首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
Histone deacetylases (HDACs) and histone acetyl transferases (HATs) are two counteracting enzyme families whose enzymatic activity controls the acetylation state of protein lysine residues, notably those contained in the N-terminal extensions of the core histones. Acetylation of histones affects gene expression through its influence on chromatin conformation. In addition, several non-histone proteins are regulated in their stability or biological function by the acetylation state of specific lysine residues. HDACs intervene in a multitude of biological processes and are part of a multiprotein family in which each member has its specialized functions. In addition, HDAC activity is tightly controlled through targeted recruitment, protein-protein interactions and post-translational modifications. Control of cell cycle progression, cell survival and differentiation are among the most important roles of these enzymes. Since these processes are affected by malignant transformation, HDAC inhibitors were developed as antineoplastic drugs and are showing encouraging efficacy in cancer patients.  相似文献   

3.
Wu J  Zhou Z  Hu Y  Dong S 《遗传学报》2012,39(8):375-384
Butyrate has been recently identified as a natural ligand of the G-protein-coupled receptor 41(GPR41).In addition,it is an inhibitor of histone deacetylase(HDAC).Butyrate treatment results in the hyperacetylation of histones,with resultant multiple biological effects including inhibition of proliferation,induction of cell cycle arrest,and apoptosis,in a variety of cultured mammalian cells.However,it is not clear whether GPR41 is actively involved in the above-mentioned processes.In this study,we generated a stable cell line expressing the hGPR41 receptor in order to investigate the involvement of GPR41 on butyrate-induced biochemical and physiologic processes.We found that GPR41 activation may be a compensatory mechanism to counter the increase in histone H3 acetylation levels induced by butyrate treatment.Moreover,GPR41 had an inhibitory effect on the anti-proliferative,pro-apoptotic effects of butyrate.GPR41 expression induced cell cycle arrest at the G1-stage,while its activation by butyrate can cause more cells to pass the G1 checkpoint.These results indicated that GPR41 was associated with histone acetylation and might be involved in the acetylation-related regulation of cell processes including proliferation,apoptosis,and the cell cycle.  相似文献   

4.
5.
Bcl-2/adenovirus E1B 19 kDa interacting protein 2 like-1 (BNIPL-1) is a novel human protein identified in our laboratory, which can interact with Bcl-2 and Cdc42GAP and induce apoptosis via the BNIP-2 and Cdc42GAP homology (BCH) domain. In the present study, we established the Hep3B-Tet-on stable cell line in which expression of BNIPL-1 can be induced by doxycycline. The cell proliferation activity assay showed that the overexpression of BNIPL-1 suppresses Hep3B cell growth in vitro. The differential expression profiles of 588 known genes from BNIPL-1-transfected Hep3B-Tet-on and vector control cells were determined using the Atlas human cDNA expression array. Fifteen genes were differentially expressed between these two cell lines, among which seven genes were up-regulated and eight genes were down-regulated by BINPL-1. Furthermore, the differential expression result was confirmed by semiquantitative RT-PCR. Among these differentially expressed genes, p16^INK4, IL-12, TRAIL and the lymphotoxin β gene involved in growth suppression or cell apoptosis were up-regulated, and PTEN involved in cell proliferation was down-regulated by BNIPL-1. These results suggest that BNIPL-1 might inhibit cell growth though cell cycle arrest and/or apoptotic cell death pathway(s).  相似文献   

6.
Ras homolog gene family member A (RhoA) has been iden- tified as a critical regulator of tumor aggressive behavior. In this study, we assessed the role of RhoA in the mechan- isms underlying growth, migration, and invasion of squa- mous cell carcinoma of tongue (TSCC). Stable RhoA knockdown of TSCC cell lines SCC-4 and CAL27 were achieved using Lentiviral transfection. The effects of RhoA depletion on cell migration, invasion, and cell proliferation were determined. The possible underlying mechanism of RhoA depletion on TSCC cell line was also evaluated by determining the expression of Galectin-3 (Gal-3), β-catenin, and matrix metalloproteinase-9 (MMP-9) in vivo. Meanwhile, the underlying mechanism of TSCC growth was studied by analysis of cyclin D1/2, p21clel/WArl, and p27 kiap 1 protein levels. Immunohistochemical assess- ments were performed to further prove the alteration of Gal-3 and β-catenin expression. We found that, in mice injected with human TSCC cells in the tongue, RhoA levels were higher in primary tumors and metastasized lymph nodes compared with those in the normal tissues. Silencing of RhoA significantly reduced the tumor growth, decreased the levels of Gai-3, β-catenin, MMP-9, and cyclin D1/2, and increased the levels of p21 CIPI/WAFI and p27Kiap 1. In vitro, RhoA knockdown also led to inhibition of cell migration, in- vasion, and proliferation. Our data suggest that RhoA plays a significant role in TSCC progression by regulating cell migra- tion and invasion through Wnt/β-catenin signaling pathway and cell proliferation through cell cycle regulation, respecti- vely. RhoA might be a novel therapeutic target of TSCC.  相似文献   

7.
p53 and Bad: remote strangers become close friends   总被引:1,自引:0,他引:1  
Jiang P  Du W  Wu M 《Cell research》2007,17(4):283-285
  相似文献   

8.
Apoptosis (or programmed cell death) was firstly described by Kerr[1] in 1972. Since bcl-2 cDNA was cloned by Cleary et al.[2] in 1986, many apoptosis-related genes have been found in human or mammalian cell lines. The bcl-2 family[35] containing 23 genes, the caspase family[68] bearing 14 members and the TNF family[9,10] are the most clearly elucidated ones. With the study of apoptosis going deeper, people have realized that cell apoptosis is impor-tant in development and homeostasis of mu…  相似文献   

9.
Abstract Six new cell lines were established from embryonic tissues of the diamondback moth, Plutella xylostella (L.). The cell lines showed differential characteristics, including growth in attachment or in suspension, susceptibility to a baculovirus infection and expression of genes involved in the glucosinolate detoxification pathway in R xylostella larvae. Five of the cell lines grew attached to the culture flask and one cell line grew unattached as a suspension cell line. The cell lines had population doubling times ranging from IS to 23 h. Among five of the P. xylostella cell lines examined for infection of a nucleopolyhe. drovirus from Autographa californica, AcMNPV four cell lines were highly susceptible to AcMNPV infection, but one was only semi-permissive to AcMNPV infection. The production of two recombinant proteins, a β-galactosidase of bacterial origin and a secreted alkaline phosphatase of eukaryotic origin, in the R xylostella cell lines was examined in comparison with that in the cell line Sf9 which is commonly used for recombinant protein production. In the P. xylostella cell lines, expression of three important midgut genes involved in the glucosinolate detoxification pathway, including the glucosinolate sulfatase genes GSS1 and GSS2 and the sulfatase modifying factor gene SUMF1、was detected. The R xylostella cell lines developed in this study could be useful in in vitro research systems for studying insec-virus interactions and complex molecular mechanisms in glucosinolate detoxification and insect-plant interactions.  相似文献   

10.
A novel cytokine fusion protein was constructed by fusing granulocyte macrophage colony stimulat-ing factor (GM-CSF) with monocyte chemotactic activating factor (MCAF), which acts as a factor directing effector cells (monocytes) to a target site. The recombinant human GM-CSF/MCAF fusion protein could sustain the growth of GM-CSF-dependent cell line TF1 and was chemotactic for monocytes. The in vitro antitumor effect showed that rhGM-CSF/MCAF could activate monocytes to inhibit the growth of several human tumor cell lines, including a promyelocyte leukemia cell line HL-60, a lung adenocarcinoma cell line A549, a hepatoma cell line SMMC-7721 and a melanoma cell line Bowes. Furthermore, the cytotoxicity of monocytes activated by rhGM-CSF/MCAF against HL-60 and A549 was greater than that activated by GM-CSF or MCAF alone, even greater than that activated by a combina-tion of GM-CSF and MCAF, suggesting that the fusion protein has synergistic or enhanced effects. The in vivo anti-tumor effect indicated that  相似文献   

11.
12.
The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK-MAPK) pathway is a critical intermediary for cell proliferation, differentiation, and survival. In the human colon cancer cell line SW1116, treatment with the DNA methyltransferase 1 (DNMT1) inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) or the ERK-MAPK inhibitors PD98059 or rottlerin, or transient transfection with the MAP/ERK kinase (MEK)1/2 small interfering RNA down-regulates DNMT1 and proliferating cell nuclear antigen levels. In this report, we found that drug treatment or small interfering RNA transfection of SW1116 cells induced promoter demethylation of the p16(INK4A) and p21(WAF1) genes, which up-regulated their mRNA and protein expression levels. Flow cytometry revealed that rottlerin treatment induced cell cycle arrest at phase G(1) (p < 0.05). Thus, the ERK-MAPK inhibitor treatment or siRNA-mediated knockdown of ERK-MAPK decreases DNA methylation via down-regulating DNMT1 expression and other unknown mediator(s) in SW1116 colon cancer cells.  相似文献   

13.
14.
15.
The effects of butyrate upon the extents of phosphorylation of histones H1 and H1(0) during cell-cycle progression have been investigated. Chinese hamster (line CHO) cells were synchronized in early S phase and released into medium containing 0 or 15 mM butyrate to resume cell-cycle traverse into G1 of the next cell cycle. Cells were also mechanically selected from monolayer cultures grown in the presence of colcemid and 0 or 15 mM butyrate to obtain greater than 98% pure populations of metaphase cells. Although cell cycle progression is altered by butyrate, electrophoretic patterns of histones H1, H1(0), H3, and H4 indicate that butyrate has little, if any, effect on the extents of H1 and H1(0) phosphorylation during the cell cycle or the mitotic-specific phosphorylation of histone H3. Butyrate does, however, inhibit removal of extraordinary levels of histone H4 acetylation (hyperacetylation) during metaphase, and it appears to cause an increase in the content of H1(0) in chromatin during the S or G2 phases of the cell cycle.  相似文献   

16.
Trichostatin A (TSA, 17 nM), a specific and reversible inhibitor of histone deacetylase induced neurite network formation at and after 4 days. The networks were preserved for at least 3 weeks in the presence of TSA. Butyrolactone I (BLI, 23.6 microM), an inhibitor of cdc2 and cdk2 kinases, also induced neurite extension. Both compounds enhanced the acetylcholinesterase activity of the cells. Cell cycle progression of the cells was blocked by TSA (17 nM) at G1 phase alone. Furthermore, the level of histone hyperacetylation and p21(WAF1) expression in TSA-treated cells increased transiently. These findings suggest that the induction of the neuronal differentiation in Neuro 2a cells by these agents requires the cell cycle arrest at G1 phase, which is caused by inhibition of cycline dependent kinase, a target molecule of BLI and p21(WAF1).  相似文献   

17.
18.
19.
Ding X  Wang Y  Zhang D  Wang Y  Guo Z  Zhang Y 《Theriogenology》2008,70(4):622-630
Limited success of somatic cell nuclear transfer is attributed to incomplete reprogramming of transferred nuclei. The objective was to determine if 5-aza-2'-deoxycytidine (5-aza-dC) and trichostatin A (TSA) promoted reprogramming and improved development. Relative to untreated controls, treatment of donor cells, cloned embryos, and continuous treatment of both donor cells and cloned embryos with a combination of 0.01microM 5-aza-dC and 0.05microM TSA significantly increased the blastocyst rate (11.9% vs 31.7%, 12.4% vs 25.6%, and 13.3% vs 38.4%, respectively) and total cell number (73.2 vs 91.1, 75.2 vs 93.7, and 74.6 vs 96.7). Moreover, blastocyst rate and inner cell mass (ICM) cell number of embryos continuously exposed to both reagents were significantly higher than that of a TSA-treated group (38.4% vs 23.9% and 27.4 vs 18.2). The DNA methylation level of 2-cell embryos was decreased significantly, whereas the histone acetylation level increased dramatically after donor cell treatment and continuous treatment with both reagents. However, these epigenetic features of cloned blastocysts were not significantly different than the untreated control group. Following embryo treatment, DNA methylation and histone acetylation levels of cloned blastocysts were unchanged, except for the group given 0.5microM TSA (acetylation level was significantly increased, but development potential was reduced). In conclusion, development of cloned bovine embryos was enhanced by 5-aza-dC and TSA; furthermore, the combination was more effective than either one alone.  相似文献   

20.
Progression through the cell cycle and redirection of cells towards programmed cell death (apoptosis) are tightly inter-related processes. However the requirement for tissue and cell type specificity suggests that a wide variety of mechanisms are used to achieve the same purpose. To examine this issue, we investigated cell cycle (c-myc, p53, p21/WAF) and apoptosis related (bcl-2, bcl-X(L), bax-alpha) gene expression in two cell lines of very different origin under proliferating and apoptosis-inducing conditions. Transformed human osteosarcoma cells (MG63) and non-transformed human kidney embryonal fibroblasts (293-0) were kept in culture in medium containing 10% FCS and growth arrest was induced by the addition of 50 ng/ml colcemid. Colcemid treatment caused growth arrest and elevated expression of cyclin B1 protein in both cell lines. Apoptosis was significantly elevated in both cell lines after colcemid exposure for at least one cell cycle. However the pattern of expression of cell cycle and apoptosis related genes, determined by RT-PCR, was quite different between the two cell lines during exponential growth and cell cycle arrest. Colcemid treatment did not markedly influence c-myc, p53 and p21/WAF expression in MG63 cells but did suppress c-myc and increase p21/WAF in 293-0 cells. Furthermore colcemid treated MG63 cells exhibited elevated bcl-2 and bax-alpha expression while similar treatment of 293-0 cells resulted in decreased bcl-X(L) and slightly increased bax-alpha expression. While growth arrest and apoptosis were induced in both MG63 and 293 cells following colcemid treatment, the differences in gene expression suggest that the mechanism by which these cells determine cell fate is quite different and may determine the sensitivity of different cell populations to anti-neoplastic drug therapy. The distinct patterns of gene expression should be carefully defined before mechanisms of apoptotic cell death are studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号