首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
Although many different crop species have been used to produce a wide range of vaccines, antibodies, biopharmaceuticals and industrial enzymes, tobacco has the most established history for the production of recombinant proteins. To further improve the heterologous protein yield of tobacco platforms, transient and stable expression of four recombinant proteins (i.e. human erythropoietin and interleukin-10, an antibody against Pseudomonas aeruginosa, and a hyperthermostable α-amylase) was evaluated in numerous species and cultivars of Nicotiana. Whereas the transient level of recombinant protein accumulation varied significantly amongst the different Nicotiana plant hosts, the variety of Nicotiana had little practical impact on the recombinant protein concentration in stable transgenic plants. In addition, this study examined the growth rate, amount of leaf biomass, total soluble protein levels and the alkaloid content of the various Nicotiana varieties to establish the best plant platform for commercial production of recombinant proteins. Of the 52 Nicotiana varieties evaluated, Nicotiana tabacum (cv. I 64) produced the highest transient concentrations of recombinant proteins, in addition to producing a large amount of biomass and a relatively low quantity of alkaloids, probably making it the most effective plant host for recombinant protein production.  相似文献   

2.
重组蛋白为疾病治疗提供了新手段,同时创造了可观的经济效益。利用经济作物(主要是烟草)、谷类作物、豆科作物和蔬菜作物生产具有药用价值的重组蛋白是“分子农业”最热门的研究内容。尽管许多重组蛋白已在植物中表达,但只有一小部分已成功投入使用。为了极大地克服限制植物生产重组蛋白发展的问题,研究人员改进表达系统以增加重组蛋白的产量。本文从分析植物产生重组蛋白产量低和/或生物活性低等问题入手,综述了近些年来解决这些问题的优化策略,同时提出了提高植物生产重组蛋白产量的研究方向。  相似文献   

3.
We demonstrated the production of goldfish luteinizing hormone (gfLH) by the use of 4-day-old rainbow trout embryos as novel bioreactors. This expression system has several advantages target proteins can be rapidly expressed at low cost, and recombinant proteins can be synthesized at low temperatures and can undergo complex post-translational modifications (PTMs). An expression vector containing gfLH cDNA was microinjected into fertilized trout eggs. After 4 days of incubation at 10°C, transgenic embryos were harvested and glycosylated recombinant gfLH was recovered, which stimulated testosterone production in testicular fragments from the goldfish. This is the first report on the successful production of bioactive recombinant gonadotropin originated from cyprinid. Further, these results demonstrate that trout-embryo bioreactors are a potentially powerful tool for the production of functional recombinant proteins.  相似文献   

4.
Transgenic plants offer advantages for biomolecule production because plants can be grown on a large scale and the recombinant macromolecules can be easily harvested and extracted. We introduced an Aspergillus phytase gene into canola (Brassica napus) (line 9412 with low erucic acid and low glucosinolates) by Agrobacterium-mediated transformation. Phytase expression in transgenic plant was enhanced with a synthetic phytase gene according to the Brassica codon usage and an endoplasmic reticulum (ER) retention signal KDEL that confers an ER accumulation of the recombinant phytase. Secretion of the phytase to the extracellular fluid was also established by the use of the tobacco PR-S signal peptide. Phytase accumulation in mature seed accounted for 2.6% of the total soluble proteins. The enzyme can be glycosylated in the seeds of transgenic plants and retain a high stability during storage. These results suggest a commercial feasibility of producing a stable recombinant phytase in canola at a high level for animal feed supplement and for reducing phosphorus eutrophication problems.  相似文献   

5.
6.
Recombinant proteins are essential products of today's industrial biotechnology. In this study we address two crucial factors in recombinant protein production: (i) product accessibility and (ii) product recovery. Escherichia coli, one of the most frequently used hosts for recombinant protein expression, does not inherently secrete proteins into the extracellular environment. The major drawback of this expression system is, therefore, to be found in the intracellular protein accumulation and hampered product accessibility. We have constructed a set of expression vectors in order to facilitate extracellular protein production and purification. The maltose binding protein from E. coli is used as fusion partner for several proteins of interest allowing an export to the bacteria's periplasm via both the Sec and the Tat pathway. Upon coexpression of a modified Cloacin DF13 bacteriocin release protein, the hybrid proteins are released into the culture medium. This essentially applies to a distinguished reporter molecule, the green fluorescent protein, for which an extracellular production was not reported so far. The sequestered proteins can be purified to approximate homogeneity by a simple, rapid and cheap procedure which utilizes the affinity of the maltose binding protein to α-1,4-glucans.  相似文献   

7.
The silkworm, Bombyx mori, has been used as an important bioreactor for the production of recombinant proteins through baculovirus expression system (BES). There are several problems which will probably be the bottleneck for practical and industrial utilization of silkworm bioreactor. Traditionally, the recombinant virus should infect the larvae through individual dorsal injection by a syringe. This is a time- and labor-consuming procedure. This drawback has become a bottleneck for practical and industrial utilization of baculovirus expression system in the silkworm bioreactor. In this paper, we constructed a dual expression baculovirus to express the renovated polyhedron and target manganese superoxide dismutase (SOD) gene under P10 and polyhedron promoters, respectively, through oral infection. The results showed that the direct injection of recombinant rBacmid/BmNPV/SOD DNA with cellfectin reagent infected the silkworm larvae partially. When next batches of larvae were fed orally with hemolymph, which was collected from first batch of injected and infected larvae, the obvious symptom of infection was found and high target SOD was expressed. These results imply it is feasible to express target genes through combination of recombinant bacmid DNA injection and oral feeding by a dual expression bacmid baculovirus.  相似文献   

8.
Recombinant proteins are widely used today in many industries, including the biopharmaceutical industry, and can be expressed in bacteria, yeasts, mammalian and insect cell cultures, or in transgenic plants and animals. In addition, transgenic algae have also been shown to support recombinant protein expression, both from the nuclear and chloroplast genomes. However, to date, there are only a few reports on recombinant proteins expressed in the algal chloroplast. It is unclear whether this is because of few attempts or of limitations of the system that preclude expression of many proteins. Thus, we sought to assess the versatility of transgenic algae as a recombinant protein production platform. To do this, we tested whether the algal chloroplast could support the expression of a diverse set of current or potential human therapeutic proteins. Of the seven proteins chosen, >50% expressed at levels sufficient for commercial production. Three expressed at 2%–3% of total soluble protein, while a forth protein accumulated to similar levels when translationally fused to a well‐expressed serum amyloid protein. All of the algal chloroplast‐expressed proteins are soluble and showed biological activity comparable to that of the same proteins expressed using traditional production platforms. Thus, the success rate, expression levels, and bioactivity achieved demonstrate the utility of Chlamydomonas reinhardtii as a robust platform for human therapeutic protein production.  相似文献   

9.
The demand for recombinant proteins for medical and industrial use is expanding rapidly and plants are now recognized as an efficient, inexpensive means of production. Although the accumulation of recombinant proteins in transgenic plants can be low, we have previously demonstrated that fusions with an elastin‐like polypeptide (ELP) tag can significantly enhance the production yield of a range of different recombinant proteins in plant leaves. ELPs are biopolymers with a repeating pentapeptide sequence (VGVPG)n that are valuable for bioseparation, acting as thermally responsive tags for the non‐chromatographic purification of recombinant proteins. To determine the optimal ELP size for the accumulation of recombinant proteins and their subsequent purification, various ELP tags were fused to green fluorescent protein, interleukin‐10, erythropoietin and a single chain antibody fragment and then transiently expressed in tobacco leaves. Our results indicated that ELP tags with 30 pentapeptide repeats provided the best compromise between the positive effects of small ELP tags (n = 5–40) on recombinant protein accumulation and the beneficial effects of larger ELP tags (n = 80–160) on recombinant protein recovery during inverse transition cycling (ITC) purification. In addition, the C‐terminal orientation of ELP fusion tags produced higher levels of target proteins, relative to N‐terminal ELP fusions. Importantly, the ELP tags had no adverse effect on the receptor binding affinity of erythropoietin, demonstrating the inert nature of these tags. The use of ELP fusion tags provides an approach for enhancing the production of recombinant proteins in plants, while simultaneously assisting in their purification. Biotechnol. Bioeng. 2009;103: 562–573. © 2009 Wiley Periodicals, Inc.  相似文献   

10.
An economic and cheap production of large amounts of recombinant allergenic proteins might become a prerequisite for the common use of microarray-based diagnostic allergy assays which allow a component-specific diagnosis. A molecular pharming strategy was applied to express the major allergen of Artemisia vulgaris pollen, Art v 1, in tobacco plants and tobacco cell cultures. The original Art v 1 with its endogenous signal peptide which directs Art v 1 to the secretory pathway, was expressed in transiently transformed tobacco leaves but was lost in stable transformed tobacco plants during the alternation of generations. Using a light-regulated promoter and “hiding” the recombinant Art v 1 in the ER succeeded in expression of Art v 1 over three generations of tobacco plants and in cell cultures generated from stable transformed plants. However, the amounts of the recombinant allergen were sufficient for analysis but not high enough to allow an economic production. Although molecular pharming has been shown to work well for the production of non-plant therapeutic proteins, it might be less efficient for closely related plant proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号