首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The effect of replacement of tRNA(Phe) recognition elements on positioning of the 3'-terminal nucleotide in the complex with phenylalanyl-tRNA synthetase (PheRS) from T. thermophilus in the absence or presence of phenylalanine and/or ATP has been studied by photoaffinity labeling with s(4)U76-substituted analogs of wild type and mutant tRNA(Phe). The double mutation G34C/A35U shows the strongest disorientation in the absence of low-molecular-weight substrates and sharply decreases the protein labeling, which suggests an initiating role of the anticodon in generation of contacts responsible for the acceptor end positioning. Efficiency of photo-crosslinking with the alpha- and beta-subunits in the presence of individual substrates is more sensitive to nucleotide replacements in the anticodon (G34 by A or A36 by C) than to changes in the general structure of tRNA(Phe) (as a result of replacement of the tertiary pair G19-C56 by U19-G56 or of U20 by A). The degree of disorders in the 3'-terminal nucleotide positioning in the presence of both substrates correlates with decrease in the turnover number of aminoacylation due to corresponding mutations. The findings suggest that specific interactions of the enzyme with the anticodon mainly promote the establishment (controlled by phenylalanine) of contacts responsible for binding of the CCA-end and terminal nucleotide in the productive complex, and the general conformation of tRNA(Phe) determines, first of all, the acceptor stem positioning (controlled by ATP). The main recognition elements of tRNA(Phe), which optimize its initial binding with PheRS, are also involved in generation of the catalytically active complex providing functional conformation of the acceptor arm.  相似文献   

2.
The functional roles of phenylalanine and ATP in productive binding of the tRNA(Phe) acceptor end have been studied by photoaffinity labeling (cross-linking) of T. thermophilus phenylalanyl-tRNA synthetase (PheRS) with tRNA(Phe) analogs containing the s(4)U residue in different positions of the 3'-terminal single-stranded sequence. Human and E. coli tRNA(Phe)s used as basic structures differ by efficiency of the binding and aminoacylation with the enzyme under study. Destabilization of the complex with human tRNA(Phe) caused by replacement of three recognition elements decreases selectivity of labeling of the alpha- and beta-subunits responsible for the binding of adjacent nucleotides of the CCA-end. Phenylalanine affects the positioning of the base and ribose moieties of the 76th nucleotide, and the recorded effects do not depend on structural differences between bacterial and eukaryotic tRNA(Phe)s. Both in the absence and presence of phenylalanine, ATP more effectively inhibits the PheRS labeling with the s(4)U76-substituted analog of human tRNA(Phe) (tRNA(Phe)-s(4)U76) than with E. coli tRNA(Phe)-s(4)U76: in the first case the labeling of the alpha-subunits is inhibited more effectively; the labeling of the beta-subunits is inhibited in the first case and increased in the second case. The findings analyzed with respect to available structural data on the enzyme complexes with individual substrates suggest that the binding of phenylalanine induces a local rearrangement in the active site and directly controls positioning of the tRNA(Phe) 3'-terminal nucleotide. The effect of ATP on the acceptor end positioning is caused by global structural changes in the complex, which modulate the conformation of the acceptor arm. The rearrangement of the acceptor end induced by small substrates results in reorientation of the 3'-OH-group of the terminal ribose from the catalytic subunit onto the noncatalytic one, and this may explain the unusual stereospecificity of aminoacylation in this system.  相似文献   

3.
Identity determinants of E. coli tryptophan tRNA.   总被引:4,自引:4,他引:0       下载免费PDF全文
  相似文献   

4.
5.
The position of the tertiary Levitt pair between nucleotides 15 and 48 in the transfer RNA core region suggests a key role in stabilizing the joining of the two helical domains, and in maintaining the relative orientations of the D and variable loops. E. coli tRNA(Gln) possesses the canonical Pu15-Py48 trans pairing at this position (G15-C48), while the tRNA(Cys) species from this organism instead features an unusual G15-G48 pair. To explore the structural context dependence of a G15-G48 Levitt pair, a number of tRNA(Gln) species containing G15-G48 were constructed and evaluated as substrates for glutaminyl and cysteinyl-tRNA synthetases. The glutaminylation efficiencies of these mutant tRNAs are reduced by two to tenfold compared with native tRNA(Gln), consistent with previous findings that the tertiary core of this tRNA plays a role in GlnRS recognition. Introduction of tRNA(Cys) identity nucleotides at the acceptor and anticodon ends of tRNA(Gln) produced a tRNA substrate which was efficiently aminoacylated by CysRS, even though the tertiary core region of this species contains the tRNA(Gln) G15-C48 pair. Surprisingly, introduction of G15-G48 into the non-cognate tRNA(Gln) tertiary core then significantly impairs CysRS recognition. By contrast, previous work has shown that CysRS aminoacylates tRNA(Cys) core regions containing G15-G48 with much better efficiency than those with G15-C48. Therefore, tertiary nucleotides surrounding the Levitt pair must significantly modulate the efficiency of aminoacylation by CysRS. To explore the detailed nature of the structural interdependence, crystal structures of two tRNA(Gln) mutants containing G15-G48 were determined bound to GlnRS. These structures show that the larger purine ring of G48 is accommodated by rotation into the syn position, with the N7 nitrogen serving as hydrogen bond acceptor from several groups of G15. The G15-G48 conformations differ significantly compared to that observed in the native tRNA(Cys) structure bound to EF-Tu, further implicating an important role for surrounding nucleotides in maintaining the integrity of the tertiary core and its consequent ability to present crucial recognition determinants to aminoacyl-tRNA synthetases.  相似文献   

6.
RluA is a dual-specificity enzyme responsible for pseudouridylating 23S rRNA and several tRNAs. The 2.05 A resolution structure of RluA bound to a substrate RNA comprising the anticodon stem loop of tRNA(Phe) reveals that enzyme binding induces a dramatic reorganization of the RNA. Instead of adopting its canonical U turn conformation, the anticodon loop folds into a new structure with a reverse-Hoogsteen base pair and three flipped-out nucleotides. Sequence conservation, the cocrystal structure, and the results of structure-guided mutagenesis suggest that RluA recognizes its substrates indirectly by probing RNA loops for their ability to adopt the reorganized fold. The planar, cationic side chain of an arginine intercalates between the reverse-Hoogsteen base pair and the bottom pair of the anticodon stem, flipping the nucleotide to be modified into the active site of RluA. Sequence and structural comparisons suggest that pseudouridine synthases of the RluA, RsuA, and TruA families employ an equivalent arginine for base flipping.  相似文献   

7.
The structure, phylogeny and in vivo function of the base pair formed between nucleotides 32 and 38 of the tRNA anticodon loop are reviewed. The A32-U38 pair, which is highly conserved in tRNA2(Ala) and sometimes observed in tRNA2(Pro), was recently found to decrease the affinity of tRNAs to the ribosomal A site relative to other 32-38 combinations. This suggests that the role of 32-38 pair is to tune the tRNA affinity in the A site to a uniform value. New experiments presented here show that the U32C mutation in tRNA1(Gly) increases its affinity to the cognate codon and to codons with third position mismatches in the A site. This suggests that one reason for uniform tRNA binding to evolve was to avoid incorrect codon recognition.  相似文献   

8.
G Ghosh  H Pelka  L H Schulman 《Biochemistry》1990,29(9):2220-2225
We have previously shown that the anticodon of methionine tRNAs contains most, if not all, of the nucleotides required for specific recognition of tRNA substrates by Escherichia coli methionyl-tRNA synthetase [Schulman, L. H., & Pelka, H. (1988) Science 242, 765-768]. Previous cross-linking experiments have also identified a site in the synthetase that lies within 14 A of the anticodon binding domain [Leon, O., & Schulman, L. H. (1987) Biochemistry 26, 5416-5422]. In the present work, we have carried out site-directed mutagenesis of this domain, creating conservative amino acid changes at residues that contain side chains having potential hydrogen-bond donors or acceptors. Only one of these changes, converting Trp461----Phe, had a significant effect on aminoacylation. The mutant enzyme showed an approximately 60-100-fold increase in Km for methionine tRNAs, with little or no change in the Km for methionine or ATP or in the maximal velocity of the aminoacylation reaction. Conversion of the adjacent Pro460 to Leu resulted in a smaller increase in Km for tRNA(Mets), with no change in the other kinetic parameters. Examination of the interaction of the mutant enzymes with a series of tRNA(Met) derivatives containing base substitutions in the anticodon revealed sequence-specific interactions between the Phe461 mutant and different anticodons. Km values were highest for tRNA(mMet) derivatives containing the normal anticodon wobble base C. Base substitutions at this site decreased the Km for aminoacylation by the Phe461 mutant, while increasing the Km for the wild-type enzyme and for the Leu460 mutant to values greater than 100 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
Roy H  Ibba M 《Biochemistry》2006,45(30):9156-9162
Phenylalanyl-tRNA synthetase (PheRS) is a multidomain (alphabeta)2 heterotetrameric protein responsible for synthesizing Phe-tRNA(Phe) during protein synthesis. Previous studies showed that the alpha subunit forms the catalytic core of the enzyme, while the beta subunit contains a number of autonomous structural modules with a wide range of functions including tRNA anticodon binding and editing of the misaminoacylated species Tyr-tRNA(Phe). The B2 domain of the beta subunit is a structural homologue of the EMAPII/OB fold, which has been shown in other systems to contribute to tRNA binding. Structural studies of PheRS indicated that the B2 domain is distant from bound tRNA(Phe), leaving the role of this module in question. On the basis of homology modeling with other EMAPII domain-containing proteins, the 110 amino acid B2 domain was deleted to produce PheRS deltaB2. Full-length PheRS and PheRS deltaB2 showed comparable kinetics for in vitro aminoacylation, and both enzymes complemented a defect in phenylalanylation in vivo. PheRS deltaB2 showed a 2-fold drop compared to full-length PheRS in the catalytic efficiency (kcat/KM) of Tyr-tRNA(Phe) hydrolysis, suggesting a role for the B2 domain in post-transfer editing. A comparison of tRNA binding by full-length PheRS and PheRS deltaB2 indicated that the B2 domain acts as a secondary tRNA-binding site that could contribute to editing by promoting the translocation of mischarged tRNA to the editing site of PheRS. This proposed role for the B2 domain of PheRS is consistent with previous studies, suggesting that the highly conserved EMAPII fold is able to modulate the affinity of tRNA for its primary binding site.  相似文献   

11.
The underlying basis of the genetic code is specific aminoacylation of tRNAs by aminoacyl-tRNA synthetases. Although the code is conserved, bases in tRNA that establish aminoacylation are not necessarily conserved. Even when the bases are conserved, positions of backbone groups that contribute to aminoacylation may vary. We show here that, although the Escherichia coli and human cysteinyl-tRNA synthetases both recognize the same bases (U73 and the GCA anticodon) of tRNA for aminoacylation, they have different emphasis on the tRNA backbone. The E. coli enzyme recognizes two clusters of phosphate groups. One is at A36 in the anticodon and the other is in the core of the tRNA structure and includes phosphate groups at positions 9, 12, 14, and 60. Metal-ion rescue experiments show that those at positions 9, 12, and 60 are involved with binding divalent metal ions that are important for aminoacylation. The E. coli enzyme also recognizes 2'-hydroxyl groups within the same two clusters: at positions 33, 35, and 36 in the anticodon loop, and at positions 49, 55, and 61 in the core. The human enzyme, by contrast, recognizes few phosphate or 2'-hydroxy groups for aminoacylation. The evolution from the backbone-dependent recognition by the E. coli enzyme to the backbone-independent recognition by the human enzyme demonstrates a previously unrecognized shift that nonetheless has preserved the specificity for aminoacylation with cysteine.  相似文献   

12.
S J Park  Y M Hou  P Schimmel 《Biochemistry》1989,28(6):2740-2746
A single G3.U70 base pair in the acceptor helix is a major determinant of the identity of an alanine transfer RNA. Alteration of this base pair to A.U or G.C prevents aminoacylation with alanine. We show here that, at approximate physiological conditions (pH 7.5, 37 degrees C), high concentrations of the mutant A3.U70 species do not inhibit aminoacylation of a wild-type alanine tRNA. The observation suggests that, under these conditions, the G3 to A3 substitution increases Km for tRNA by more than 30-fold. Other experiments at pH 7.5 show that no aminoacylation of A3.U70, G3.C70, or U3.G70 mutant tRNAs occurs with substrate levels of enzyme. This suggests that kcat for these mutant tRNAs is sharply reduced as well and that the catalytic defect is not due to slow release of charged mutant tRNAs from the enzyme. Investigations were also done at pH 5.5, where association of tRNAs with synthetases is generally stronger and where binding can be conveniently measured apart from aminoacylation. Under these conditions, the binding of the A3.U70 and G3.C70 species is readily detected and is only 3-5-fold weaker than the binding of the wild-type tRNA. Although the A3.U70 species was demonstrated to compete with the wild-type tRNA for the same site on the enzyme, no aminoacylation could be detected. Thus, even when conditions are adjusted to obtain strong competitive binding, a sharp reduction in kcat prevents aminoacylation of a tRNA(Ala) species with a substitution at position 3.70.  相似文献   

13.
14.
M L Bovee  W Yan  B S Sproat  C S Francklyn 《Biochemistry》1999,38(41):13725-13735
Aminoacyl-tRNA synthetases preserve the fidelity of decoding genetic information by accurately joining amino acids to their cognate transfer RNAs. Here, tRNA discrimination at the level of binding by Escherichia coli histidyl-tRNA synthetase is addressed by filter binding, analytical ultracentrifugation, and iodine footprinting experiments. Competitive filter binding assays show that the presence of an adenylate analogue 5'-O-[N-(L-histidyl)sulfamoyl]adenosine, HSA, decreased the apparent dissociation constant (K(D)) for cognate tRNA(His) by more than 3-fold (from 3.87 to 1.17 microM), and doubled the apparent K(D) for noncognate tRNA(Phe) (from 7.3 to 14.5 microM). By contrast, no binding discrimination against mutant U73 tRNA(His) was observed, even in the presence of HSA. Additional filter binding studies showed tighter binding of both cognate and noncognate tRNAs by G405D mutant HisRS [Yan, W., Augustine, J., and Francklyn, C. (1996) Biochemistry 35, 6559], which possesses a single amino acid change in the C-terminal anticodon binding domain. Discrimination against noncognate tRNA was also observed in sedimentation velocity experiments, which showed that a stable complex was formed with the cognate tRNA(His) but not with noncognate tRNA(Phe). Footprinting experiments on wild-type versus G405D HisRS revealed characteristic alterations in the pattern of protection and enhancement of iodine cleavage at phosphates 5' to tRNA nucleotides in the anticodon and hinge regions. Together, these results suggest that the anticodon and core regions play major roles in the initial binding discrimination between cognate and noncognate tRNAs, whereas acceptor stem nucleotides, particularly at position 73, influence the reaction at steps after binding of tRNA.  相似文献   

15.
The absence of a Watson-Crick base pair at the end of the amino acid acceptor stem is one of the features which distinguishes prokaryotic initiator tRNAs as a class from all other tRNAs. We show that this structural feature prevents Escherichia coli initiator tRNA from acting as an elongator in protein synthesis in vivo. We generated a mutant of E. coli initiator tRNA in which the anticodon sequence is changed from CAU to CUA (the T35A36 mutant). This mutant tRNA has the potential to read the amber termination codon UAG. We then coupled this mutation to others which change the C1.A72 mismatch at the end of the acceptor stem to either a U1:A72 base pair (T1 mutant) or a C1:G72 base pair (G72 mutant). Transformation of E. coli CA274 (HfrC Su- lacZ125am trpEam) with multicopy plasmids carrying the mutant initiator tRNA genes show that mutant tRNAs carrying changes in both the anticodon sequence and the acceptor stem suppress amber codons in vivo, whereas mutant tRNA with changes in the anticodon sequence alone does not. Mutant tRNAs with the above anticodon sequence change are aminoacylated with glutamine in vitro. Measurement of kinetic parameters for aminoacylation by E. coli glutaminyl-tRNA synthetase show that both the nature of the base pair at the end of the acceptor stem and the presence or absence of a base pair at this position can affect aminoacylation kinetics. We discuss the implications of this result on recognition of tRNAs by E. coli glutaminyl-tRNA synthetase.  相似文献   

16.
17.
Most archaea and bacteria use a modified C in the anticodon wobble position of isoleucine tRNA to base pair with A but not with G of the mRNA. This allows the tRNA to read the isoleucine codon AUA without also reading the methionine codon AUG. To understand why a modified C, and not U or modified U, is used to base pair with A, we mutated the C34 in the anticodon of Haloarcula marismortui isoleucine tRNA (tRNA2Ile) to U, expressed the mutant tRNA in Haloferax volcanii, and purified and analyzed the tRNA. Ribosome binding experiments show that although the wild-type tRNA2Ile binds exclusively to the isoleucine codon AUA, the mutant tRNA binds not only to AUA but also to AUU, another isoleucine codon, and to AUG, a methionine codon. The G34 to U mutant in the anticodon of another H. marismortui isoleucine tRNA species showed similar codon binding properties. Binding of the mutant tRNA to AUG could lead to misreading of the AUG codon and insertion of isoleucine in place of methionine. This result would explain why most archaea and bacteria do not normally use U or a modified U in the anticodon wobble position of isoleucine tRNA for reading the codon AUA. Biochemical and mass spectrometric analyses of the mutant tRNAs have led to the discovery of a new modified nucleoside, 5-cyanomethyl U in the anticodon wobble position of the mutant tRNAs. 5-Cyanomethyl U is present in total tRNAs from euryarchaea but not in crenarchaea, eubacteria, or eukaryotes.  相似文献   

18.
The previously uncharacterized determinants of the specificity of tRNAPro for aminoacylation (tRNAPro identity) were defined by a computer comparison of all Escherichia coli tRNA sequences and tested by a functional analysis of amber suppressor tRNAs in vivo. We determined the amino acid specificity of tRNA by sequencing a suppressed protein and the aminoacylation efficiency of tRNA by examining the steady-state level of aminoacyl-tRNA. On substituting nucleotides derived from the acceptor end and variable pocket of tRNAPro for the corresponding nucleotides in a tRNAPhe gene, the identity of the resulting tRNA changed substantially but incompletely to that of tRNAPro. The redesigned tRNAPhe was weakly active and aminoacyl-tRNA was not detected. Ethyl methanesulfonate mutagenesis of the redesigned tRNAPhe gene produced a mutant with a wobble pair in place of a base pair in the end of the acceptor-stem helix of the transcribed tRNA. This mutant exhibited both a tRNAPro identity and substantial aminoacyl-tRNA. The results speak for the importance of a distinctive conformation in the acceptor-stem helix of tRNAPro for aminoacylation by the prolyl-tRNA synthetase. The anticodon also contributes to tRNAPro identity but is not necessary in vivo.  相似文献   

19.
M Liu  W C Chu  J C Liu    J Horowitz 《Nucleic acids research》1997,25(24):4883-4890
Although the anticodon is the primary element in Escherichia coli tRNAValfor recognition by valyl-tRNA synthetase (ValRS), nucleotides in the acceptor stem and other parts of the tRNA modulate recognition. Study of the steady state aminoacylation kinetics of acceptor stem mutants of E.coli tRNAValdemonstrates that replacing any base pair in the acceptor helix with another Watson-Crick base pair has little effect on aminoacylation efficiency. The absence of essential recognition nucleotides in the acceptor helix was confirmed by converting E.coli tRNAAlaand yeast tRNAPhe, whose acceptor stem sequences differ significantly from that of tRNAVal, to efficient valine acceptors. This transformation requires, in addition to a valine anticodon, replacement of the G:U base pair in the acceptor stem of these tRNAs. Mutational analysis of tRNAValverifies that G:U base pairs in the acceptor helix act as negative determinants of synthetase recognition. Insertion of G:U in place of the conserved U4:A69 in tRNAValreduces the efficiency of aminoacylation, due largely to an increase in K m. A smaller but significant decline in aminoacylation efficiency occurs when G:U is located at position 3:70; lesser effects are observed for G:U at other positions in the acceptor helix. The negative effects of G:U base pairs are strongly correlated with changes in helix structure in the vicinity of position 4:69 as monitored by19F NMR spectroscopy of 5-fluorouracil-substituted tRNAVal. This suggests that maintaining regular A-type RNA helix geometry in the acceptor stem is important for proper recognition of tRNAValby valyl-tRNA synthetase.19F NMR also shows that formation of the tRNAVal-valyl-tRNA synthetase complex does not disrupt the first base pair in the acceptor stem, a result different from that reported for the tRNAGln-glutaminyl-tRNA synthetase complex.  相似文献   

20.
Soderberg T  Poulter CD 《Biochemistry》2000,39(21):6546-6553
Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase (DMAPP-tRNA transferase) catalyzes the alkylation of the exocyclic amine of A37 by a dimethylallyl unit in tRNAs with an adenosine in the third anticodon position (position 36). By use of purified recombinant enzyme, steady- state kinetic studies were conducted with chemically synthesized RNA oligoribonucleotides to determine the essential elements within the tRNA anticodon stem-loop structure required for recognition by the enzyme. A 17-base oligoribonucleotide corresponding to the anticodon stem-loop of E. coli tRNA(Phe) formed a stem-loop minihelix (minihelix(Phe)) when annealed rapidly on ice, while the same molecule formed a duplex structure with a central loop when annealed slowly at higher concentrations. Both the minihelix and duplex structures gave k(cat)s similar to that for the normal substrate (full-length tRNA(Phe) unmodified at A37), although the K(m) for minihelix(Phe) was approximately 180-fold higher than full-length tRNA. The A36-A37-A38 motif, which is completely conserved in tRNAs modified by the enzyme, was found to be important for modification. Changing A36 to G in the minihelix resulted in a 260-fold reduction in k(cat) compared to minihelix(Phe) and a 13-fold increase in K(m). An A38G variant was modified with a 9-fold reduction in k(cat) and a 5-fold increase in K(m). A random coil 17-base oligoribonucleotide in which the loop sequence of E. coli tRNA(Phe) was preserved, but the 5 base pair helix stem was completely disrupted and showed no measurable activity, indicating that a helix-loop structure is essential for recognition. Finally, altering the identity of several base pairs in the helical stem did not have a major effect on catalytic efficiency, suggesting that the enzyme does not make base-specific contacts important for binding or catalysis in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号