首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diurnal variation in both core body temperature and indicators of physical performance are usually observed when measures are taken at 06:00 and 18:00 h. However, differences have been reported between findings in the literature; this may be in some part due to methodological reasons, such as if the experimenter allowed subjects to eat breakfast before the morning 06:00 h session, or even the waking time of subjects. Eleven diurnally active male subjects participated in four test sessions to examine if the time of morning wakening (04:00 or 05:00 h) and eating or not eating breakfast influence body temperature, flexibility, force production, and aerobic performance at 06:00 h. All four sessions were separated by ≥36 h and were completed in a counterbalanced order. Each test session comprised a sit‐and‐reach test, an arm maximal voluntary torque evaluation (isometric, concentric at 1.05 rad·s?1 and at 4.19 rad·s?1), and a 10 min all‐out cycle ergometer test. Our results indicate the effects of waking time or food intake depend on the parameter tested. Consequently, we advise researchers to take care in experimental design and to at least standardize the time of awakening and consumption of breakfast.  相似文献   

2.
The extent to which the diurnal fluctuations of different cognitive processes could be affected by sleep loss may be explored to predict performance decrements observed in the real world. Twenty healthy male subjects voluntarily took part in 8 test sessions at 06:00, 10:00, 14:00, and 18:00 h, following either a night with or without sleep in random order. Measurements included oral temperature, simple reaction time, sign cancelation, Go/NoGo, and the Purdue pegboard test. The results indicate that simple reaction time and motor coordination had morning–afternoon variations closely following the rhythms of temperature and vigilance. Inhibitory attention (Go/NoGo) presented no morning–afternoon variations. Sleep deprivation may affect the profiles of cognitive performance depending on the processes solicited. Sustained and inhibitory attention are particularly affected in the morning (after 24 and 28 waking hours), while a complex task (visuo-motor coordination) would be affected after 32 waking hours only.  相似文献   

3.
ABSTRACT

Gait is one of the most basic movements, and walking activity accomplished in dual task conditions realistically represents daily life mobility. Much is known about diurnal variations of gait components such as muscle power, postural control, and attention. However, paradoxically only little is known about gait itself. The aim of this study was to analyze whether gait parameters show time-of-day fluctuation in simple and dual task conditions. Sixteen young subjects performed sessions at five specific hours (06:00, 10:00, 14:00, 18:00 and 22:00 h), performing a single (walking or counting) and a dual (walking and counting) task. When performing gait in dual task conditions, an additional cognitive task had to be carried out. More precisely, the participants had to count backwards from a two-digit random number by increments of three while walking. Spatio-temporal gait parameters and counting performance data were recorded for analysis. Walking speed significantly decreased, while stride length variability increased when the task condition switched from single to dual. In the single-task condition, diurnal variations were observed in both walking speed and counting speed. Walking speed was higher in the afternoon and in the evening (14:00 and 22:00 h) and lower in the morning (10:00 h). Counting speed was maximum at 10:00 and 14:00 h and minimum at 18:00 h. Nevertheless, no significant diurnal fluctuation was substanytiated in the dual task condition. These results confirm the existing literature about changes in gait between single and dual task conditions. A diurnal pattern of single-task gait could also be highlighted. Moreover, this study suggests that diurnal variations faded in complex dual task gait, when the cognitive load nearly reached its maximum. These findings might be used to reduce the risk for falls, especially of the elderly.  相似文献   

4.
The aim of this study was to examine the effects of training at the same time of day on diurnal variations of technical ability and swimming performance, to provide some recommendations with regard to adjusting training hours in accord with the time of day of competitive events. Eighteen participants volunteered for this study, and these were randomly assigned to either a morning training group (MTG, who trained only between 07:00 and 08:00 h, n = 6), an evening training group (ETG, who trained only between 17:00 and 18:00 h, n = 6), or a control group (CG, did not train but participated in all tests, n = 6). Swimming performance and technical ability – (i) stroke parameters: swim velocity (V), stroke rate (SR), and stroke length (SL); and (ii) motor organization: arm stroke phases and arm coordination (Idc) – were recorded 2 weeks before and 2 weeks after an 8-week regular training period. For all participants, the morning and evening tests were scheduled at the same time of day as the morning and evening training sessions. After training, the major finding of this study was that both ETG and the CG showed significantly lower P, V, SR, phase (B), phase (C), and Idc values in the morning than in the evening. However, P, V, SR, phase (B), phase (C), and Idc of the MTG measured at 07:00 and 17:00 h did not differ. Thus, training at a specific time of day increased performance in MTG at this time and modified the diurnal variation of swim performance. This study indicates that training at a specific time of day can result in marked changes in both swimming performance and technical aspects of swimming. Furthermore, training in the morning improved morning swimming performance and its components, and the amplitude of the morning–evening difference decreased. Training in the evening improved swimming performance and its components more in the evening than the morning, and the amplitude of the morning–evening difference increased.  相似文献   

5.
The aim of this study was to examine the time‐of‐day (TOD) effects in myoelectric and mechanical properties of muscle during a maximal and prolonged isokinetic exercise. Twelve male subjects were asked to perform 50 maximal voluntary contractions (MVC) of the knee extensor muscles at a constant angular velocity of 2.09 rad · sec?1, at 06∶00 and 18∶00 h. Torque and electromyographic (EMG) parameters were recorded for each contraction, and the ratio between these values was calculated to evaluate variations of the neuromuscular efficiency (NME) with fatigue and with TOD. The results indicated that maximal torque values (T45Max) was significantly higher (7.73%) in the evening than in the morning (p<0.003). The diurnal variation in torque decrease was used to define two phases. During the first phase (1st to the 26th repetition), torque values decreased fast and values were higher in the evening than in the morning, and during the second phase (27th to the 50th repetition), torque decreased slightly and reached a floor value that appeared constant with TOD. The EMG parameters (Root Mean Square; RMS) were modified with fatigue, but were not TOD dependent. The NME decrease–significantly with fatigue, showing that peripheral factors were mainly involved in the torque decrease. Furthermore, NME decrease was greater at 18∶00 than at 06∶00 h for the vastus medialis (p<0.05) and the vastus lateralis muscles (p<0.002), and this occurred during the first fatigue phase of the exercise. In conclusion, the diurnal variation of the muscle fatigue observed during a maximal and prolonged isokinetic exercise seems to reflect on the muscle, with a greater contractile capacity but a higher fatigability in the evening compared to the morning.  相似文献   

6.
Population-based studies indicate the risk of acute myocardial infarction (AMI) is greatest in the morning, during the initial hours of diurnal activity. The aim of this pilot study was to determine whether chronotype, i.e., morningness and eveningness, impacts AMI onset time. The sample comprised 63 morning- and 40 evening-type patients who were classified by the Horne-?stberg Morningness-Eveningness Questionnaire (MEQ) in the hospital after experiencing the AMI. The average wake-up and bed times of morning types were ~2?h earlier than evening types. Although the lag in time between waking up from nighttime sleep and AMI onset during the day did not differ between the two chronotypes, the actual clock-hour time of the peak in the 24-h AMI pattern did. The peak in AMI of morning types occurred between 06:01 and 12:00?h and that of the evening types between 12:01 and 18:00?h. Although the results of this small sample pilot study suggest one's chronotype influences the clock time of AMI onset, larger scale studies, which also include assessment of 24-h patterning of events in neither types, must be conducted before concluding the potential influence of chronotype on the timing of AMI onset.  相似文献   

7.
The aim of this study was to examine the effects of training at the same time of the day on the diurnal variations of anaerobic performances to provide some recommendations to adjust training hours with the time of the day of competitive events. Thirty participants underwent 8 weeks of lower-extremity progressive resistance training performed 3 times per week designed to promote muscular strength and power. These subjects were randomly assigned to a morning training group (MTG, 07:00-08:00 hours, n = 10), an evening training group (ETG, 17:00-18:00 hours, n = 10), and a control group (CG, completed all tests but did not train, n = 10). Performance in the squat jump, the countermovement jump, the Wingate and 1 repetition maximum (1RM) during leg extension, leg curl, and squat tests was recorded just before and 2 weeks after an 8-week course of regular training. For all the subjects, the morning and evening tests were scheduled at the same time of the day as for the morning and evening training sessions. Before training, the results indicated a significant increase in performance from morning to evening tests (ca. 2.84-17.55% for all tests) for all groups. After training, the diurnal variations in anaerobic performances were blunted in the MTG. In fact, there was no significant difference in muscular power or strength between morning and evening tests. However, these intradaily variations in anaerobic performances persisted in the ETG and CG. From a practical point of view, adaptation to strength training is greater at the time of the day at which training was scheduled than at other times.  相似文献   

8.
The purpose of this study was to examine the time-of-day effects on the offensive capability and aerobic performance in football game in young subjects. In a randomized order, participants realized the Yo–Yo intermittent recovery test in two test sessions and a football game situations (two 15-min games), interspersed by a verbalization sequence (3 min) at 08:00 and 17:00 h on separate days. A recovery period of 24 h was permitted between two consecutive test sessions. The results revealed diurnal variations on the maximal aerobic velocity during the Yo–Yo test (MAV) and the oral temperature with higher values in the afternoon than morning (p < 0.05). Concerning offensive capability, the numbers of scored goals were significantly higher at 17:00 h in comparison with 08:00 h (p < 0.05). However, there was no significant difference between 08:00 and 17:00 h for the kicked balls (shooting parameter). In conclusion, our findings suggest that performance was improved in the evening and the parameters (shooting and Scored goals) can be used as a model to describe the offensive capacity in football game depending on the time of day.  相似文献   

9.
Population-based studies indicate the risk of acute myocardial infarction (AMI) is greatest in the morning, during the initial hours of diurnal activity. The aim of this pilot study was to determine whether chronotype, i.e., morningness and eveningness, impacts AMI onset time. The sample comprised 63 morning- and 40 evening-type patients who were classified by the Horne-Östberg Morningness-Eveningness Questionnaire (MEQ) in the hospital after experiencing the AMI. The average wake-up and bed times of morning types were ~2?h earlier than evening types. Although the lag in time between waking up from nighttime sleep and AMI onset during the day did not differ between the two chronotypes, the actual clock-hour time of the peak in the 24-h AMI pattern did. The peak in AMI of morning types occurred between 06:01 and 12:00?h and that of the evening types between 12:01 and 18:00?h. Although the results of this small sample pilot study suggest one's chronotype influences the clock time of AMI onset, larger scale studies, which also include assessment of 24-h patterning of events in neither types, must be conducted before concluding the potential influence of chronotype on the timing of AMI onset. (Author correspondence: ).  相似文献   

10.
The diurnal variation in insulin-stimulated systemic glucose and amino acid utilization was investigated in eleven pigs of approximately 40 kg. Pigs were fed isoenergetic/isoproteinic diets (366 kJ/kg BW (0.75) per meal) in two daily rations (06:00 and 18:00 h). After a 3-week habituation period, hyperinsulinemic euglycemic euaminoacidemic clamp studies (by intra-portal insulin, glucose and amino acids infusion and arterial blood sampling) were performed starting at 06:00 or 18:00 h (while skipping the meal), using a cross-over within-animal design. Basal (preclamp) plasma concentrations of insulin, glucose, lactate, individual amino acids and urea were similar in the morning compared to the evening. Insulin-stimulated ( approximately 4-fold increase over basal) systemic glucose utilization was similar (17.6+/-1.4 and 18.9+/-1.8 mg.kg (-1).min (-1)) but amino acid utilization was 19% greater in the morning VS. the evening (2.37+/-0.21 VS. 1.99+/-0.15 mg.kg (-1).min (-1), p<0.05), respectively. Insulin-stimulated plasma lactate concentrations remained constant in the morning (0.77+/-0.06 to 0.71+/-0.04 mmol.l (-1)) but declined in the evening (0.89+/-0.09 to 0.65+/-0.06 mmol.l (-1), p<0.05). By contrast, insulin-stimulated plasma urea concentrations declined in the morning (2.48+/-0.11 to 2.03+/-0.10 mmol.l (-1), p<0.005) but remained constant in the evening (2.18+/-0.14 to 2.12+/-0.12 mmol.l (-1)). In conclusion, pigs fed identical meals at 12-hour intervals follow a clear diurnal biorhythm in protein anabolism, with greater insulin-stimulated systemic amino acid utilization and lower plasma urea response in the morning compared to the evening.  相似文献   

11.
《Chronobiology international》2013,30(8):1622-1635
The aim of this study was to evaluate time-of-day effects on fatigue during a sustained anaerobic cycling exercise. Sixteen healthy male competitive cyclists were asked to perform a 60 s Wingate test against a braking load of 0.087?kg.kg body mass?1 during two experimental sessions, which were set up either at 06:00 or 18:00?h in counterbalanced order. There was only one session per day with a recovery period of at least 36?h between the two sessions. Each subject was trained to perform the test. The body mass used to determine the braking load was that of the first test session for each subject and remained constant throughout the two test periods. During the test, peak power (PP), mean power during the first 30 s (MP30 s) and the full 60 s of the test (MP60 s), and fatigue (i.e., the decrease in power output values throughout the exercise) were analyzed. Results confirmed the existence of diurnal variation in anaerobic power output. PP, MP30 s, and MP60 s were significantly higher at 18:00 than 06:00?h, with gains equal to 8.2, 7.8, and 7.8%, respectively. Moreover, all the power output values recorded in the evening were higher than those recorded in the morning, indicating that fatigue induced by this exercise is not affected by time-of-day in male competitive cyclists. It is hypothesized that the freedom and complexity of pedalling could allow adaptations in movement patterns, as a function of time-of-day, in order to maintain higher performance in the evening. For practical considerations, the more complex the movements required to perform a sport, the more the time-of-day effect can be taken into account and adapted to by the trained athlete, particularly in cyclic sporting disciplines such as swimming, running, rowing, and kayaking. (Author correspondence: )  相似文献   

12.
The aim of this study was to examine the time-of-day (TOD) effects in myoelectric and mechanical properties of muscle during a maximal and prolonged isokinetic exercise. Twelve male subjects were asked to perform 50 maximal voluntary contractions (MVC) of the knee extensor muscles at a constant angular velocity of 2.09 rad . sec(-1), at 06 : 00 and 18 : 00 h. Torque and electromyographic (EMG) parameters were recorded for each contraction, and the ratio between these values was calculated to evaluate variations of the neuromuscular efficiency (NME) with fatigue and with TOD. The results indicated that maximal torque values (T(45)Max) was significantly higher (7.73%) in the evening than in the morning (p<0.003). The diurnal variation in torque decrease was used to define two phases. During the first phase (1st to the 26th repetition), torque values decreased fast and values were higher in the evening than in the morning, and during the second phase (27th to the 50th repetition), torque decreased slightly and reached a floor value that appeared constant with TOD. The EMG parameters (Root Mean Square; RMS) were modified with fatigue, but were not TOD dependent. The NME decrease-significantly with fatigue, showing that peripheral factors were mainly involved in the torque decrease. Furthermore, NME decrease was greater at 18 : 00 than at 06 : 00 h for the vastus medialis (p<0.05) and the vastus lateralis muscles (p<0.002), and this occurred during the first fatigue phase of the exercise. In conclusion, the diurnal variation of the muscle fatigue observed during a maximal and prolonged isokinetic exercise seems to reflect on the muscle, with a greater contractile capacity but a higher fatigability in the evening compared to the morning.  相似文献   

13.
《Chronobiology international》2013,30(9):1211-1222
The aim of this study was to investigate the effect of an Olympic-Weightlifting-session followed by 48-h recovery period on the oxidative and antioxidant parameters’ diurnal variation. Nine weightlifters (21?±?0.5 years) performed, in randomized order, three Olympic-Weightlifting-sessions at 08?h:00, 14?h:00 and 18?h:00. Blood samples were collected: at rest and 3?min and 48?h after each session. C-reactive protein (CRP), rate of lipid peroxidation and antioxidant activities were assessed. At rest, analysis of variance showed a significant time of day (TOD) effect (p?<?0.05) for uric acid, catalase and glutathione peroxidase with higher values at 14?h:00 and 18?h:00 compared with 08?h:00. However, no significant TOD effect for malondialdehyde, total bilirubin and CRP was observed. Given the profound changes (p?<?0.001) in the post-training session values, these diurnal variations have been altered immediately and even 48?h after the training sessions. Despite the significant decreases in the post-training values after the 48-h recovery period (p?<?0.05), levels of lipid peroxidation and enzymatic defense remained elevated (p?<?0.05) 48?h after the morning training session. However, after the afternoon and evening sessions, the same period was sufficient to return values to the baseline levels. In conclusion, the morning session seems to generate the most important acute and delayed lipid peroxidation responses. Therefore, weightlifting coaches should avoid scheduling their training sessions in the morning-hours.  相似文献   

14.
This study analyzed diurnal variations in oxygen (O(2)) uptake kinetics and efficiency during a moderate cycle ergometer exercise. Fourteen physically active diurnally active male subjects (age 23+/-5 yrs) not specifically trained at cycling first completed a test to determine their ventilatory threshold (T(vent)) and maximal oxygen consumption (VO(2max)); one week later, they completed four bouts of testing in the morning and evening in a random order, each separated by at least 24 h. For each period of the day (07:00-08:30 h and 19:00-20:30 h), subjects performed two bouts. Each bout was composed of a 5 min cycling exercise at 45 W, followed after 5 min rest by a 10 min cycling exercise at 80% of the power output associated with T(vent). Gas exchanges were analyzed breath-by-breath and fitted using a mono-exponential function. During moderate exercise, the time constant and amplitude of VO(2) kinetics were significantly higher in the morning compared to the evening. The net efficiency increased from the morning to evening (17.3+/-4 vs. 20.5+/-2%; p<0.05), and the variability of cycling cadence was greater during the morning than evening (+34%; p<0.05). These findings suggest that VO(2) responses are affected by the time of day and could be related to variability in muscle activity pattern.  相似文献   

15.
Muscle force production and power output in active males, regardless of the site of measurement (hand, leg, or back), are higher in the evening than in the morning. This diurnal variation is attributed to motivational, peripheral and central factors, and higher core and, possibly, muscle temperatures in the evening. This study investigated whether increasing morning rectal temperatures to evening resting values, by active or passive warm-ups, leads to muscle force production and power output becoming equal to evening values in motivated subjects. Ten healthy active males (mean ± SD: age, 21.2 ± 1.9 yrs; body mass, 75.4 ± 8 kg; height, 1.76 ± .06 m) completed the study, which was approved by the University Ethics Committee. The subjects were familiarized with the techniques and protocol and then completed four sessions (separated by at least 48 h): control morning (07:30 h) and evening (17:30 h) sessions (with an active 5-min warm-up) and then two further sessions at 07:30 h but proceeded by an extended active or passive warm-up to raise rectal temperature to evening values. These last two sessions were counterbalanced in order of administration. During each trial, three measures of handgrip strength, isokinetic leg strength measurements (of knee flexion and extension at 1.05 and 4.19 rad.s?1 through a 90° range of motion), and four measures of maximal voluntary contraction (MVC) on an isometric ergometer (utilizing the twitch-interpolation technique) were performed. Rectal and intra-aural temperatures, ratings of perceived exertion (RPE) and thermal comfort (TC) were measured. Measurements were made after the subjects had reclined for 30 min and after the warm-ups and prior to the measurement of handgrip and isokinetic and isometric ergometry. Muscle temperature was taken after the warm-up and immediately before the isokinetic and MVC measurements. Warm-ups were either active (cycle ergometer at 150 W) or passive (resting in a room at 35°C, relative humidity 45%). Data were analyzed using analysis of variance models with repeated measures. Rectal and intra-aural temperatures were higher at rest in the evening (.56°C and .74°C; p < .05) than in the morning, but there were no differences after the active or passive warm-ups, the subjects' ratings of thermal comfort reflecting this. Muscle temperatures also displayed significant diurnal variation, with higher values in the evening (~.31°C; p < .05). Grip strength, isokinetic knee flexion for peak torque and peak power at 1.05 rad.s?1, and knee extension for peak torque at 4.19 rad.s?1 all showed higher values in the evening. All other measures of strength or power showed a trend to be higher in the evening ( .10 > p > .05). There was no significant effect of active or passive warm-ups on any strength or power variable, and subjects reported maximal values for effort for each strength measure. In summary, effects of time of day were seen in some measures of muscle performance but, in this population of motivated subjects, there was no evidence that increasing morning rectal temperature to evening values by active or passive warm-up increased muscle strength to evening values. (Author correspondence: )  相似文献   

16.
Evidence for diurnal periodicity in human cholesterol synthesis   总被引:2,自引:0,他引:2  
Diurnal variation in human cholesterol synthesis in the rapidly exchangeable pool was studied in six healthy normolipidemic individuals by measurement of deuterium incorporation from body water into plasma cholesterol. After oral administration of D2O, free and de-esterified plasma cholesterol and plasma water were sampled over 48 h, converted to hydrogen, and deuterium enrichment was determined by isotope ratio mass spectrometry. Deuterium enrichment changes over 4-h intervals were used to calculate fractional synthetic rate (FSR). No significant time effects were observed on plasma total cholesterol levels over the 48-h study. The highest rate of deuterium incorporation into free cholesterol occurred during early morning, whereas during afternoon and early evening incorporation rates were lower. Free cholesterol FSR values were lowest at 14:00 to 18:00 h and peaked at 06:00 h. The periodicity across timepoints was not significantly different from that of a derived sine function equation. For cholesteryl ester, FSR data showed less distinct variation over time, peaking during early morning, indicative of maximal efflux of free cholesterol to the ester pool during this period. These findings offer direct evidence for diurnal patterns in human cholesterol synthesis.  相似文献   

17.
The synchrony effect refers to the beneficial impact of temporal matching between the timing of cognitive task administration and preferred time-of-day for diurnal activity. Aging is often associated with an advance in sleep-wake timing and concomitant optimal performance levels in the morning. In contrast, young adults often perform better in the evening hours. So far, the synchrony effect has been tested at fixed clock times, neglecting the individual's sleep-wake schedule and thus introducing confounds, such as differences in accumulated sleep pressure or circadian phase, which may exacerbate synchrony effects. To probe this hypothesis, the authors tested older morning and young evening chronotypes with a psychomotor vigilance and a Stroop paradigm once at fixed morning and evening hours and once adapting testing time to their preferred sleep-wake schedule in a within-subject design. The authors observe a persistence of synchrony effects for overall median reaction times during a psychomotor vigilance task, even when testing time is adapted to the specific individual's sleep-wake schedule. However, data analysis also indicates that time-of-day modulations are weakened under those conditions for incongruent trials on Stroop performance and the slowest reaction times on the psychomotor vigilance task. The latter result suggests that the classically observed synchrony effect may be partially mediated by a series of parameters, such as differences in socio-professional timing constraints, the amount of accumulated sleep need, or circadian phase, all leading to differential arousal levels at testing.  相似文献   

18.
The purpose of the study was to identify differences in the patterns of efficacy and duration of effects of imidapril administered at different times of the day (morning versus evening) in dipper and nondipper hypertensive patients. Twenty patients with untreated hypertension were classified into two groups: dippers (n = 9) and nondippers (n = 11). Imidapril (10 mg) was given at 07:00 or 18:00 for 4 weeks in a crossover fashion. Blood pressure (BP) and heart rate (HR) were monitored before and after morning and evening treatment every 30 min for 48h by ambulatory BP monitoring (ABPM). In dipper hypertension, the mean 48h BP was reduced with both doses. The decrease in the diurnal BP was stronger when the drug was administered in the evening than morning, but without significant difference. In nondipper hypertension, the systolic BP decreased at night with both doses, but the extent of the nocturnal reduction in systolic BP was greater after morning therapy. There were no significant differences in the decrease in BP during the day or night between the morning and evening administrations. When imidapril was administered in the morning, its serum concentration reached a maximum at 16:00, and when the drug was administered in the evening, it reached a maximum at 6:00. In dipper hypertension, the time taken for the blood concentration of imidapril to reach a maximum changed depending on its time of administration, and the time when the maximum antihypertensive effect of the drug appeared was different. In nondipper hypertension, decreases in the BP were confirmed at night regardless of the time of administration; this might be caused by angiotensin converting enzyme (ACE) inhibitors effectively blocking the BP from increasing by activating the parasympathetic nervous system. Therefore, when assessing the effectiveness of antihypertensive agents, factors such as the various patterns of BP before therapy and administration time must be considered.  相似文献   

19.
The study focused on chronotype-related differences in subjective load assessment, sleepiness, and salivary cortisol pattern in subjects performing daylong simulated driving. Individual differences in work stress appraisal and psychobiological cost of prolonged load seem to be of importance in view of expanding compressed working time schedules. Twenty-one healthy, male volunteers (mean?±?SD: 27.9?±?4.9 yrs) were required to stay in semiconstant routine conditions. They performed four sessions (each lasting ~2.5?h) of simulated driving, i.e., completed chosen tasks from computer driving games. Saliva samples were collected after each driving session, i.e., at 10:00–11:00, 14:00–15:00, 18:00–19:00, and 22:00–23:00?h as well as 10–30?min after waking (between 05:00 and 06:00?h) and at bedtime (after 00:00?h). Two subgroups of subjects were distinguished on the basis of the Chronotype Questionnaire: morning (M)- and evening (E)-oriented types. Subjective data on sleep need, sleeping time preferences, sleeping problems, and the details of the preceding night were investigated by questionnaire. Subjective measures of task load (NASA Task Load Index [NASA-TLX]), activation (Thayer's Activation-Deactivation Adjective Check List [AD ACL]), and sleepiness (Karolinska Sleepiness Scale [KSS]) were applied at times of saliva samples collection. M- and E-oriented types differed significantly as to their ideal sleep length (6 h 54 min?±?44 versus 8 h 13 min?±?50 min), preferred sleep timing (midpoint at 03:19 versus 04:26), and sleep index, i.e., ‘real-to-ideal’ sleep ratio, before the experimental day (0.88 versus 0.67). Sleep deficit proved to be integrated with eveningness. M and E types exhibited similar diurnal profiles of energy, tiredness, tension, and calmness assessed by AD ACL, but E types estimated higher their workload (NASA-TLX) and sleepiness (KSS). M types exhibited a trend of higher mean cortisol levels than E types (F?=?4.192, p?<?.056) and distinct diurnal variation (F?=?2.950, p?<?.019), whereas E types showed a flattened diurnal curve. Cortisol values did not correlate with subjective assessments of workload, arousal, or sleepiness at any time-of-day. Diurnal cortisol pattern parameters (i.e., morning level, mean level, and range of diurnal changes) showed significant positive correlations with sleep length before the experiment (r?=?.48, .54, and .53, respectively) and with sleep index (r?=?.63, .64, and .56, respectively). The conclusions of this study are: (i) E-oriented types showed lower salivary cortisol levels and a flattened diurnal curve in comparison with M types; (ii) sleep loss was associated with lower morning cortisol and mean diurnal level, whereas higher cortisol levels were observed in rested individuals. In the context of stress theory, it may be hypothesized that rested subjects perceived the driving task as a challenge, whereas those with reduced sleep were not challenged, but bored/exhausted with the experimental situation. (Author correspondence: )  相似文献   

20.
Diurnal variations in cycling kinematics   总被引:1,自引:0,他引:1  
Physiological and biomechanical constraints as well as their fluctuations throughout the day must be considered when studying determinant factors in the preferred pedaling rate of elite cyclists. The aim of this study was to monitor the diurnal variation of spontaneous pedaling rate and movement kinematics over the crank cycle. Twelve male competitive cyclists performed a submaximal exercise on a cycle ergometer for 15 min at 50% of their W(max). Two test sessions were performed at 06:00 and 18:00 h on two separate days to assess diurnal variation in the study variables. For each test session, the exercise bout was divided into three equivalent 5-min periods during which subjects were requested to use different pedal rates (spontaneous cadence, 70 and 90 rev min(-1)). Pedal rate and kinematics data (instantaneous pedal velocity and angle of the ankle) were collected. The results show a higher spontaneous pedal rate in the late afternoon than in the early morning (p < 0.001). For a given pedal rate condition, there was a less variation in pedal velocity during a crank cycle in the morning than in the late afternoon. Moreover, diurnal variations were observed in ankle mobility across the crank cycle, the mean plantar flexion observed throughout the crank cycle being greater in the 18:00 h test session (p < 0.001). These results suggest that muscular activation patterns during a cyclical movement could be under the influence of circadian fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号