首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The four members of the epidermal growth factor receptor (EGFR/ERBB) family form homo- and heterodimers which mediate ligand-specific regulation of many key cellular processes in normal and cancer tissues. While signaling through the EGFR has been extensively studied on the molecular level, signal transduction through ERBB3/ERBB4 heterodimers is less well understood. Here, we generated isogenic mouse Ba/F3 cells that express full-length and functional membrane-integrated ERBB3 and ERBB4 or ERBB4 alone, to serve as a defined cellular model for biological and phosphoproteomics analysis of ERBB3/ERBB4 signaling. ERBB3 co-expression significantly enhanced Ba/F3 cell proliferation upon neuregulin-1 (NRG1) treatment. For comprehensive signaling studies we performed quantitative mass spectrometry (MS) experiments to compare the basal ERBB3/ERBB4 cell phosphoproteome to NRG1 treatment of ERBB3/ERBB4 and ERBB4 cells. We employed a workflow comprising differential isotope labeling with mTRAQ reagents followed by chromatographic peptide separation and final phosphopeptide enrichment prior to MS analysis. Overall, we identified 9686 phosphorylation sites which could be confidently localized to specific residues. Statistical analysis of three replicate experiments revealed 492 phosphorylation sites which were significantly changed in NRG1-treated ERBB3/ERBB4 cells. Bioinformatics data analysis recapitulated regulation of mitogen-activated protein kinase and Akt pathways, but also indicated signaling links to cytoskeletal functions and nuclear biology. Comparative assessment of NRG1-stimulated ERBB4 Ba/F3 cells revealed that ERBB3 did not trigger defined signaling pathways but more broadly enhanced phosphoproteome regulation in cells expressing both receptors. In conclusion, our data provide the first global picture of ERBB3/ERBB4 signaling and provide numerous potential starting points for further mechanistic studies.  相似文献   

2.
The amino-terminal domain of the extracellular matrix (ECM) protein thrombospondin-1 (TSP-1) mediates binding to cell surface heparan sulfate proteoglycans (HSPG) as well as binding to the endocytic receptor, low density lipoprotein-related protein (LRP-1). We previously found that recombinant TSP-1 containing the amino-terminal residues 1-214, retained both of these interactions (Mikhailenko et al. [1997]: J Biol Chem 272:6784-6791). Here, we examined the activity of a recombinant protein containing amino-terminal residues 1-90 of TSP-1 and found that this domain did not retain high-affinity heparin-binding. The loss of heparin-binding correlated with decreased binding to the fibroblast cell surface. However, both ligand blotting and solid phase binding studies indicate that this truncated fragment of TSP-1 retained high-affinity binding to LRP-1. Consistent with this, it also retained the ability to block the uptake and degradation of (125)I-TSP-1. However, TSP-1(1-90) itself was poorly endocytosed and this truncated amino-terminal domain was considerably more effective than the full-length heparin-binding domain (HBD) of TSP-1 in blocking the catabolism of endogenously expressed TSP-1. These results indicate that TSP-1 binding to LRP-1 does not require prior or concomitant interaction with cell surface HSPG but suggest subsequent endocytosis requires high-affinity heparin-binding.  相似文献   

3.
4.
5.
Upon stimulation by its ligand, the platelet-derived growth factor (PDGF) receptor associates with the 85-kDa subunit of phosphatidylinositol (PI) 3-kinase. The 85-kDa protein (p85) contains two Src homology 2 (SH2) domains and one SH3 domain. To define the part of p85 that interacts with the PDGF receptor, a series of truncated p85 mutants was analyzed for association with immobilized PDGF receptor in vitro. We found that a fragment of p85 that contains a single Src homology domain, the C-terminal SH2 domain (SH2-C), was sufficient for directing the high-affinity interaction with the receptor. Half-maximal binding of SH2-C to the receptor was observed at an SH2-C concentration of 0.06 nM. SH2-C, like full-length p85, was able to distinguish between wild-type PDGF receptor and a mutant receptor lacking the PI 3-kinase binding site. An excess of SH2-C blocked binding of full-length p85 and PI 3-kinase to the receptor but did not interfere with the binding of two other SH2-containing proteins, phospholipase C-gamma and GTPase-activating protein. These results demonstrate that a region of p85 containing a single SH2 domain accounts both for the high affinity and specificity of binding of PI 3-kinase to the PDGF receptor.  相似文献   

6.
A truncated fragment of the nonmuscle myosin II-A heavy chain (NMHC II-A) lacking amino acids 1-591, delta N592, was used to examine the cellular functions of this protein. Green fluorescent protein (GFP) was fused to the amino terminus of full-length human NMHC II-A, NMHC II-B, and delta N592 and the fusion proteins were stably expressed in HeLa cells by using a conditional expression system requiring absence of doxycycline. The HeLa cell line studied normally expressed only NMHC II-A and not NMHC II-B protein. Confocal microscopy indicated that the GFP fusion proteins of full-length NMHC II-A, II-B, and delta N592 were localized to stress fibers. However, in vitro assays showed that baculovirus-expressed delta N592 did not bind to actin, suggesting that delta N592 was localized to actin stress fibers through incorporation into endogenous myosin filaments. There was no evidence for the formation of heterodimers between the full-length endogenous nonmuscle myosin and truncated nonmuscle MHCs. Expression of delta N592, but not full-length NMHC II-A or NMHC II-B, induced cell rounding with rearrangement of actin filaments and disappearance of focal adhesions. These cells returned to their normal morphology when expression of delta N592 was repressed by addition of doxycycline. We also show that GFP-tagged full-length NMHC II-A or II-B, but not delta N592, were localized to the cytokinetic ring during mitosis, indicating that, in vertebrates, the amino-terminus part of mammalian nonmuscle myosin II may be necessary for localization to the cytokinetic ring.  相似文献   

7.
Wee1 protein kinase plays an important regulatory role in cell cycle progression. It inhibits Cdc-2 activity by phosphorylating Tyr15 and arrests cells at G2-M phase. In an attempt to understand Wee1 regulation during cell cycle, yeast two-hybrid screening was used to identify Wee1-binding protein(s). Five of the eight positive clones identified encode 14-3-3beta. In vivo binding assay in 293 cells showed that both full-length and NH2-terminal truncated Wee1 bind with 14-3-3beta. The 14-3-3beta binding site was mapped to a COOH-terminal consensus motif, RSVSLT (codons 639 to 646). Binding with 14-3-3beta increases the protein level of full-length Wee1 but not of the truncated Wee1. Accompanying the protein level increases, the kinase activity of Wee1 also increases when coexpressed with 14-3-3beta. Increased Wee1 protein level/enzymatic activity is accountable, at least in part, to an increased Wee1 protein half-life when coexpressed with 14-3-3beta. The protein half-life of the NH2-terminal truncated Wee1 is much longer than that of the full-length protein and is not affected by 14-3-3beta cotransfection. Biologically, 14-3-3beta/Wee1 coexpression increases the cell population at G2-M phase. Thus, Wee1 binding with 14-3-3beta increases its biochemical activity as well as its biological function. The finding reveals a novel mechanism by which 14-3-3 regulates G2-M arrest and suggests that the NH2-terminal domain of Wee1 contains a negative regulatory sequence that determines Wee1 stability.  相似文献   

8.
Three distinct atrial natriuretic factor (ANF) receptors have been identified and characterized from rat thoracic aortic cultured vascular smooth muscle (RTASM) cells, kidney tubular epithelium (MDCK), and Leydig tumor (MA-10) cells. These include 1) a disulfide-linked 140-kDa protein found in RTASM cells, which was reduced by dithiothreitol (DTT) to 70 kDa, 2) a 120-135-kDa single polypeptide protein, specific to MDCK and MA-10 cells whose Mr was not reduced by DTT, and 3) a 66-70-kDa protein prevalent in both RTASM and MDCK cells, which was not reduced by DTT. After incubation of RTASM cells with 4-azidobenzoyl 125I-ANF, labeling of the 140-kDa protein was blocked by both full-length ANF(99-126) and truncated ANF103-123. In contrast, the labeling of the 120-kDa receptor in MDCK cells was blocked only by full-length ANF(99-126). However, labeling of the 68-70-kDa receptor in both RTASM and MDCK cells was blocked by full-length ANF(99-126) and truncated ANF(103-123). Binding of 125I-ANF(99-126) to RTASM and MDCK cells was rapid, specific, and saturable with a Kd of 1.5 x 10(-10) M and binding capacity (Bmax) of 2.1 x 10(5) sites/RTASM cell and Kd 4.5 x 10(-10) M and Bmax 5 x 10(4) sites/MDCK cell, respectively. Binding of 125I-ANF(99-126) to RTASM cells was displaced with both full-length ANF(99-126) and truncated ANF(103-123), however, binding to MDCK cells was efficiently displaced only with full-length ANF. Both ANF(99-126) and ANF(103-123) stimulated cGMP in RTASM cells but only ANF(99-126) elicited cGMP in MDCK cells. Tryptic proteolysis of the high Mr single chain receptor produced only a 68-kDa fragment, whereas disulfide-linked 140-kDa receptor yielded 52-, 38-, 26-, and 14-kDa fragments. These data provide direct biochemical evidence for three distinct ANF receptors which might be linked to diverse physiological functions of ANF such as natriuresis in the kidney, vasorelaxation in vascular smooth muscle, and steroidogenic responsiveness in Leydig cells.  相似文献   

9.
In order to determine whether the human insulin receptor ectodomain can be expressed as a functional protein, the coding regions for the transmembrane and cytoplasmic domain of a full-length human insulin receptor cDNA were deleted by site-directed mutagenesis, and the resultant construct was inserted into a bovine papilloma virus vector under the control of the mouse metallothionein promoter. After transfection of mouse NIH3T3 cells, a cell line secreting an insulin binding protein was isolated. The insulin binding alpha subunit had an Mr of 138,000 and a beta subunit of Mr 48,000 (compared to 147,000 and 105,000 for the full-length human insulin receptor expressed in NIH3T3 cells). This difference in size of the alpha subunit was due to a difference in glycosylation as N-glycanase digestion reduced the apparent size of the alpha subunits of secreted and normal membrane-bound receptors to identical values. The secreted receptor formed disulfide-linked heterotetrameric structures with an Mr of 280,000. It was synthesized as an Mr 160,000 precursor which was cleaved into mature subunits with a t1/2 of 3 h. Increasing expression of the cDNA by induction with sodium butyrate lead to the appearance of an Mr 180,000 protein in the medium as well as the mature alpha and beta subunits. A Scatchard plot of insulin binding to the secreted receptor was curvilinear with a Kd of 7 X 10(-10) M for the high affinity sites and 10(-7) M for the low affinity site (compared to Kd values of 1.1 X 10(-9) M and 10(-7) M, respectively, for human insulin receptors expressed in these cells.  相似文献   

10.
We have expressed a full-length human glucocorticoid receptor (hGR) in Spodoptera frugiperda (Sf9) cells using the baculovirus expression vector system (BEVS). The level of expression is approximately 100-fold greater than in CEM-C7 cells. Between 0.5-1.0 mg hGR can be generated per liter of Sf9 cell culture. The expressed hGR is capable of binding glucocorticoids with specificity and high affinity. Covalent labeling with 3H-dexamethasone mesylate and Western blot analysis using a polyclonal antibody indicate that the molecular weight of the expressed protein is approximately 94 k. The nonactivated receptor sediments as a 8-9S complex in sucrose gradients and can be heat activated to a 4S form. The activated receptor is capable of retarding the migration of a 23 base-pair DNA fragment containing the glucocorticoid response element from the tyrosine aminotransferase gene. These data indicate that the expressed GR displays characteristics identical to those of GR from mammalian cells. By scaling up this culture we can, for the first time, obtain enough purified full-length receptor for crystallographic and functional studies which could provide new insight into exactly how hGR works.  相似文献   

11.
Expression cloning of functional receptor used by SARS coronavirus   总被引:32,自引:0,他引:32  
We have expressed a series of truncated spike (S) glycoproteins of SARS-CoV and found that the N-terminus 14-502 residuals were sufficient to bind to SARS-CoV susceptible Vero E6 cells. With this soluble S protein fragment as an affinity ligand, we screened HeLa cells transduced with retroviral cDNA library from Vero E6 cells and obtained a HeLa cell clone which could bind with the S protein. This cell clone was susceptible to HIV/SARS pseudovirus infection and the presence of a functional receptor for S protein in this cell clone was confirmed by the cell-cell fusion assay. Further studies showed the susceptibility of this cell was due to the expression of endogenous angiotensin-converting enzyme 2 (ACE2) which was activated by inserted LTR from retroviral vector used for expression cloning. When human ACE2 cDNA was transduced into NIH3T3 cells, the ACE2 expressing NIH3T3 cells could be infected with HIV/SARS pseudovirus. These data clearly demonstrated that ACE2 was the functional receptor for SARS-CoV.  相似文献   

12.
In this study, 10 truncated constructs encompassing all or part of the extracellular ligand binding domain of the mGluR3 subtype of metabotropic glutamate receptor were generated, expressed in human embryonic kidney cells, and tested for secretion and binding of the high affinity agonist [(3)H]DCG-IV. The effect of inserting epitope tags into the N or C termini on cell secretion and radioligand binding was also examined. Secretion into the cell culture media was observed for 8 of the 10 truncated receptors and all secreted forms displayed high affinity agonist binding. The highest level of binding was observed in the C-terminal polyhistidine-tagged receptor truncated at serine 507. Reduction and enzymatic deglycosylation of the serine 507 truncated receptor using endoglycosidase H and PNGase F showed that the secreted receptor was a disulfide-linked dimer containing complex oligosaccharides. Pharmacological characterization demonstrated that the truncated receptor showed the same rank order of potency of agonist binding, a relatively small 2-fold decrease in agonist affinity, and a larger 10-fold decrease in affinity for the antagonist LY341495 compared to the full-length membrane-bound receptor. These results define the essential requirements for ligand binding to the extracellular domain of mGluR3 and highlight parameters important for the optimization of receptor expression in mammalian cells.  相似文献   

13.
Truncated glycine receptors that have been found in human patients suffering from the neuromotor disorder hyperekplexia or in spontaneous mouse models resulted in non-functional ion channels. Rescue of function experiments with the lacking protein portion expressed as a separate independent domain demonstrated restoration of glycine receptor functionality in vitro. This construct harbored most of the TM3-4 loop, TM4, and the C terminus and was required for concomitant transport of the truncated α1 and the complementation domain from the endoplasmic reticulum toward the cell surface, thereby enabling complex formation of functional glycine receptors. Here, the complementation domain was stepwise truncated from its N terminus in the TM3-4 loop. Truncation of more than 49 amino acids led again to loss of functionality in the receptor complex expressed from two independent domain constructs. We identified residues 357–418 in the intracellular TM3-4 loop as being required for reconstitution of functional glycine-gated channels. All complementation constructs showed cell surface protein expression and correct orientation according to glycine receptor topology. Moreover, we demonstrated that the truncations did not result in a decreased protein-protein interaction between both glycine receptor domains. Rather, deletions of more than 49 amino acids abolished conformational changes necessary for ion channel opening. When the TM3-4 loop subdomain harboring residues 357–418 was expressed as a third independent construct together with the truncated N-terminal and C-terminal glycine receptor domains, functionality of the glycine receptor was again restored. Thus, residues 357–418 represent an important determinant in the process of conformational rearrangements following ligand binding resulting in channel opening.  相似文献   

14.
The PCI domain comprises approx 200 amino acids and is found in subunits of the eukaryotic translation initiation factor 3 (eIF3), the 26S proteasome and the COP9/signalosome complexes. The PCI domain is involved in protein-protein interaction, and mouse INT6 truncated proteins lacking the PCI domain show cell malignanttransforming activity. In this work, the Arabidopsis thaliana INT6/eIF3e (AtINT6) protein was dissected using limited proteolysis, and a protease-resistant fragment containing the PCI domain was identified. Based on mass spectrometry analyses of the protease-resistant fragments and on secondary structure prediction, AtINT6-truncated proteins were cloned and expressed in Escherichia coli. Stability studies using thermal unfolding followed by circular dichroism revealed a midpoint transition temperature of 44 degrees C for the full-length AtINT6 protein, whereas the truncated proteins comprising residues 125-415 (AtINT6TR2) and 172-415 (AtINT6TR3) showed transition temperatures of 49 and 58 degrees C, respectively. AtINT6TR3 contains the PCI domain with additional amino acids at the N and C termini. It shows high solubility, and together with the high thermal stability, should facilitate further characterization of the PCI domain structure, which is important to understand its function in protein- protein interaction.  相似文献   

15.
We previously reported that truncation of the cytoplasmic domain of the macaque simian immunodeficiency virus SIVmac239 envelope glycoprotein enhanced its ability to induce cell fusion in a variety of cell lines. In the present study, we examined the expression of the full-length and truncated SIVmac239 envelope glycoprotein complex on cell surfaces. Using a membrane-impermeable reagent to biotinylate proteins on cell surfaces followed by immunoprecipitation, we found that under conditions in which the full-length TM protein could not be detected on the surfaces of CD4-positive or CD4-negative cell lines, the truncated TM protein was detected efficiently. In contrast, using a membrane-impermeable iodination reagent to label proteins on cell surfaces, we could detect both the full-length and truncated TM proteins. No difference between the full-length and truncated proteins was observed in the detection of the SU proteins in the biotinylation assay. Additionally, we used an assay in which SIV-specific antibodies are prebound to the native envelope proteins expressed on the cell surface and then the proteins are immunoprecipitated. Using this assay, we could not detect the truncated or full-length TM protein on the cell surface, whereas we could detect the SU subunits of both proteins. We also observed that the truncated TM protein formed more stable sodium dodecyl sulfate-resistant oligomers than the full-length TM protein did. These results indicate that truncation of the cytoplasmic domain of the SIVmac239 envelope glycoprotein affects the conformation of the external domain of the TM protein on the cell surface, even though the two proteins have no differences in the amino acid sequences of their external domains. This altered conformation could play a role in the enhanced fusion activity of the truncated SIV glycoprotein.  相似文献   

16.
Heat shock protein 90 (HSP90) targets a broad spectrum of client proteins with divergent modes of interaction and consequences. The homologous epidermal growth factor receptor (EGFR) and ERBB2 receptors as well as kinase-deficient mutants thereof differ in their requirement for HSP90 in the nascent versus mature state of the receptor. Specific features of the kinase domain have been implicated for the selective association of HSP90 with mature ERBB2. We evaluated the role of HSP90 for the homologous ERBB3 receptor. ERBB3 is naturally kinase deficient, a central mediator in cell survival and stress response and the primary dimerization partner for ERBB2 in signaling. Cellular studies indicate that, similar to EGFR, the geldanamycin (GA) sensitivity of ERBB3 and HSP90 binding resides in the nascent state and is dependent on the presence of the kinase domain of ERBB3. Furthermore, despite its intrinsic lack of kinase activity and in contrast to the reported GA sensitivity of mature and kinase-deficient EGFR, the GA sensitivity of the nascent state of ERBB3 appears to be exclusive. Geldanamycin disrupts the interaction of ERBB3 and HSP90 and inhibits ERBB3 maturation at an early stage of synthesis, prior to export from the ER. Studies with a photo-convertible fusion protein of ERBB3 suggest geldanamycin sensitivity at a later stage in maturation, possibly through the putative role of HSP90 in structural proofreading.  相似文献   

17.
Lethal congenital contractural syndrome type 2 (LCCS2) is an autosomal recessive neurogenic form of arthrogryposis that is associated with atrophy of the anterior horn of the spinal cord. We previously mapped LCCS2 to 6.4 Mb on chromosome 12q13 and have now narrowed the locus to 4.6 Mb. We show that the disease is caused by aberrant splicing of ERBB3, which leads to a predicted truncated protein. ERBB3 (Her3), an activator of the phosphatidylinositol-3-kinase/Akt pathway--regulating cell survival and vesicle trafficking--is essential for the generation of precursors of Schwann cells that normally accompany peripheral axons of motor neurons. Gain-of-function mutations in members of the epidermal growth-factor tyrosine kinase-receptor family have been associated with predilection to cancer. This is the first report of a human phenotype resulting from loss of function of a member of this group.  相似文献   

18.
There are three major apolipoprotein E (apoE) isoforms. Although APOE-epsilon3 is considered a longevity gene, APOE-epsilon4 is a dual risk factor to atherosclerosis and Alzheimer disease. We have expressed full-length and N- and C-terminal truncated apoE3 and apoE4 tailored to eliminate helix and domain interactions to unveil structural and functional disturbances. The N-terminal truncated apoE4-(72-299) and C-terminal truncated apoE4-(1-231) showed more complicated or aggregated species than those of the corresponding apoE3 counterparts. This isoformic structural variation did not exist in the presence of dihexanoylphosphatidylcholine. The C-terminal truncated apoE-(1-191) and apoE-(1-231) proteins greatly lost lipid binding ability as illustrated by the dimyristoylphosphatidylcholine turbidity clearance. The low density lipoprotein (LDL) receptor binding ability, determined by a competition binding assay of 3H-LDL to the LDL receptor of HepG2 cells, showed that apoE4 proteins with N-terminal (apoE4-(72-299)), C-terminal (apoE4-(1-231)), or complete C-terminal truncation (apoE4-(1-191)) maintained greater receptor binding abilities than their apoE3 counterparts. The cholesterol-lowering abilities of apoE3-(72-299) and apoE3-(1-231) in apoE-deficient mice were decreased significantly. The structural preference of apoE4 to remain functional in solution may explain the enhanced opportunity of apoE4 isoform to display its pathophysiologic functions in atherosclerosis and Alzheimer disease.  相似文献   

19.
Angiostatin protein, which comprises the first four kringle domains of plasminogen, is an endogenous inhibitor of angiogenesis that inhibits the growth of experimental primary and metastatic tumors. Truncation of Angiostatin K1-4 to K1-3 retained the activity of Angiostatin. We recombinantly expressed full-length human Angiostatin protein corresponding to the first four kringle domains of human plasminogen and a truncated form of the Angiostatin protein, kringles 1-3. Purified recombinant Angiostatin K1-3 and K1-4 proteins inhibited the formation of experimental B16-BL6 lung metastases by greater than 80% when administered at 30 nmol/kg/day. We demonstrate for the first time that Angiostatin protein, consisting of the first three kringle domains of human plasminogen, has in vivo biological activity in this assay indistinguishable from that of the full-length Angiostatin K1-4 protein and that the fourth kringle of plasminogen, when linked in sequence to K1-3, plays no direct role in the antitumor activity of Angiostatin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号