首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genome‐wide association studies (GWAS) of alcohol dependence (AD) have reliably identified variation within alcohol metabolizing genes (eg, ADH1B) but have inconsistently located other signals, which may be partially attributable to symptom heterogeneity underlying the disorder. We conducted GWAS of DSM‐IV AD (primary analysis), DSM‐IV AD criterion count (secondary analysis), and individual dependence criteria (tertiary analysis) among 7418 (1121 families) European American (EA) individuals from the Collaborative Study on the Genetics of Alcoholism (COGA). Trans‐ancestral meta‐analyses combined these results with data from 3175 (585 families) African‐American (AA) individuals from COGA. In the EA GWAS, three loci were genome‐wide significant: rs1229984 in ADH1B for AD criterion count (P = 4.16E?11) and Desire to cut drinking (P = 1.21E?11); rs188227250 (chromosome 8, Drinking more than intended, P = 6.72E?09); rs1912461 (chromosome 15, Time spent drinking, P = 1.77E?08). In the trans‐ancestral meta‐analysis, rs1229984 was associated with multiple phenotypes and two additional loci were genome‐wide significant: rs61826952 (chromosome 1, DSM‐IV AD, P = 8.42E?11); rs7597960 (chromosome 2, Time spent drinking, P = 1.22E?08). Associations with rs1229984 and rs18822750 were replicated in independent datasets. Polygenic risk scores derived from the EA GWAS of AD predicted AD in two EA datasets (P < .01; 0.61%‐1.82% of variance). Identified novel variants (ie, rs1912461, rs61826952) were associated with differential central evoked theta power (loss ? gain; P = .0037) and reward‐related ventral striatum reactivity (P = .008), respectively. This study suggests that studying individual criteria may unveil new insights into the genetic etiology of AD liability.  相似文献   

2.
Diabetic kidney disease (DKD) is the most common etiology of chronic kidney disease (CKD) in the industrialized world and accounts for much of the excess mortality in patients with diabetes mellitus. Approximately 45% of U.S. patients with incident end-stage kidney disease (ESKD) have DKD. Independent of glycemic control, DKD aggregates in families and has higher incidence rates in African, Mexican, and American Indian ancestral groups relative to European populations. The Family Investigation of Nephropathy and Diabetes (FIND) performed a genome-wide association study (GWAS) contrasting 6,197 unrelated individuals with advanced DKD with healthy and diabetic individuals lacking nephropathy of European American, African American, Mexican American, or American Indian ancestry. A large-scale replication and trans-ethnic meta-analysis included 7,539 additional European American, African American and American Indian DKD cases and non-nephropathy controls. Within ethnic group meta-analysis of discovery GWAS and replication set results identified genome-wide significant evidence for association between DKD and rs12523822 on chromosome 6q25.2 in American Indians (P = 5.74x10-9). The strongest signal of association in the trans-ethnic meta-analysis was with a SNP in strong linkage disequilibrium with rs12523822 (rs955333; P = 1.31x10-8), with directionally consistent results across ethnic groups. These 6q25.2 SNPs are located between the SCAF8 and CNKSR3 genes, a region with DKD relevant changes in gene expression and an eQTL with IPCEF1, a gene co-translated with CNKSR3. Several other SNPs demonstrated suggestive evidence of association with DKD, within and across populations. These data identify a novel DKD susceptibility locus with consistent directions of effect across diverse ancestral groups and provide insight into the genetic architecture of DKD.  相似文献   

3.
Genetic influences on alcohol and drug dependence partially overlap, however, specific loci underlying this overlap remain unclear. We conducted a genome‐wide association study (GWAS) of a phenotype representing alcohol or illicit drug dependence (ANYDEP) among 7291 European‐Americans (EA; 2927 cases) and 3132 African‐Americans (AA: 1315 cases) participating in the family‐based Collaborative Study on the Genetics of Alcoholism. ANYDEP was heritable (h 2 in EA = 0.60, AA = 0.37). The AA GWAS identified three regions with genome‐wide significant (GWS; P < 5E‐08) single nucleotide polymorphisms (SNPs) on chromosomes 3 (rs34066662, rs58801820) and 13 (rs75168521, rs78886294), and an insertion‐deletion on chromosome 5 (chr5:141988181). No polymorphisms reached GWS in the EA. One GWS region (chromosome 1: rs1890881) emerged from a trans‐ancestral meta‐analysis (EA + AA) of ANYDEP, and was attributable to alcohol dependence in both samples. Four genes (AA: CRKL, DZIP3, SBK3; EA: P2RX6) and four sets of genes were significantly enriched within biological pathways for hemostasis and signal transduction. GWS signals did not replicate in two independent samples but there was weak evidence for association between rs1890881 and alcohol intake in the UK Biobank. Among 118 AA and 481 EA individuals from the Duke Neurogenetics Study, rs75168521 and rs1890881 genotypes were associated with variability in reward‐related ventral striatum activation. This study identified novel loci for substance dependence and provides preliminary evidence that these variants are also associated with individual differences in neural reward reactivity. Gene discovery efforts in non‐European samples with distinct patterns of substance use may lead to the identification of novel ancestry‐specific genetic markers of risk.  相似文献   

4.
It is not well known whether genetic markers identified through genome-wide association studies (GWAS) confer similar or different risks across people of different ancestry. We screened a regularly updated catalog of all published GWAS curated at the NHGRI website for GWAS-identified associations that had reached genome-wide significance (p ≤ 5 × 10(-8)) in at least one major ancestry group (European, Asian, African) and for which replication data were available for comparison in at least two different major ancestry groups. These groups were compared for the correlation between and differences in risk allele frequencies and genetic effects' estimates. Data on 108 eligible GWAS-identified associations with a total of 900 datasets (European, n = 624; Asian, n = 217; African, n = 60) were analyzed. Risk-allele frequencies were modestly correlated between ancestry groups, with >10% absolute differences in 75-89% of the three pairwise comparisons of ancestry groups. Genetic effect (odds ratio) point estimates between ancestry groups correlated modestly (pairwise comparisons' correlation coefficients: 0.20-0.33) and point estimates of risks were opposite in direction or differed more than twofold in 57%, 79%, and 89% of the European versus Asian, European versus African, and Asian versus African comparisons, respectively. The modest correlations, differing risk estimates, and considerable between-association heterogeneity suggest that differential ancestral effects can be anticipated and genomic risk markers may need separate further evaluation in different ancestry groups.  相似文献   

5.
Background

Design of new highly productive livestock breeds, well-adapted to local climatic conditions is one of the aims of modern agriculture and breeding. The genetics underlying economically important traits in cattle are widely studied, whereas our knowledge of the genetic mechanisms of adaptation to local environments is still scarce. To address this issue for cold climates we used an integrated approach for detecting genomic intervals related to body temperature maintenance under acute cold stress. Our approach combined genome-wide association studies (GWAS) and scans for signatures of selection applied to a cattle population (Hereford and Kazakh Whiteheaded beef breeds) bred in Siberia. We utilized the GGP HD150K DNA chip containing 139,376 single nucleotide polymorphism markers.

Results

We detected a single candidate region on cattle chromosome (BTA)15 overlapping between the GWAS results and the results of scans for selective sweeps. This region contains two genes, MSANTD4 and GRIA4. Both genes are functional candidates to contribute to the cold-stress resistance phenotype, due to their indirect involvement in the cold shock response (MSANTD4) and body thermoregulation (GRIA4).

Conclusions

Our results point to a novel region on BTA15 which is a candidate region associated with the body temperature maintenance phenotype in Siberian cattle. The results of our research and the follow up studies might be used for the development of cattle breeds better adapted to cold climates of the Russian Federation and other Northern countries with similar climates.

  相似文献   

6.
Most individuals throughout the Americas are admixed descendants of Native American, European, and African ancestors. Complex historical factors have resulted in varying proportions of ancestral contributions between individuals within and among ethnic groups. We developed a panel of 446 ancestry informative markers (AIMs) optimized to estimate ancestral proportions in individuals and populations throughout Latin America. We used genome-wide data from 953 individuals from diverse African, European, and Native American populations to select AIMs optimized for each of the three main continental populations that form the basis of modern Latin American populations. We selected markers on the basis of locus-specific branch length to be informative, well distributed throughout the genome, capable of being genotyped on widely available commercial platforms, and applicable throughout the Americas by minimizing within-continent heterogeneity. We then validated the panel in samples from four admixed populations by comparing ancestry estimates based on the AIMs panel to estimates based on genome-wide association study (GWAS) data. The panel provided balanced discriminatory power among the three ancestral populations and accurate estimates of individual ancestry proportions (R2 > 0.9 for ancestral components with significant between-subject variance). Finally, we genotyped samples from 18 populations from Latin America using the AIMs panel and estimated variability in ancestry within and between these populations. This panel and its reference genotype information will be useful resources to explore population history of admixture in Latin America and to correct for the potential effects of population stratification in admixed samples in the region.  相似文献   

7.
【目的】通过实验室培养模拟自然环境微生物相互作用,进而找到影响细菌基因型和表型的基因。【方法】将大肠杆菌和金黄色葡萄球菌在实验室条件下进行单独培养和两两混合培养并连续转接,通过得到的数量表型与最大生长速率表型做全基因组关联分析(GWAS),对得到的与表型相关的SNP进行注释与分析。【结果】162个SNP位点影响到大肠杆菌原始菌株与共培养菌株的生长,36个SNP位点影响大肠杆菌菌株在单独培养和共同培养的生长。总共有85个SNP位点影响金黄色葡萄球菌的原始菌株与单独培养。其中5个基因在之前文献中已有报道。对影响不同时间点细菌数量变化形状的SNP位点进行功能注释,大肠杆菌中有706个与生长性能相关。金黄色葡萄球菌中,129个和不同的生长性能相关。大肠杆菌SNP位点的13个基因在之前的研究中已有报道。【结论】混合培养和单独培养都检测到与生长相关的显著基因,本研究表明了GWAS在研究细菌互作进化机制方面的潜力。  相似文献   

8.
9.
Significant questions remain unanswered regarding the genetic versus environmental contributions to racial/ethnic differences in sleep and circadian rhythms. We addressed this question by investigating the association between diurnal preference, using the morningness–eveningness questionnaire (MEQ), and genetic ancestry within the Baependi Heart Study cohort, a highly admixed Brazilian population based in a rural town. Analysis was performed using measures of ancestry, using the Admixture program, and MEQ from 1,453 individuals. We found an association between the degree of Amerindian (but not European of African) ancestry and morningness, equating to 0.16 units for each additional percent of Amerindian ancestry, after adjustment for age, sex, education, and residential zone. To our knowledge, this is the first published report identifying an association between genetic ancestry and MEQ, and above all, the first one based on ancestral contributions within individuals living in the same community. This previously unknown ancestral dimension of diurnal preference suggests a stratification between racial/ethnic groups in an as yet unknown number of genetic polymorphisms.  相似文献   

10.
Although approaches for performing genome‐wide association studies (GWAS) are well developed, conventional GWAS requires high‐density genotyping of large numbers of individuals from a diversity panel. Here we report a method for performing GWAS that does not require genotyping of large numbers of individuals. Instead XP‐GWAS (extreme‐phenotype GWAS) relies on genotyping pools of individuals from a diversity panel that have extreme phenotypes. This analysis measures allele frequencies in the extreme pools, enabling discovery of associations between genetic variants and traits of interest. This method was evaluated in maize (Zea mays) using the well‐characterized kernel row number trait, which was selected to enable comparisons between the results of XP‐GWAS and conventional GWAS. An exome‐sequencing strategy was used to focus sequencing resources on genes and their flanking regions. A total of 0.94 million variants were identified and served as evaluation markers; comparisons among pools showed that 145 of these variants were statistically associated with the kernel row number phenotype. These trait‐associated variants were significantly enriched in regions identified by conventional GWAS. XP‐GWAS was able to resolve several linked QTL and detect trait‐associated variants within a single gene under a QTL peak. XP‐GWAS is expected to be particularly valuable for detecting genes or alleles responsible for quantitative variation in species for which extensive genotyping resources are not available, such as wild progenitors of crops, orphan crops, and other poorly characterized species such as those of ecological interest.  相似文献   

11.
ABSTRACT

The circadian clock controls most of the physiological processes in the body throughout days and nights’ alternation. Its dysregulation has a negative impact on many aspects of human health, such as obesity, lipid disorders, diabetes, skin regeneration, hematopoiesis and cancer. To date, poor is known on the molecular mechanisms that links mammary gland homeostasis to the circadian clock but recent reports highlight the importance of loss of circadian genes for mammary gland development and during tumour progression in breast cancer. Gene expression studies are then required to clarify how the circadian clock can modulates the human mammary gland development during ontology and its behaviour in physiological and oncogenic context. For this, in addition to genome-wide studies, real-time quantitative RT-PCR (qPCR) is a powerful and pertinent technique to quantify the expression of a reduced set of genes of interest in many different samples. Relative quantification of qPCR data requires the use of reference genes for normalisation. For circadian studies, reference genes expression must not oscillate in mirror of the circadian clock and must not be affected by the synchronisation protocols required in vitro to reset the circadian clock. Inappropriate selection of reference genes can consequently affect the amplitude of gene expression oscillation and bias data interpretation. Currently, no standard reference genes have been validated regarding these criteria for human mammary epithelial cells and the purpose of this study was to fill this gap. For this, we used the RefFinder tool, which combines four different algorithms, on 9 candidate reference genes. We compared reference genes stability using three different synchronisation protocols applied on four different mammary epithelial cell lines. This allowed us to define a set of reference genes in human mammary epithelial cells whose expression remains stable despite synchronisation protocols. We observed that the synchronisation of cells by serum shock was the most suitable procedure for maintaining the amplitude of oscillation of clock genes over time and we identified RPL4, RPLP0, HSPCB and TBP as an optimal combination of reference genes for the normalisation of the oscillatory expression of clock genes in human mammary epithelial cells.  相似文献   

12.
Schizophrenia is a severe and highly heritable neuropsychiatric disorder. Recent genetic analyses including genome-wide association studies (GWAS) have implicated multiple genome-wide significant variants for schizophrenia among European populations. However, many of these risk variants were not largely validated in other populations of different ancestry such as Asians. To validate whether these European GWAS significant loci are associated with schizophrenia in Asian populations, we conducted a systematic literature search and meta-analyses on 19 single nucleotide polymorphisms (SNPs) in Asian populations by combining all available case-control and family-based samples, including up to 30,000 individuals. We employed classical fixed (or random) effects inverse variance weighted methods to calculate summary odds ratios (ORs) and 95 % confidence intervals (CIs). Among the 19 GWAS loci, we replicated the risk associations of nine markers (e.g., SNPs at VRK2, ITIH3/4, NDST3, NOTCH4) surpassing significance level (two-tailed P?<?0.05), and three additional SNPs in MIR137 and ZNF804A also showed trend associations (one-tailed P?<?0.05). These risk associations are in the same directions of allelic effects between Asian replication samples and initial European GWAS findings, and the successful replications of these GWAS loci in a different ethnic group provide stronger evidence for their clinical associations with schizophrenia. Further studies, focusing on the molecular mechanisms of these GWAS significant loci, will become increasingly important for understanding of the pathogenesis to schizophrenia.  相似文献   

13.
What is the relationship between genetic or environmental variation and the variation in messenger RNA (mRNA) expression? To address this, microarrays were used to examine the effect of genetic and environmental variation on cardiac mRNA expression for metabolic genes in three groups of Fundulus heteroclitus: (i) individuals sampled in the field (field), (ii) field individuals acclimated for 6 months to laboratory conditions (acclimated), or (iii) individuals bred for 10 successive generations in a laboratory environment (G10). The G10 individuals have significantly less genetic variation than individuals obtained in the field and had a significantly lower variation in mRNA expression across all genes in comparison to the other two groups (P = 0.001). When examining the gene specific variation, 22 genes had variation in expression that was significantly different among groups with lower variation in G10 individuals than in acclimated individuals. Additionally, there were fewer genes with significant differences in expression among G10 individuals vs. either acclimated or field individuals: 66 genes have statistically different levels of expression vs. 107 or 97 for acclimated or field groups. Based on the permutation of the data, these differences in the number of genes with significant differences among individuals within a group are unlikely to occur by chance (P < 0.01). Surprisingly, variation in mRNA expression in field individuals is lower than in acclimated individuals. Relative to the variation among individual within a group, few genes have significant differences in expression among groups (seven, 2.3%) and none of these are different between acclimated and field individuals. The results support the concept that genetic variation affects variation in mRNA expression and also suggests that temporal environmental variation associated with estuarine environments does not increase the variation among individuals or add to the differences among groups.  相似文献   

14.
Insomnia is a condition characterized by three nocturnal symptoms: problems with sleep onset or maintenance and early morning awakenings (terminal insomnia). Affected individuals may present one or more of these symptoms. Several studies have shown that insomnia is moderately heritable and that proxy phenotypes for the three insomnia symptoms show different heritabilities. This suggests that different nocturnal symptoms of insomnia may arise from different genetic and biological backgrounds. Circadian genes are good candidates to account for these differences as they regulate the periodicity of several physiological functions including sleep. Evidence from studies in animals and humans have suggested that circadian genes might be involved in sleep disturbances such as insomnia. In this study, we investigated the association between Single Nucleotide Polymorphisms (SNPs) in circadian genes and individual symptoms of insomnia and their combinations using data from the Nord-Trøndelag Health Study 3 (the HUNT3 study, N = 50807). Participants (N = 6029) provided information about sleep onset insomnia, maintenance insomnia, and terminal insomnia. Participants who responded “several times a week” to at least one question regarding the mentioned symptoms were classified as cases (N = 3577) and categorized in seven subgroups according to possible symptom combinations. Controls (N = 2452) answered “Never/Seldom” to all sleep-related questions. Using multinomial regression, we assessed 73 SNPs in nine circadian genes (PER1, 2, 3, CRY1, 2, TIMELESS, CLOCK, REV-ERBα, ARNTL) for differences among symptoms subgroups. Twenty-five SNPs showed significant p-values and supportive odds-ratios. All significant SNPs in PER3 were associated with reporting all three symptoms simultaneously. SNPs in CRY genes were associated with terminal insomnia alone or in combination with other symptoms. Genes PER1 and two were mostly associated with sleep maintenance insomnia. However, none of the SNPs remained significant after False Discovery Rate (FDR) correction for multiple statistical testing. In conclusion, even though none of the SNPs remained significant after FDR correction, the clustering of some genes around specific symptoms points to the need for additional research on these relationships.  相似文献   

15.
The pace‐of‐life syndrome (POLS) hypothesis means that animal behavior is correlated with life history strategies. Studies have reported that the free‐running period of the circadian rhythm (length of the period) is correlated with life history strategies in some animals. Although the length of the circadian rhythm may be associated with the POLS hypothesis, few studies have investigated the relationships among animal behavior, life history traits, and circadian rhythm. We tested the POLS hypothesis in the assassin bug, Amphibolus venator, which shows individual variation in locomotor activity. We found higher repeatability of differences in locomotor activity between individuals. Moreover, we found a trade‐off between locomotor activity and developmental period such that active individuals developed faster. However, locomotor activity was not correlated with the length of the circadian rhythm in Avenator. Therefore, this study suggests that the length of the circadian rhythm in Avenator does not support the POLS hypothesis.  相似文献   

16.
Genomewide association studies (GWAS) aim to identify genetic markers strongly associated with quantitative traits by utilizing linkage disequilibrium (LD) between candidate genes and markers. However, because of LD between nearby genetic markers, the standard GWAS approaches typically detect a number of correlated SNPs covering long genomic regions, making corrections for multiple testing overly conservative. Additionally, the high dimensionality of modern GWAS data poses considerable challenges for GWAS procedures such as permutation tests, which are computationally intensive. We propose a cluster‐based GWAS approach that first divides the genome into many large nonoverlapping windows and uses linkage disequilibrium network analysis in combination with principal component (PC) analysis as dimensional reduction tools to summarize the SNP data to independent PCs within clusters of loci connected by high LD. We then introduce single‐ and multilocus models that can efficiently conduct the association tests on such high‐dimensional data. The methods can be adapted to different model structures and used to analyse samples collected from the wild or from biparental F2 populations, which are commonly used in ecological genetics mapping studies. We demonstrate the performance of our approaches with two publicly available data sets from a plant (Arabidopsis thaliana) and a fish (Pungitius pungitius), as well as with simulated data.  相似文献   

17.
ObjectiveTo prioritize genes that were pleiotropically or potentially causally associated with periodontitis.MethodsWe applied the summary data-based Mendelian randomization (SMR) method integrating genome-wide association study (GWAS) for periodontitis and expression quantitative trait loci (eQTL) data to identify genes that were pleiotropically associated with periodontitis. We performed separate SMR analysis using CAGE eQTL data and GTEx eQTL data. SMR analysis were done for participants of European and East Asian ancestries, separately.ResultsWe identified multiple genes showing pleiotropic association with periodontitis in participants of European ancestry and participants of East Asian ancestry. PDCD2 (corresponding probe: ILMN_1758915) was the top hit showing pleotropic association with periodontitis in the participants of European ancestry using CAGE eQTL data, and BX093763 (corresponding probe: ILMN_1899903) and AC104135.3 (corresponding probe: ENSG00000204792.2) were the top hits in the participants of East Asian ancestry using CAGE eQTL data and GTEx eQTL data, respectively.ConclusionWe identified multiple genes that may be involved in the pathogenesis of periodontitis in participants of European ancestry and participants of East Asian ancestry. Our findings provided important leads to a better understanding of the mechanisms underlying periodontitis and revealed potential therapeutic targets for the effective treatment of periodontitis.  相似文献   

18.
ABSTRACT

One of the supposed mechanisms that may lead to breast cancer (BC) is an alteration of circadian gene expression and DNA methylation. We undertook an integrated approach to identify methylation pattern of core circadian promoter regions in BC patients with regard to clinical features. We performed a quantitative methylation-specific real-time PCR analysis of a promoter methylation profile in 107 breast tumor and matched non-tumor tissues. A panel of circadian genes CLOCK, BMAL1, PERIOD (PER1, 2, 3), CRYPTOCHROME (CRY1, 2) and TIMELESS as well as their association with clinicopathological characteristics were included in the analysis. Three out of the eight analyzed genes exhibited marked hypermethylation (PER1, 2, 3), whereas CLOCK, BMAL1, CRY2 showed significantly lower promoter CpG methylation in the BC tissues when compared to the non-tumor tissues. Among variously methylated genes we found an association between the elevated methylation level of PERs promoter region and molecular subtypes, histological subtypes and tumor grading of BC. Methylation status may be associated with a gene expression level of circadian genes in BC patients. An aberrant methylation pattern in circadian genes in BC may provide information that could be used as novel biomarkers in clinics and molecular epidemiology as well as play an important role in BC etiology.  相似文献   

19.
目的 东亚疆域辽阔,民族众多,有着广泛多样的语言。中国34个省级行政区可划分为7个地理分区,人群主要分属世界七大语系。已有研究主要集中在东亚人群的起源、迁徙、融合等遗传历史。本文基于5 147份世界人群个体的高密度单核苷酸多态性(SNP)数据,从地域及语言两个角度研究东亚人群尤其是中国人群与世界其他人群的遗传关系,研究中国人群的遗传关系和遗传结构。方法 收集了5 147份世界人群个体的高密度SNP数据,并对其进行质控、合并。通过频率差异分析方法对最终获得的32 789个SNP进行统计学检验,并进一步使用主成分分析、系统发育树、祖先成分分析和D检验统计等方法,对东亚人群与世界其他人群的遗传关系,以及中国人群的遗传关系和遗传结构进行研究。结果 研究发现东亚人群与非洲、美洲和欧洲人群存在显著差异。中国人群可分为7个亚群,不同人群间的遗传聚类与其地理分布、语系语族和族源历史有很强的相关性。结论 本文研究了中国人群与世界人群的遗传关系和差异,并系统研究了中国人群的遗传亚结构。这将丰富东亚人群的群体遗传学、法医遗传学等研究基础,为个体化医疗等工作提供数据支撑。  相似文献   

20.
Abnormalities in circadian rhythms play an important role in the pathogenesis of bipolar disorders (BD). Previous genetic studies have reported discrepant results regarding associations between circadian genes and susceptibility to BD. Furthermore, plausible behavioral consequences of at-risk variants remain unclear since there is a paucity of correlates with phenotypic biomarkers such as chronotypes. Here, we combined association studies with a genotype/phenotype correlation in order to determine which circadian genes variants may be associated with the circadian phenotypes observed in patients with BD. First, we compared the allele frequencies of 353 single nucleotide polymorphisms spanning 21 circadian genes in two independent samples of patients with BD and controls. The meta-analysis combining both samples showed a significant association between rs774045 in TIMELESS (OR?=?1.49 95%CI[1.18–1.88]; p?=?0.0008) and rs782931 in RORA (OR?=?1.31 95%CI[1.12–1.54]; p?=?0.0006) and BD. Then we used a “reverse phenotyping approach” to look for association between these two polymorphisms and circadian phenotypes in a subsample of patients and controls. We found that rs774045 was associated with eveningness (p?=?0.04) and languid circadian type (p?=?0.01), whereas rs782931 was associated with rigid circadian type (p?=?0.01). Altogether, these findings suggest that these variants in the TIMELESS and RORA genes may confer susceptibility to BD and impact on circadian phenotypes in carriers who thus had lower ability to properly adapt to external cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号