首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 169 毫秒
1.
Growth factors with established biological activity toward cultured normal human epidermal keratinocytes (NHEKs) (e.g., transforming growth factor-beta, TGF-beta; retinoic acid, RA) initiate programmed changes in cellular maturation which differ with regard to the specific differentiation pathway (normal or abnormal) analyzed. Sodium butyrate (NaB) initiates one form of epidermal differentiation leading to enhanced cornified envelope (CE) formation which involves abrogation of the normally inhibitory effect of RA on NHEK maturation. NaB also induces TGF-beta mRNA in the maturing suprabasal compartment, suggesting that TGF-beta may play a role in NaB-initiated NHEK differentiation. Treatment with TGF-beta 1 alone, however, only marginally increased (by twofold) the number of detergent-resistant CEs compared to control NHEKs and did not alter the prevalence of fully mature enucleated CEs. TGF-beta 1 was quite effective in inducing significant levels of CE expression when used simultaneously with suboptimal concentrations of NaB. The cooperative action of suboptimal NaB and TGF-beta 1 generated numbers of CEs which, in fact, exceeded the incidence of mature CEs formed in response to optimal levels of NaB alone. Neutralizing antibodies to TGF-beta, moreover, effectively reduced the incidence of CE formation in cultures treated with optimal NaB concentrations, further implicating endogenous TGF-beta activity in the NaB-initiated NHEK differentiation model. It is suggested, therefore, that within the NaB-induced pathway of NHEK differentiation, TGF-beta can positively modulate expression of the differentiated phenotype but alone is insufficient for generation of mature CEs.  相似文献   

2.
3.
In this study we have employed a model system comprising three groups of colon carcinoma cell lines to examine the growth-inhibitory effects of two molecular forms of transforming growth factor-beta (TGF-beta), TGF-beta 1 and TGF-beta 2. Aggressive, poorly differentiated colon carcinoma cells of group I did not respond to growth inhibitory effects of TGF-beta 1 or TGF-beta 2, while less aggressive, well-differentiated cells of group III displayed marked sensitivity to both TGF-beta 1 and TGF-beta 2 in monolayer culture as well as in soft agarose. One moderately well-differentiated cell line from group II which has intermediate growth characteristics failed to respond to TGF-beta 1 or TGF-beta 2, but the growth of two other cell lines in this group was inhibited. TGF-beta 1 and TGF-beta 2 were equally potent, 50% growth inhibition for responsive cell lines being observed at a concentration of 1 ng/ml (40 pM). Antiproliferative effects of TGF-beta 1 and TGF-beta 2 in responsive cell lines of groups II and III were associated with morphological alterations and enhanced, concentration-dependent secretion of carcinoembryonic antigen. Radiolabeled TGF-beta 1 bound to all three groups of colon carcinoma cells with high affinity (Kd between 42 and 64 pM). These data indicate for the first time a strong correlation between the degree of differentiation of colon carcinoma cell lines and sensitivity to the antiproliferative and differentiation-promoting effects of TGF-beta 1 and TGF-beta 2.  相似文献   

4.
Squamous differentiation of rabbit tracheal epithelial cells is accompanied by an approximately 50-fold increase in the activity of type I (epidermal) transglutaminase, while the levels of type II (tissue) transglutaminase remain almost undetectable. To identify a cDNA encoding type I transglutaminase, we screened a library of cDNA clones prepared from poly(A)+ RNA isolated from squamous-differentiated rabbit tracheal epithelial cells. Four overlapping clones (represented by clone pTG-7) which span a range of 2.8 kilobases were identified; partial sequencing of pTG-7 indicated that it encodes a transglutaminaselike protein. pTG-7 hybridized to a 3.6-kilobase mRNA which is distinct from that for type II transglutaminase. pTG-7 mRNA levels were low in proliferative cells, increased dramatically in squamous-differentiated cells, and could be further enhanced by growth of the cells in high concentrations (2 mM) of calcium ions. Retinoic acid, which blocks the expression of the squamous phenotype, prevented this increase in pTG-7 mRNA levels. These changes in levels of pTG-7 mRNA parallel the changes in type I transglutaminase activity observed under similar culture conditions. These data indicate that pTG-7 encodes the mRNA for transglutaminase type I and that expression of this mRNA is negatively regulated by retinoic acid.  相似文献   

5.
TGF-betas and TGF-beta receptors in atherosclerosis   总被引:4,自引:0,他引:4  
  相似文献   

6.
7.
8.
9.
Transforming growth factor-beta 1 (TGF-beta 1) is a pleiotropic polypeptide hormone known to play an important role as a modulator of hematopoietic processes in human and murine cells. One of the characteristics of TGF-beta 1 is the ability to inhibit the growth of several cell types, including cells of the myeloid lineage. To study the mechanism by which TGF-beta 1 inhibits the growth of myeloid cells, we have used three murine myeloid cell lines, the parental interleukin-3-dependent 32D-123 cell line and two retrovirally infected interleukin-3-independent cell lines (32D-abl, 32D-src), all of which are growth inhibited by TGF-beta 1. Each of these oncogene-transfected cells expresses a greater number of TGF-beta 1 receptors than the parental cell line and responds to TGF-beta 1 with increased sensitivity; 32D and 32D-src cells are 2- and 58-fold more sensitive to TGF-beta 1 inhibition than the parental cell line (ED50 = 35 pM). Both 32D-abl- and 32D-src-transformed cell lines expressed higher levels of the 65- and 85-kDa TGF-beta 1 receptor species than did the parental cells. We observed a correlation between the greater sensitivity of 32D-src cells to TGF-beta 1 and the more rapid down-modulation and reappearance of cell surface TGF-beta 1 receptors on 32D-src cells. Thus, the level of TGF-beta 1 receptor expression and rate of reexpression both have a crucial regulatory effect on the functional activity of the TGF-beta 1 ligand.  相似文献   

10.
To examine the mechanisms by which transforming growth factors (TGFs) regulate the proliferation of eukaryotic cells, five cell lines, from different species and tissues, were treated with three agents that inhibit DNA synthesis and proliferation: BSC-1 cell-derived growth inhibitor (GI/TGF-beta), platelet-derived transforming growth factor-beta (TGF-beta), and 12-O-tetradecanoylphorbol-13-acetate. The cell lines tested were mink lung CCL 64 epithelial cells, Maloney sarcoma virus-transformed CCL 64.1, monkey kidney BSC-1 epithelial cells, human epidermoid A431 cells, and mouse embryo AKR-2B (clone 84A) cells. All cell lines responded to one or more of these agents by synthesizing and secreting a 48 to 51-kDa protein (IIP48). The TGF-beta s and 12-O-tetradecanoylphorbol-13-acetate had little or no effect on the incorporation of [35S] methionine into other secreted proteins or on the pattern of [35S]methionine-labeled intracellular proteins analyzed by one-dimensional, sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The maximum increase in induction of IIP48 varied from 2-fold to greater than 800-fold compared with the controls and occurred within 6 h of adding GI/TGF-beta to CCL 64 cells. Actinomycin D, alpha-amanitin, or 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole selectively decreased both the control and induced levels of IIP48 even after as little as 6 h of incubation. Thus, it appears that IIP48 mRNA turns over rapidly. Induction of IIP48 was dissociated from the inhibition of DNA synthesis by GI/TGF-beta. However, we found that epidermal growth factor and GI/TGF-beta act synergistically to increase the secreted level of IIP48. Others have shown that epidermal growth factor and TGF-beta act synergistically to stimulate growth of cells in agar. IIP48 from CCL 64, BSC-1, and AKR-2B cells is specifically immunoprecipitated by antibody to bovine plasminogen activator inhibitor. We found previously that TGF-beta also inhibits the production of major excreted protein, a thiol protease. It is proposed that TGF-beta is able to promote anchorage-independent growth of untransformed cells because of its ability to inhibit the production of secreted proteases and to increase the production of protease inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号