR5 recycles to the cell surface and is sensitive to further rounds of RANTES-induced endocytosis. In contrast, after the removal of AOP-RANTES, most CCR5 remains intracellular. We show that these CCR5 molecules do recycle to the cell surface, with kinetics equivalent to those of receptors in RANTES-treated cells. However, these recycled CCR5 molecules are rapidly reinternalized. Our results indicate that AOP-RANTES-induced changes in CCR5 alter the steady-state distribution of the receptor and provide the first evidence for G protein-coupled receptor trafficking through the recycling endosome compartment.  相似文献   

4.
N-terminal modifications of the chemokine RANTES bind to C-C chemokine receptor 5 (CCR5) and block human immunodeficiency virus type 1 (HIV-1) infection with greater efficacy than native RANTES. Modified RANTES compounds induce rapid CCR5 internalization and much slower receptor reexpression than native RANTES, suggesting that receptor sequestration is one mode of anti-HIV activity. The rates of CCR5 internalization and reexpression were compared using the potent n-nonanoyl (NNY)-RANTES derivative and CD4(+) T cells derived from donors with different CCR5 gene polymorphisms. NNY-RANTES caused even more rapid receptor internalization and slower reexpression than aminooxypentane (AOP)-RANTES. Polymorphisms in the promoter and coding regions of CCR5 significantly affected the receptor reexpression rate after exposure of cells to NNY-RANTES. These observations may be relevant for understanding the protective effects of different CCR5 genotypes against HIV-1 disease progression.  相似文献   

5.
The N-terminal domain of the chemokine CCL5/regulated upon activation normal T cell expressed and secreted (RANTES) has been shown to be critical for its biological activity on leukocytes. Several N-terminus-modified CCL5/RANTES derivatives, such as N-Terminal truncated CCL5/RANTES, Met-RANTES, and amino-oxypentane (AOP)-RANTES exhibited antagonist or partial agonist functions when investigated on the properties of their receptors CCR1, CCR3, and CCR5. Studying 95 African samples from Cameroon, we found a naturally occurring variant of CCL5/RANTES containing a missense mutation located in the first amino acid of the secreted form (S24F). S24F binds CCR1, CCR3, and CCR5 and triggers receptor down-modulation comparable to CCL5/RANTES. Moreover, in CCR5 positive cells, S24F elicits cellular calcium mobilization equivalent to that obtained with CCL5/RANTES. By contrast, S24F does not provoke any response in CCR1 and CCR3 positive cells. As CCL5/RANTES is able to attract different subtypes of leukocytes into inflamed tissue and intervenes in a wide range of allergic and autoimmune diseases, the discovery of this natural N-terminus-modified CCL5/RANTES analogue exhibiting differential effects on CCL5/RANTES receptors, opens up additional perspectives for therapeutic intervention.Nucleotide sequence data reported is available in the DDBJ/EMBL/GenBank databases under the accession number: DQ230537.  相似文献   

6.
CCR5 is a chemokine receptor used by HIV-1 to enter cells and has recently been found to act as a pathogen associated molecule pattern receptor. Current positive selection for the high frequency of a CCR5-Delta32 allele in humans has been attributed to resistance to HIV, smallpox, and plague infections. Using an intranasal mouse model of Y. pestis infection, we have found that lack of CCR5 does not enhance host resistance to Y. pestis infection and that CCR5-mediated responses might have a protective role. CCR5-/- mice exhibited higher levels of circulating RANTES and MIP-1alpha than those exhibited by wild-type mice at the baseline and throughout the course of Y. pestis infection. High levels of RANTES and MIP-1alpha, which are CCR5 ligands that mediate Natural Killer cell migration, may reflect compensation for the absence of CCR5 signaling.  相似文献   

7.
Chemokines mediate their biological activity through activation of G protein coupled receptors, but most chemokines, including RANTES, are also able to bind glycosaminoglycans (GAGs). Here, we have investigated, by site-directed mutagenesis and chemical acetylation, the role of RANTES basic residues in the interaction with GAGs using surface plasmon resonance kinetic analysis. Our results indicate that (i) RANTES exhibited selectivity in GAGs binding with highest affinity (K(d) = 32.1 nM) for heparin, (ii) RANTES uses the side chains of residues R44, K45, and R47 for heparin binding, and blocking these residues in combination abolished heparin binding. The biological relevance of RANTES-GAGs interaction was investigated in CHO-K1 cells expressing CCR5, CCR1, or CCR3 and the various GAGs that bind RANTES. Our results indicate that the heparin binding site, defined as the 40s loop, is only marginally involved in CCR5 binding and activation, but largely overlaps the CCR1 and CCR3 binding and activation domain in RANTES. In addition, enzymatic removal of cell surface GAGs by glycosidases did not affect CCR5 binding and Ca(2+) response. Furthermore, addition of soluble GAGs inhibited both CCR5 binding and functional response, with a rank of potency similar to that found in surface plasmon resonance experiments. Thus, cell surface GAGs is not a prerequisite for receptor binding or signaling, but soluble GAGs can inhibit the binding and the functional response of RANTES to CCR5 expressing cells. However, the marked selectivity of RANTES for different GAGs may serve, in vivo, to control the concentration of specific chemokines in inflammatory situations and locations.  相似文献   

8.
Chemokine receptors of both the CC and CXC families have been demonstrated to undergo a ligand-mediated homodimerization process required for Ca2+ flux and chemotaxis. We show that, in the chemokine response, heterodimerization is also permitted between given receptor pairs, specifically between CCR2 and CCR5. This has functional consequences, as the CCR2 and CCR5 ligands monocyte chemotactic protein-1 (MCP-1) and RANTES (regulated upon activation, normal T cell-expressed and secreted) cooperate to trigger calcium responses at concentrations 10- to 100-fold lower than the threshold for either chemokine alone. Heterodimerization results in recruitment of each receptor-associated signaling complex, but also recruits dissimilar signaling path ways such as G(q/11) association, and delays activation of phosphatidyl inositol 3-kinase. The consequences are a pertussis toxin-resistant Ca2+ flux and trig gering of cell adhesion rather than chemotaxis. These results show the effect of heterodimer formation on increasing the sensitivity and dynamic range of the chemokine response, and may aid in understanding the dynamics of leukocytes at limiting chemokine concentrations in vivo.  相似文献   

9.

Introduction  

Chemokines and their receptors control immune cell migration during infections as well as in autoimmune responses. A 32 bp deletion in the gene of the chemokine receptor CCR5 confers protection against HIV infection, but has also been reported to decrease susceptibility to rheumatoid arthritis (RA). The influence of this deletion variant on the clinical course of this autoimmune disease was investigated.  相似文献   

10.
陶敏  樊棠怀  徐立中  胡成钰 《遗传》2007,29(12):1519-1524
Branch-Site模型是检测基因序列中单个密码子位点是否具有选择作用的统计学方法。该模型能有效地检测基因在进化历程中是否受到选择作用, 并预测出那些在进化过程中对功能分化有重要贡献的、受正选择作用的密码子位点。趋化因子是一类控制免疫细胞定向迁移的细胞因子, 其功能行使由趋化因子受体介导。该文用Branch-Site模型分析趋化因子及其受体基因家族的分子适应性, 发现只有少数种类基因受到正选择作用, 如RANTES、CCR5等。并预测出一些可能受到正选择作用的位点, 蛋白3D分析显示, 它们均位于趋化因子和相应受体相互作用的结构区域。  相似文献   

11.
It is well established that chemokines have a major role in the stimulation of cell movement on extracellular matrix (ECM) substrates. However, it is also clear that ECM substrates may influence the ability of cells to undergo migration. Using the migration chamber method, we assessed the migratory response of human embryonic kidney-293 (HEK) transfectant cells expressing the CC chemokine receptor 5 (CCR5) (HEK-CCR5) to stimulation by chemokines (macrophage inflamatory protein (MIP)-1alpha, MIP-1beta, and regulated on activation normal-T cell expressed and secreted (RANTES)) on ECM substrates (collagen type I and fibronectin). Using filters coated with collagen (20 microg/mL), results showed that the chemokines differed in their ability to elicit cell movement according to the order MIP-1beta > RANTES MIP-1alpha. In contrast, using filters coated with fibronectin (20 microg/mL), all three chemokines were similar in their ability to stimulate migration of HEK-CCR5 cells. In addition, the migratory response with respect to the concentrations of ECM substrates appeared biphasic: thus, chemokine-stimulated cell movement was inhibited at high ECM concentrations (100 microg/mL). To determine the involvement of beta1 integrins, results showed that the migratory response to chemokine stimulation on collagen was largely inhibited by monoclonal antibody (mAb) to alpha2beta1; however, complete inhibition required a combination of mAbs to alpha1beta1 and alpha2beta1. In comparison, migration on fibronectin was inhibited by mAb to alpha3beta1 and alpha5beta1. Our results suggest that the migratory response to CCR5 stimulation may vary quantitatively with both the CCR5 ligand (MIP-1alpha, MIP-1beta, and RANTES), as well as the nature and concentration of the ECM substrate involved.  相似文献   

12.
To enter its target cells, human immunodeficiency virus (HIV) must interact with CD4 and one of a family of chemokine receptors. CCR5 is widely used by the virus in this context, and its ligands can prevent HIV entry. Amino-terminal modified chemokine variants, in particular AOP-RANTES (aminooxypentane-linked regulated on activation normal T cell expressed and secreted), exhibit enhanced HIV entry inhibition. We have previously demonstrated that a non-allelic isoform of macrophage inflammatory protein (MIP)-1alpha, termed MIP-1alphaP, is the most active naturally occurring inhibitor of HIV entry known. Here we report the properties of a variant of MIP-1alphaP with an AOP group on the amino terminus. We show that, like RANTES, the addition of AOP to MIP-1alphaP enhances its interactions with CCR1 and CCR5, allows more effective internalization of CCR5, and increases the ligand's potency as an inhibitor of HIV entry through CCR5. Importantly, AOP-MIP-1alphaP is about 10-fold more active than AOP-RANTES at inhibiting HIV entry, making it the most effective chemokine-based inhibitor of HIV entry through CCR5 described to date. Surprisingly, the enhanced receptor interactions of AOP-MIP-1alphaP do not translate into increased chemotaxis or coupling to calcium ion fluxes, suggesting that this protein should be viewed as a partial, rather than a full, agonist for CCR1 and CCR5.  相似文献   

13.
RANTES (CCL5) is a chemokine expressed by many hematopoietic and non-hematopoietic cell types that plays an important role in homing and migration of effector and memory T cells during acute infections. The RANTES receptor, CCR5, is a major target of anti-HIV drugs based on blocking viral entry. However, defects in RANTES or RANTES receptors including CCR5 can compromise immunity to acute infections in animal models and lead to more severe disease in humans infected with west Nile virus (WNV). In contrast, the role of the RANTES pathway in regulating T cell responses and immunity during chronic infection remains unclear. In this study, we demonstrate a crucial role for RANTES in the control of systemic chronic LCMV infection. In RANTES−/− mice, virus-specific CD8 T cells had poor cytokine production. These RANTES−/− CD8 T cells also expressed higher amounts of inhibitory receptors consistent with more severe exhaustion. Moreover, the cytotoxic ability of CD8 T cells from RANTES−/− mice was reduced. Consequently, viral load was higher in the absence of RANTES. The dysfunction of T cells in the absence of RANTES was as severe as CD8 T cell responses generated in the absence of CD4 T cell help. Our results demonstrate an important role for RANTES in sustaining CD8 T cell responses during a systemic chronic viral infection.  相似文献   

14.
15.
Chemokines are believed to play a role in the neuropathogenesis of AIDS through their recruitment of neurotoxin-secreting, virally infected leukocytes into the CNS. Levels of chemokines are elevated in brains of patients and macaques with HIV/SIV-induced encephalitis. The chemokine receptors CCR3, CCR5, and CXCR4 are found on subpopulations of neurons in the cortex of human and macaque brain. We have developed an in vitro system using both macaque and human fetal neurons and astrocytes to further investigate the roles of these receptors in neuronal response to inflammation. Here we report the presence of functional HIV/SIV coreceptors CCR3, CCR5, and CXCR4 on fetal human and macaque neurons and CCR5 and CXCR4 on astrocytes immediately ex vivo and after several weeks in culture. Confocal imaging of immunostained neurons demonstrated different patterns of distribution for these receptors, which may have functional implications. Chemokine receptors were shown to respond to their appropriate chemokine ligands with increases in intracellular calcium that, in the case of neurons, required predepolarization with KCl. These responses were blocked by neutralizing chemokine receptor in mAbs. Pretreatment of neural cells with pertussis toxin abolished responses to stromal-derived factor-1alpha, macrophage inflammatory protein-1beta, and RANTES, indicating coupling of CCR5 and CXCR4 to a Gialpha protein, as in leukocytes. Cultured macaque neurons demonstrated calcium flux response to treatment with recombinant SIVmac239 envelope protein, suggesting a mechanism by which viral envelope could affect neuronal function in SIV infection. The presence of functional chemokine receptors on neurons and astrocytes suggests that chemokines could serve to link inflammatory and neuronal responses.  相似文献   

16.
Chemokines are critical for the recruitment of effector immune cells to sites of infection. Mice lacking the chemokine receptor CCR1 have defects in neutrophil trafficking and proliferation. In the present study, we tested the susceptibility of CCR1 knockout mice to infection with the obligate intracellular protozoan parasite Toxoplasma gondii. In comparison with parental wild-type mice, CCR1(-/-) mice exhibited dramatically increased mortality to T. gondii in association with an increased tissue parasite load. No differences were observed in Ag-specific T cell proliferation or in cytokine responses between mutant and wild-type mice. However, the influx of PMNs to the peripheral blood and to the liver were reduced in CCR1(-/-) mice during early infection. Our results suggest that CCR1-dependent migration of neutrophils to the blood and tissues may have a significant impact in controlling parasite replication.  相似文献   

17.
Activated hepatic stellate cells (HSCs) are the main producers of extracellular matrix in the fibrotic liver and are involved in the regulation of hepatic inflammation. The aim of this study was to characterize the role of regulated on activation, normal T-cell expressed, and presumably secreted (RANTES) in activated HSCs. RANTES mRNA and protein secretion were strongly induced after stimulating HSCs with TNF-alpha, IL-1beta, or CD40L. RANTES production was NF-kappaB dependent, because inhibitor-kappaB (IkappaB) superrepressor and dominant-negative IkappaB kinase-2 almost completely blocked RANTES expression. NF-kappaB activation was sufficient to drive RANTES expression as demonstrated by the strong induction of RANTES in HSCs expressing NF-kappaB-inducing kinase. The JNK/activator protein-1 pathway also contributed to RANTES expression as demonstrated by the blocking effects of the JNK inhibitor SP600125. HSCs responded to stimulation with recombinant human (rh)RANTES with an increase in intracellular calcium concentration and a rapid increase in free radical formation. Furthermore, rhRANTES induced ERK phosphorylation, ERK-dependent [3H]thymidine incorporation, and HSC proliferation. Additionally, rhRANTES induced focal adhesion kinase phosphorylation and a substantial increase in HSC migration. HSCs functionally expressed chemokine receptor-5 (CCR5), as shown by flow-cytometric analysis and RT-PCR, and the inhibitory effects of a blocking CCR5 antibody on rhRANTES-induced ERK activation, proliferation, and migration. Diphenylene iodonium and N-acetylcysteine inhibited rhRANTES-induced ERK activation and HSC proliferation, indicating that NADPH oxidase-dependent production of reactive oxygen species was required. In conclusion, RANTES and CCR5 represent potential mediators of 1) HSC migration and proliferation and 2) a cross-talk between HSCs and leukocytes during fibrogenesis.  相似文献   

18.
Chemokines play diverse roles in inflammatory and non-inflammatory situations via activation of heptahelical G-protein-coupled receptors. Also, many chemokine receptors can act as cofactors for cellular entry of human immunodeficiency virus (HIV) in vitro. CCR5, a receptor for chemokines MIP-1alpha (LD78alpha), MIP-1beta, RANTES, and MCP2, is of particular importance in vivo as polymorphisms in this gene affect HIV infection and rate of progression to AIDS. Moreover, the CCR5 ligands can prevent HIV entry through this receptor and likely contribute to the control of HIV infection. Here we show that a non-allelic isoform of human MIP-1alpha (LD78alpha), termed LD78beta or MIP-1alphaP, has enhanced receptor binding affinities to CCR5 (approximately 6-fold) and the promiscuous beta-chemokine receptor, D6 (approximately 15-20-fold). We demonstrate that a proline residue at position 2 of MIP-1alphaP is responsible for this enhanced activity. Moreover, MIP-1alphaP is by far the most potent natural CCR5 agonist described to date, and importantly, displays markedly higher HIV1 suppressive activity than all other human MIP-1alpha isoforms examined. In addition, while RANTES has been described as the most potent inhibitor of CCR5-mediated HIV entry, MIP-1alphaP was as potent as, if not more potent than, RANTES in HIV-1 suppressive assays. This property suggests that MIP-1alphaP may be of importance in controlling viral spread in HIV-infected individuals.  相似文献   

19.
Chemokines have well characterized proinflammatory actions, including the ability to induce extravasation of leukocytes that participate in chronic inflammation. In this study, we evaluated the role of a C-C chemokine, RANTES, in the chronic phase of a rat model of colitis. Colitis was induced by intracolonic administration of trinitrobenzene sulfonic acid. At various timepoints thereafter (2 h to 14 days), colonic tissue levels of several chemokines were measured. Unlike the expression of monocyte chemoattractant protein-1, macrophage inflammatory protein-2, and cytokine-induced neutrophil chemoattractant, the expression of RANTES was significantly elevated during the chronic phase of colitis (> or =7 days after induction). Colonic RANTES mRNA expression was also significantly elevated during the chronic phase of colitis. The numbers of macrophages and monocytes in the colonic mucosa increased substantially during the chronic phase, as did expression of two of the receptors (CCR1 and CCR5) to which RANTES is known to bind. Administration on days 7 through 14 after trinitrobenzene sulfonic acid administration of a CCR1/CCR5 receptor antagonist, Met-RANTES, resulted in a significant reduction of both macroscopic and microscopic colonic damage, as well as reducing the recruitment into the colon of monocytes, mast cells, and neutrophils. In some rats, treatment with Met-RANTES resulted in a near-complete resolution of colonic damage and inflammation. These results suggest a crucial role of RANTES in the progression from acute to chronic inflammation in a rat model of colitis.  相似文献   

20.
Macaque trophoblast migration is regulated by RANTES   总被引:2,自引:0,他引:2  
In human and non-human primates, migratory trophoblasts penetrate the uterine epithelium, invade the endometrium, enter the uterine vasculature, and migrate within the arteries. The mechanisms that regulate this directional migration are unknown. We have used early gestation macaque trophoblasts to test the hypothesis that trophoblast migration is regulated by the chemokine, Regulated on Activation T-Cell Expressed and Secreted (RANTES). Immunohistochemical analysis of cryosections of endometrial tissue showed expression of RANTES by stromal cells and vascular cells. Isolated endothelial cells expressed RANTES as determined by immunocytochemistry and RT-PCR analyses. Immunohistochemical analysis of endometrial cryosections showed that the RANTES receptor, CCR5, was expressed by trophoblasts on anchoring villi and by cells within the trophoblastic shell. Cytokeratin-positive/CCR5-positive cells, consistent with trophoblasts, were also found scattered within the stroma and were often clustered around blood vessels. Isolated trophoblast cells expressed CCR5 as determined by immunocytochemistry and RT-PCR analyses. Isolated trophoblasts migrated towards RANTES when cultured in migration chambers and migration was reduced in the presence of anti-CCR5 antibody. When trophoblasts were cultured on dishes coated with recombinant RANTES, expression of beta1 integrin was increased. The RANTES-induced increase in beta1 integrin expression was inhibited by pertussis toxin. These data suggest a role for RANTES and CCR5 in the regulation of trophoblast migration within the endometrium and within the uterine vasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号