首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purification and characterization of urease from Helicobacter pylori   总被引:58,自引:0,他引:58  
Urease was purified 112-fold to homogeneity from the microaerophilic human gastric bacterium, Helicobacter pylori. The urease isolation procedure included a water extraction step, size exclusion chromatography, and anion exchange chromatography. The purified enzyme exhibited a Km of 0.3 +/- 0.1 mM and a Vmax of 1,100 +/- 200 mumols of urea hydrolyzed/min/mg of protein at 22 degrees C in 31 mM Tris-HCl, pH 8.0. The isoelectric point was 5.99 +/- 0.03. Molecular mass estimated for the native enzyme was 380,000 +/- 30,000 daltons, whereas subunit values of 62,000 +/- 2,000 and 30,000 +/- 1,000 were determined. The partial amino-terminal sequence (17 residues) of the large subunit of H. pylori urease (Mr = 62,000) was 76% homologous with an internal sequence of the homohexameric jack bean urease subunit (Mr = 90,770; Takashima, K., Suga, T., and Mamiya, G. (1988) Eur. J. Biochem. 175, 151-165) and was 65% homologous with amino-terminal sequences of the large subunits of heteropolymeric ureases from Proteus mirabilis (Mr = 73,000) and from Klebsiella aerogenes (Mr = 72,000; Mobley, H. L. T., and Hausinger, R. P. (1989) Microbiol. Rev. 53, 85-108). The amino-terminal sequence (20 residues) of the small subunit of H. pylori urease (Mr = 30,000) was 65 and 60% homologous with the amino-terminal sequences of the subunit of jack bean urease and with the Mr = 11,000 subunit of P. mirabilis urease (Jones, B. D., and Mobley, H. L. T. (1989) J. Bacteriol. 171, 6414-6422), respectively. Thus, the urease of H. pylori shows similarities to ureases found in plants and other bacteria. When used as antigens in an enzyme-linked immunosorbent assay, neither purified urease nor an Mr = 54,000 protein that co-purified with urease by size exclusion chromatography was as effective as crude preparations of H. pylori proteins at distinguishing sera from persons known either to be infected with H. pylori or not.  相似文献   

2.
Cell-free extracts of a selection of yeasts were analysed for urease activity. Species in the genera Filobasidiella, Rhodotorula and Rhodosporidium had the highest specific activities. Immune inactivation experiments showed widely different degrees of cross-reactivity between antiserum to jack bean urease and yeast ureases, with Rhodosporidium paludigenum (71%) the most and Schizosaccharomyces pombe (3%) the least affected. Only R. paludigenum urease was detected with anti-jack bean urease antiserum on Western blots. The urease of Rhodosporidium paludigenum was partially purified by column chromatography. The native enzyme was found to have a subunit size of 72 +/- 7 kDa probably in an octamer arrangement of 560 +/- 8 kDa, having a specific activity of 62.5 mumol urea hydrolysed min-1 (mg protein)-1. The enzyme was stable in the pH range 5-11 with optimum activity at pH 7.8. Vmax and Km values were determined as 65.2 +/- 3.8 mumol min-1 (mg protein)-1 and 3.81 +/- 0.47 mM, respectively.  相似文献   

3.
Urease has been purified from the dehusked seeds of pigeonpea (Cajanus cajan L.) to apparent electrophoretic homogeneity with approximately 200 fold purification, with a specific activity of 6.24 x10(3) U mg(-1) protein. The enzyme was purified by the sequence of steps, namely, first acetone fractionation, acid step, a second acetone fractionation followed by gel filtration and anion-exchange chromatographies. Single band was observed in both native- and SDS-PAGE. The molecular mass estimated for the native enzyme was 540 kDa whereas subunit values of 90 kDa were determined. Hence, urease is a hexamer of identical subunits. Nickel was observed in the purified enzyme from atomic absorption spectroscopy with approximately 2 nickel ions per enzyme subunit. Both jack bean and soybean ureases are serologically related to pigeonpea urease. The amino acid composition of pigeonpea urease shows high acidic amino acid content. The N-terminal sequence of pigeonpea urease, determined up to the 20th residue, was homologous to that of jack bean and soybean seed ureases. The optimum pH was 7.3 in the pH range 5.0-8.5. Pigeonpea urease shows K(m) for urea of 3.0+/-0.2 mM in 0.05 M Tris-acetate buffer, pH 7.3, at 37 degrees C. The turnover number, k(cat), was observed to be 6.2 x 10(4) s(-1) and k(cat)/K(m) was 2.1 x 10(7) M(-1) s(-1). Pigeonpea urease shows high specificity for its primary substrate urea.  相似文献   

4.
Urease with a purity meeting the requirements of analytical use was purified from jack bean meal through steps consisting of 20% acetone extraction, heat treatment, acid precipitation, and lyophilization. For extraction of urease, one part of bean meal was mixed with 5 parts of 20% acetone containing 1 mM EDTA and 1 mM 2-mercaptoethanol, and stirred at 20 degrees C for 5 min. Milky substances in the extract were removed by heat treatment. Urease in the clear yellow supernatant was precipitated by adjusting the pH of the solution to 5.4 with citric acid. The acid precipitated urease was neutralized by dissolving in 0.015 M phosphate buffer, pH 8.5 (final pH 6.8 to 7.0) and then lyophilized. By this procedure, the purity of the enzyme was increase 14.7 fold, the recovery of activity was 63%, and the yield was 6.75 g from 1 kg of bean seeds. The specific activity of the preparation was 411 units/mg protein (240 units/mg solid), and the free ammonia content was less than 0.01 microgram per unit. Some other proteins were present in the urease preparation as examined by gel filtration and gradient polyacrylamide gel electrophoresis. The molecular weight of the enzyme estimated by gel filtration was 480,000. However, two urease activity bands with molecular weight of 230,000 and 480,000 were observed in the polyacrylamide gel electrophoregram. From the result of determination of blood urea nitrogen (BUN), this simple purification procedure could be used for practical preparation of urease from jack bean meal for clinical analysis.  相似文献   

5.
Inactivation of jack bean urease by allicin   总被引:1,自引:0,他引:1  
Allicin--diallyl thiosulfinate--is the main biologically active component of freshly crushed garlic. Allicin was synthesized as described elsewhere and was tested for its inhibitory ability against jack bean urease in 20 mM phosphate buffer, pH 7.0 at 22 degrees C. The results indicate that allicin is an enzymatic inactivator. The loss of urease activity was irreversible, time- and concentration dependent and the kinetics of the inactivation was biphasic; each phase, obeyed pseudo-first-order kinetics. The rate constants for inactivation were measured for the fast and slow phases and for several concentrations of allicin. Thiol reagents, and competitive inhibitor (boric acid) protected the enzyme from loss of enzymatic activity. The studies demonstrate that urease inactivation results from the reaction between allicin and the SH-group, situated in the urease active site (Cys592).  相似文献   

6.
Jack bean urease has been immobilized on arylamine glass beads (200–400 mesh size, 75–100 Å pore size) and its properties compared with soluble enzyme. The binding of urease was 13.71 mg per gram beads. The Km for soluble and immobilized urease for urea was 4.20 mM and 8.81 mM, respectively. Vmax values of urease decreased from 200 to 43.48 μmol of ammonia formed per min per mg protein at 37°C on immobilization. Both pH and buffer ions influenced the activities of soluble as well as immobilized urease. Soluble urease exhibited pH optima at 5.5 and 8.0. However, immobilized urease showed one additional pH optimum at 6.5. In comparison to phosphate buffer, citrate buffer was inhibitory to urease activity. Immobilization of urease on arylamine glass beads resulted in improved thermal, storage and operational stability. Because of inertness of support and stability of immobilized urease, the preparation can find applications in ‘artificial kidney’ and urea estimation in biological fluids viz., blood, milk etc.  相似文献   

7.
The inhibition of jack bean urease by Ni2+ ions was studied in 20 mM HEPES buffer pH 7.0. The inhibition was observed in two systems which differed in the order in which the components of the reaction mixture were mixed. In the first (unincubated), the reaction was initiated by adding urease to the mixture of urea and Ni2+ ions, and in the second (incubated), by adding urea to the mixture of urease incubated with Ni2+ ions prior to the reaction. It was shown that Ni2+ ions are a competitive slow-binding inhibitor of urease. In the first system the inhibition constants are Ki=0.042 mM and Ki*=0.0028 mM, and in the second system Ki*=0.0024 mM. The inhibition was found to involve the rapid formation of a urease-Ni2+complex followed by its relatively slow, reversible isomerization, with forward and reverse rate constants of 0.64 and 0.045 min−1, respectively.  相似文献   

8.
Pyrocatechol was studied as an inhibitor of jack bean urease in 20 mM phosphate buffer, pH 7.0, 25 degrees C. The inhibition was monitored by an incubation procedure in the absence of substrate and reaction progress studies in the presence of substrate. It was found that pyrocatechol acted as a time- and concentration dependent irreversible inactivator of urease. The dependence of the residual activity of urease on the incubation time showed that the rate of inhibition increased with time until there was total loss of enzyme activity. The inactivation process followed a non-pseudo-first order reaction. The obtained reaction progress curves were found to be time-dependent. The plots showed that the rate of the enzyme reaction in the final stages reached zero. From protection experiments it appeared that thiol-compounds such as L-cysteine, 2-mercaptoethanol and dithiothreitol prevented urease from pyrocatechol inactivation as well as the substrate, urea, and the competitive inhibitor boric acid. These results proved that the urease active site was involved in the pyrocatechol inactivation.  相似文献   

9.
Purification of urease from Ureaplasma urealyticum   总被引:5,自引:0,他引:5  
We have purified urease from the Mollicutes, Ureaplasma urealyticum, using high performance liquid chromatography methods and DEAE-Sephadex chromatography. While only small amounts of material could be utilized in these methods, urease was purified at least 180-fold, yield a major band on SDS-PAGE of 66,000 daltons, a minor band of 64,000 daltons, and several faint bands of lower molecular mass. These results suggest that the 380,000 dalton intact urease is a pentamer or hexamer of these two larger subunits. The highly purified urease from DEAE-Sephadex retained full activity for at least 20 days at 4 degrees C in sodium phosphate buffer (pH 7.2) with 1% bovine serum albumin. The estimated specific activity of the DEAE peak fractions, 180 IU/micrograms, is at least 90-fold greater than that of jack bean urease.  相似文献   

10.
Thermal inactivation of jack bean urease (EC 3.5.1.5) was investigated in a 0.1 M phosphate buffer with pH 7. An injection flow calorimetry method was adapted for the measurement of the enzyme activity. The inactivation curves were measured in the temperature range of 55 to 87.5 degrees C. The curves exhibited a biphasic pattern in the whole temperature range and they were well fitted with a biexponential model. A simultaneous fit of all inactivation data was based on kinetic models that were derived from different inactivation mechanisms and comprised the material balances of several enzyme forms and the enthalpy balance characterizing the initial heating period of enzyme solution. The multitemperature evaluation revealed that an adequate model had to incorporate at least three reaction steps. It was concluded that the key reaction steps at urease thermal inactivation were the reversible dissociation/denaturation of native form into an inactive denatured form, and irreversible association reactions of both the denatured and native forms.  相似文献   

11.
At low pH, EDTA promotes the loss of the tightly bound nickel ions from jack bean urease. The specific activity of soluble enzyme after partial EDTA-promoted inactivation is a linear function of the nickel content. The results are consistent with the presence of 2.0 nickel ions per 97 000-dalton subunit in pure urease. The time scale for loss of enzymatic activity and nickel under these conditions is similar to that for loss of the "abnormal" tail absorption in the ultraviolet and visible absorption spectrum of urease (including the shoulder at approximately 420 nm). This indicates that nickel in urease is essential for enzymatic activity and establishes that the metal ions are in part responsible for the tail absorption in the ultraviolet spectrum of urease. After partial inactivation in the presence of EDTA either at low pH or in 2.5 M guanidinium chloride at neutral pH, urease did not regain activity in the presence of Ni2+. As yet apourease has not been produced reversibly. Jack bean seeds grown hydroponically without added nickel were low in both urease activity and nickel (10 and 6%, respectively, of parent seeds). Several other metal ions were readily available. This result suggests that metal ions other than nickel cannot substitute for nickel in the formation of normally active urease.  相似文献   

12.
Klebsiella aerogenes urease was purified 1,070-fold with a 25% yield by a simple procedure involving DEAE-Sepharose, phenyl-Sepharose, Mono Q, and Superose 6 chromatographies. The enzyme preparation was comprised of three polypeptides with estimated Mr = 72,000, 11,000, and 9,000 in a alpha 2 beta 4 gamma 4 quaternary structure. The three components remained associated during native gel electrophoresis, Mono Q chromatography, and Superose 6 chromatography despite the presence of thiols, glycols, detergents, and varied buffer conditions. The apparent compositional complexity of K. aerogenes urease contrasts with the simple well-characterized homohexameric structure for jack bean urease (Dixon, N. E., Hinds, J. A., Fihelly, A. K., Gazzola, C., Winzor, D. J., Blakeley, R. L., and Zerner, B. (1980) Can. J. Biochem. 58, 1323-1334); however, heteromeric subunit compositions were also observed for the enzymes from Proteus mirabilis, Sporosarcina ureae, and Selemonomas ruminantium. K. aerogenes urease exhibited a Km for urea of 2.8 +/- 0.6 mM and a Vmax of 2,800 +/- 200 mumol of urea min-1 mg-1 at 37 degrees C in 25 mM N-2-hydroxyethylpiperazineN'-2-ethanesulfonic acid, 5.0 mM EDTA buffer, pH 7.75. The enzyme activity was stable in 1% sodium dodecyl sulfate, 5% Triton X-100, 1 M KCl, and over a pH range from 5 to 10.5, with maximum activity observed at pH 7.75. Two active site groups were defined by their pKa values of 6.55 and 8.85. The amino acid composition of K. aerogenes urease more closely resembled that for the enzyme from Brevibacter ammoniagenes (Nakano, H., Takenishi, S., and Watanabe, Y. (1984) Agric. Biol. Chem. 48, 1495-1502) than those for plant ureases. Atomic absorption analysis was used to establish the presence of 2.1 +/- 0.3 mol of nickel per mol of 72,000-dalton subunit in K. aerogenes urease.  相似文献   

13.
Abstract

A simple novel method was introduced for determination of an inhibitor binding constant (Kj) and enthalpy of binding by isothermal titration microcalorimetry technique. This method was applied to the binding of fluoride ion, as an inhibitor, with the active sites of jack bean urease at pH = 7.0 (Tris 30 mM) and T = 300°K. The dissociation equilibrium constant measured by this method was markedly consistent with the inhibition constant obtained from assay of enzyme activity in the presence of fluoride ion.  相似文献   

14.
N-Ethylmaleimide (NEM) was studied as an inactivator of jack bean urease at 25 degrees C in 20 mM phosphate buffer, pHs 6.4, 7.4, and 8.3. The inactivation was investigated by incubation procedure in the absence of a substrate. It was found that NEM acted as a time and concentration dependent inactivator of urease. The dependence of urease residual activity on the incubation time showed that the activity decreased with time until the total loss of enzyme activity. The process followed a pseudo-first-order reaction. A monophasic loss of enzyme activity was observed at pH 7.4 and 8.4, while a biphasic reaction occurred at pH 6.4. Moreover, the alkaline pH promoted the inactivation. The presence of thiol-compounds, such as L-cysteine, glutathione or dithiothreitol (DTT), in the incubation mixture significantly slowed down the rate of inactivation. The interaction test showed that the decrease of inactivation was an effect of NEM-thiol interaction that lowered NEM concentration in the incubation mixture. The reactivation of NEM-blocked urease by DTT application and multidilution did not result in an effective activity regain. The applied DTT reacted with the remaining inactivator and could stop the progress of enzyme activity loss but did not cause the reactivation. This confirmed the irreversibility of inactivation. Similar results obtained at pH 6.4, 7.4 and 8.4 indicated that the mechanism of urease inactivation by NEM was pH-independent. However, the pH value significantly influenced the process rate.  相似文献   

15.
Tetrachloro-o-benzoquinone (TCoBQ) and tetrachloro-p-benzoquinone (TCpBQ) were studied as inhibitors of jack bean urease in 20 mM phosphate buffer, pH 7.0, 1 mM EDTA, 25 degrees C. The mechanisms of inhibition were evaluated by analysis of the progress curves obtained with two procedures: the reaction initiated by addition of the enzyme and the reaction initiated by addition of the substrate after preincubation of the enzyme with the inhibitor. The obtained results were characteristic of slow-binding inhibition. The effects of different inhibitor concentrations on the initial and steady-state velocities obeyed the relationships of two-step enzyme-inhibitor interaction, qualified as mechanism B. It was found that TCoBQ and TCpBQ are strong urease inhibitors. TCpBQ is more effective than TCoBQ with the overall inhibition constant of K(i)* = 4.5 x 10(-7) mM. The respective inhibition constant of TCoBQ was equal to: K(i)* = 2.4 x 10(-6) mM. The protective experiment proved that the urease active site is involved in the tetrachlorobenzoquinone inhibition process. High effectiveness of thiol protectors against inhibition by TCoBQ and TCpBQ indicates the strategic role of the active site sulfhydryl group in the blocking process. The stability of the complexes: urease-TCoBQ and urease-TCpBQ was tested in two ways: by dilution or addition of dithiothreitol. No recovery of urease activity bound in the urease-inhibitor complexes proves that the complexes are stable and strong.  相似文献   

16.
N-Ethylmaleimide (NEM) was studied as an inactivator of jack bean urease at 25 °C in 20 mM phosphate buffer, pHs 6.4, 7.4, and 8.3. The inactivation was investigated by incubation procedure in the absence of a substrate. It was found that NEM acted as a time and concentration dependent inactivator of urease. The dependence of urease residual activity on the incubation time showed that the activity decreased with time until the total loss of enzyme activity. The process followed a pseudo-first-order reaction. A monophasic loss of enzyme activity was observed at pH 7.4 and 8.4, while a biphasic reaction occurred at pH 6.4. Moreover, the alkaline pH promoted the inactivation. The presence of thiol-compounds, such as L-cysteine, glutathione or dithiothreitol (DTT), in the incubation mixture significantly slowed down the rate of inactivation. The interaction test showed that the decrease of inactivation was an effect of NEM-thiol interaction that lowered NEM concentration in the incubation mixture. The reactivation of NEM-blocked urease by DTT application and multidilution did not result in an effective activity regain. The applied DTT reacted with the remaining inactivator and could stop the progress of enzyme activity loss but did not cause the reactivation. This confirmed the irreversibility of inactivation. Similar results obtained at pH 6.4, 7.4 and 8.4 indicated that the mechanism of urease inactivation by NEM was pH-independent. However, the pH value significantly influenced the process rate.  相似文献   

17.
The effect of phosphate buffer on the activity of jack bean urease was studied in the range of pH 5.80–8.07. The inhibition constants of phosphate buffer were determined by measuring initial reaction rates at each pH for a series of buffer concentrations at a series of urea concentrations. It was shown that: (1) at pH 5.80–7.49 the buffer is a competitive inhibitor of the enzyme with Ki,buffer increasing from 0.54 mM for pH 5.80 to 362 mM for pH 7.49, (2) the values of pKi,buffer are pH-dependent exhibiting a slope of −1 at pH 5.80–6.5 and a slope of −2 at pH 6.5–7.49, (3) from pH 7.62 as the pH is further raised the competitive inhibition of urease by the buffer was not observed, (4) the true competitive inhibitor of urease is H2PO4 ion, and (5) pH 6.5 and 7.6 correspond to the ionization constants of the active site groups of urease responsible for the inhibitory strength of H2PO4 ion.  相似文献   

18.
A fragment of chromosomal DNA from proteus vulgaris encoding urease was cloned and expressed in Escherichia coli. A 3 kbp region was sequenced and revealed three open reading frames with homology to jack bean (Canavalia ensiformis) urease. The smallest protein (11 kDa) was homologous to the N-terminus of the plant enzyme and the largest polypeptide (61 kDa) corresponded to the C-terminus. The large protein contained conserved regions and a cysteine residue which is known to be catalytically important in the plant enzyme. A protein of 12 kDa showed homology to residues 132 to 237 of jack bean urease.  相似文献   

19.
Tetrachloro-o-benzoquinone (TCoBQ) and tetrachloro-p-benzoquinone (TCpBQ) were studied as inhibitors of jack bean urease in 20 mM phosphate buffer, pH 7.0, 1 mM EDTA, 25°C. The mechanisms of inhibition were evaluated by analysis of the progress curves obtained with two procedures: the reaction initiated by addition of the enzyme and the reaction initiated by addition of the substrate after preincubation of the enzyme with the inhibitor. The obtained results were characteristic of slow-binding inhibition. The effects of different inhibitor concentrations on the initial and steady-state velocities obeyed the relationships of two-step enzyme-inhibitor interaction, qualified as mechanism B. It was found that TCoBQ and TCpBQ are strong urease inhibitors. TCpBQ is more effective than TCoBQ with the overall inhibition constant of Ki* = 4.5 × 10? 7 mM. The respective inhibition constant of TCoBQ was equal to: Ki* = 2.4 × 10? 6 mM. The protective experiment proved that the urease active site is involved in the tetrachlorobenzoquinone inhibition process. High effectiveness of thiol protectors against inhibition by TCoBQ and TCpBQ indicates the strategic role of the active site sulfhydryl group in the blocking process. The stability of the complexes: urease-TCoBQ and urease-TCpBQ was tested in two ways: by dilution or addition of dithiothreitol. No recovery of urease activity bound in the urease-inhibitor complexes proves that the complexes are stable and strong.  相似文献   

20.
It is well documented that the enzymatic active site of Helicobacter pylori urease is present in the beta-subunit. An important sequence of 135 amino acids of the beta-subunit was determined from the structure of H. pylori urease and by a homology-based study of the urease of other bacteria and plants. The sequence (UreB) was expressed in Escherichia coli as a recombinant fusion protein with glutathione-S-transferase (GST). Seventeen monoclonal antibodies, UA-1-17, were produced using the UreB-GST as the immunogen. The obtained monoclonal antibodies showed a high specificity to UreB, and some of the MAbs cross-reacted with Jack bean urease. About 70% of the established MAbs displayed an inhibitory effect on the enzymatic activity of the urease. Among them, UA-15 MAb could reduce the activity by 53% and it immunologically binds to the bacterium infecting the human stomach mucosa. The antiserum induced by immunization with a recombinant UreB-GST into rabbits displayed a specific binding to mucosal surfaces of the human stomach infected with the pathogen H. pylori. Moreover, the antiserum suppressed the enzymatic activity of H. pylori urease, while the purified H. pylori urease could not induce such an antiserum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号