首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Junctional complexes have been investigated in the epiblast of young chick embryos by examination of freeze-fracture replicas and of sections of comparable specimens stained with lanthanum nitrate. By means of freeze-fracture, tight junctions were shown to be present in the unincubated embryo (stage 1 of Hamburger and Hamilton). The number of ridges or grooves was found to vary between 2 and 10 near the dorsal border, whereas isolated ridges were found more ventrally. Lanthanum was unable to penetrate between the cells in the region of the dorsally situated tight junctions. Similar tight junctions were found in incubated embryos (stage 3) examined by both techniques. Tight junctions were also seen in cleavage (pre-laying) embryos examined in section. Gap junctions were extremely uncommon in unincubated embryos, though occasional aggregates of gap junction particles were seen on the lateral cell membranes close to the dorsal surface. In only one instance were associated pits visible. By contrast, gap junctions were more frequently encountered by stage 3, and these junctions possessed both pits and particles. Desmosomes were never seen in the freeze-fracture replicas at either stages 1 or 3, though structures which might be developing desmosomes were visible in sections. The functions of both the tight and gap junctions in the young chick embryo are discussed. The results are also considered in relation to recent theories about the way in which gap junctions are formed.  相似文献   

2.
One of the factors proposed to control initiation of migration of neural crest (NC) cells is disruption of the basal lamina (BL) that is presumed to exist over the dorsal portion of the neural tube. Previously, we discovered that, in the mouse embryo, a continuous BL is not deposited over the dorsal portion of the neural tube until emigration of the NC cells is terminated. Here, we show that the pattern of BL deposition in chick embryos is similar, but not identical, to that in the mouse. In particular, (i) patches of BL are deposited on the premigratory NC cells in the chick but not in the mouse and (ii) BL is thicker and more interstitial matrix is deposited at the same stage of development in the chick. In addition, immunofluorescent and immunogold labelling of collagen IV, laminin and fibronectin show that (i) patches of young BL contain all three molecules; (ii) collagen IV and laminin are present in BL throughout neurulation but fibronectin either disappears or becomes masked in more mature BL and (iii) collagen IV and especially fibronectin are present in the interstitial matrix, but the relative abundance of fibronectin changes with time. The simultaneous use of immunolabelling for both light and TEM sections has allowed us to determine unambiguously that presence of a basement membrane (light microscopy) does not necessarily imply presence of basal lamina. We conclude that, as in mouse, the BL cannot be involved in the timing of the initiation of migration of NC cells. Our evidence in both the mouse and the chick, together with work in the axolotl, suggests that the basic pattern of BL deposition during neurulation may be a general phenomenon in embryonic development. Moreover, these results, in conjunction with the work of others, suggest that the critical step for initiation of migration of NC cells may be the loss of adhesions between cells.  相似文献   

3.
Entactin, a sulfated glycoprotein with a molecular weight (MW) of about 150 kD, is present in vascular basement membranes and in the interstitial connective tissue of the mammary glands of virgin rats. It does not appear to be present in the basement membrane surrounding the mammary ductal system. However, in lactating mammary glands entactin is also present in the basement membrane region surrounding the secretory alveoli. Ultrastructural localisation of entactin reveals that it is present on the basal surface of epithelial cells, with patchy staining in the lamina lucida and lamina densa. Entactin also appears to be associated with interstitial collagen fibres. Mammary fibroblastic cells in culture are able to produce entactin, whereas mammary epithelial and myoepithelial cells, which synthesise the basement membrane proteins laminin and type IV collagen, fail to synthesise entactin.  相似文献   

4.
Basement lamina and pericytes of growing blood microvessels were analyzed in the chick embryo optic tectum, from the 8th incubation day to hatching. Formation of the basement lamina and morphological changes of the pericytes take place in a short range of time, but late in the embryonic life, when also the blood brain barrier (bbb) devices are developing. The spatial and temporal coincidence between basement lamina formation, endothelium tight junction differentiation, and perivascular arrangement of the astrocytic glia, indicates that these events are correlated and corroborates the hypothesis that the glia needs an extracellular matrix to induce the junctional system maturation in the neural endothelia. Pericytes are irregular in shape during the early neural angiogenesis and smooth and flattened later, as the basement lamina synthesis is taking place; these cells represent a second line of barrier beyond the endothelium when the bbb is immature, owing to their phagocytic and digestive properties.  相似文献   

5.
The production of extracellular matrix components such as laminin, Type IV collagen, fibronectin, and tenascin during the formation of basement membrane in cultured epidermis-dermis recombinant skin of 13-day-old chick embryo was analyzed immunohistochemically. The epidermis and dermis were separated from each other by treatment with EDTA and/or dispase. The basal lamina of the basement membrane was thus removed from both epidermis and dermis. The isolated epidermis was overlaid onto the isolated dermis, i.e., recombined, and then cultured for 1-7 days in a chemically defined medium (BGJb) on a Millipore filter. Immunofluorescence labeling was used for light microscopy and HRP or colloidal gold labeling for electron microscopy. In specimens from 2-day cultures, positive sites of anti-laminin and anti-fibronectin reaction were observed light microscopically as patches which, at the electron microscopic level, corresponded to fragments of the basal lamina located immediately beneath and in the vicinity of the attachment plaques of the hemidesmosomes. The staining pattern became continuous 7 days after recombination. Fluorescence labeling of laminin and fibronectin appeared somewhat earlier than that of Type IV collagen and tenascin. All of the four components were found localized primarily in the basal lamina. Furthermore, fibronectin and tenascin were also distributed in the extracellular matrix of the dermis. The expression of tenascin, which does not exist in the basement membrane of 13-day-old intact embryonic skin, was induced in vitro. These results suggest that hemidesmosomes may play an important role in the reconstruction of the basement membrane and that various components of the basement membrane appeared at different times during the reconstruction.  相似文献   

6.
The neurons of the first optic ganglion (the lamina) in the desert ant, Cataglyphis bicolor, have been studied with the light microscope after Golgi silver impregnation. The different types of retinal and laminal fibres and their configuration are compared with the results obtained in the bee. The first synaptic region in the visual system of the ant lies proximally to the fenestrated layer below the basement membrane and the layer containing the monopolar cell bodies. The synaptic region can be separated into three morphologically different zones: (1) The most distal layer where the short visual fibres end at two different levels. The short visual fibres and some laminal fibres (monopolar cell fibres) also show lateral elements in this region. (2) The second layer appears almost free of branches of retinal and laminal fibres. (3) The most proximal layer, which has a characteristically dense horizontal structure resulting from the lateral elements of long visual, centrifugal, monopolar and tangential fibres. Nine cell axons arising from each ommatidium leave the retina. Six of these are short visual fibres and end at two different levels in the lamina. Three different types of short visual fibres can be distinguished by their different terminal depths and lateral branching pattern. The remaining three fibres, the long visual fibres, terminate in the medulla. They can be distinguished from each other by their lateral elements in the lamina neuropile. The five morphologically different laminal fibre types (axons of the monopolar cells in the lamina) have different shapes and different arborizations at different levels. Tangential, centrifugal and incerta sedis-fibres, which originate either from cell bodies in the cell body layer at the periphery of the outer chiasma or more centrally, terminate in the synaptic region of the lamina. Consideration is given to the clearly demarkated arrangement and length of the branching pattern of retinal and laminal fibres at different levels of the synaptic region of the lamina. In addition, a hypothetical connectivity pattern is discussed.  相似文献   

7.
Isolation of cDNA and genomic DNA clones encoding type II collagen.   总被引:10,自引:3,他引:7       下载免费PDF全文
A cDNA library constructed from total chick embryo RNA was screened with an enriched fraction of type II collagen mRNA. Two overlapping cDNA clones were characterized and shown to encode the COOH propeptide of type II collagen. In addition, a type II collagen clone was isolated from a Charon 4A library of chick genomic fragments. Definitive identification of the clones was based on DNA sequence analysis. The 3' end of the type II collagen gene appears to be similar to that of other interstitial collagen genes. Northern hybridization data indicates that there is a marked decrease in type II collagen mRNA levels in chondrocytes treated with the dedifferentiating agent 5-bromodeoxyuridine. The major type II collagen mRNA species is 5300 bases long, similar to that of other interstitial collagen RNAs.  相似文献   

8.
In this paper we discuss studies on basement membrane and interstitial matrix molecules in early development and teratocarcinoma differentiation. In the early embryo a compartmentalization of newly formed cell types takes place immediately by formation of basement membranes. The stage-specific developmental appearance of extracellular matrix molecules such as type IV collagen, laminin, entactin, fibronectin and proteoglycans seems to reflect a diversified role of extracellular matrices already in the earliest stages of development. In teratocarcinoma cultures the appearance and composition of extracellular matrices during the differentiation of endoderm cells closely resembles that found in the early embryo. Also in this respect the teratocarcinoma system can be used as a model for studies on early development. In later developmental phenomena other matrix molecules can also be of importance. Merosin, a novel tissue-specific basement membrane-associated protein that appears during muscle and nerve maturation is an example of such molecules.  相似文献   

9.
The early processes of proventricular gland formation in the chick embryo were investigated. The glands appeared as intra-epithelial invaginations of the proventricular endoderm on day 6 of incubation. By day 6.5 they began to protrude into the mesenchyme and elongated without branching until day 9. Before elongation of the glands, the immunofluorescence of laminin and the ultrastructure of the basal lamina were consistently observed in the intra-epithelial invaginations as well as in other regions, and the mitotic activity in the gland rudiments was not different from that in other regions. However, at the tips of the elongating glands, little laminin was detected and the basal lamina were thin and discontinuous. The mitotic activity at the tip of the glands was higher than that in non-glandular epithelium or in the stalk of the glands. These results suggest causal relationships between thinning of the basement membrane and localized epithelial cell proliferation at the tip of the elongating glands.  相似文献   

10.
In cell cultures of quail, chick, or mouse skeletal muscle, both myogenic and fibrogenic cells synthesize and secrete type-IV collagen, a major structural component of the basal lamina. Type-IV collagen, together with laminin, forms characteristic patches and strands on the surface of developing myotubes, marking the onset of basement-membrane formation. The pattern for type-IV collagen and laminin is unique to these proteins and is not paralleled by other matrix proteins, such as fibronectin or type-I or -III collagen. In the present study, we used species-specific antibodies to either mouse or chick type-IV collagen to demonstrate the ability of fibroblast--derived type-IV collagen to incorporate in the basal lamina of myotubes. In combination cultures of embryonic quail skeletal myoblasts and mouse muscle fibroblasts, antibodies specific for mouse type-IV collagen revealed the deposition of type-IV collagen on the surface of quail myotubes in the pattern typical of the beginning of basement-membrane formation. Control cultures consisting of only quail muscle cells containing myoblasts and fibroblasts demonstrated no such reaction with these antibodies. Deposits of mouse type-IV collagen were also observed on the surface of quail myotubes when conditioned medium from mouse muscle fibroblasts was added to quail myoblast cultures. Similarly, in combination cultures of mouse myoblasts and chick muscle fibroblasts, chick type-IV-collagen deposits were identified on the surface of mouse myotubes. These results indicate that type-IV collagen synthesized by muscle fibroblasts may be incorporated into the basal lamina forming on the plasmalemma of myotubes, and may explain ultrastructural studies by Lipton on the contribution of fibroblasts to the formation of basement membranes in skeletal muscle.  相似文献   

11.
A method utilizing biopsy sized samples of lung for anionic charge site localization in alveolar and capillary basement membranes in human tissue is discussed. Tissue fixed in either paraformaldehyde-lysine-periodate or 1% paraformaldehyde with 0.05% glutaraldehyde, cut into 30 mu sections, and incubated with the cationic probe, polyethyleneimine, was processed for electron microscopic analysis using standard techniques. Anionic charge sites were identified and regularly distributed in increments of approximately 40-50 nm in the lamina rara externa of the alveolar basement membrane, with lesser amounts found in the lamina rara interna and lamina densa. Anionic charge sites were also demonstrated in the interstitial portion of the capillary basement membrane and on cell surfaces. These methods can be used to more broadly define the localization of anionic charge sites in human lung tissue in both normal and pathologic states.  相似文献   

12.
Embryonic chick corneal explants were soaked in mild detergent and the anterior corneal epithelium was peeled from its basement membrane, leaving the lamina lucida surface exposed and supported on the subjacent primary stroma. Explants were treated with rabbit anti-laminin IgG, followed by sheep anti-rabbit IgG linked microspheres, and processed for SEM. The lucida surface was heavily decorated with microspheres, whereas controls treated with preimmune rabbit IgG were essentially beadless. Laminin distribution was not regular, appearing denser in some regions than others. However, the connective tissue surface of the basement membrane was never laminin-positive, even after treatment with hyaluronidase. These results suggest the basal lamina of the corneal epithelium is asymmetric, with preferential location of laminin to the lucida surface of the basement membrane.  相似文献   

13.
The primary stroma of the cornea of the chick embryo consists of orthogonally arranged collagen fibrils embedded in glycosaminoglycan (GAG) produced by the epithelium under the early inductive influence of the lens. The experiments reported here were designed to test whether or not the collagen of the lens basement lamina is capable of stimulating corneal epithelium to produce primary stroma. Enzymatically isolated 5-day-old corneal epithelia were grown for 24 hr in vitro in the presence of 35SO4 or proline-3H on various substrata. Epithelia cultured on lens capsule synthesized 2.5 times as much GAG (as measured by incorporation of label into CPC precipitable material) and almost 3 times as much collagen (assayed by hot TCA extraction or collagenase sensitivity) as when cultured on Millipore filter or other noncollagenous substrata. A similar stimulatory response was observed when epithelium was combined with chemically pure chondrosarcoma collagen, NaOH-extracted lens capsule, vitreous humor, frozen-killed corneal stroma or cartilage, or tendon collagen gels; in the latter case, the magnitude of the effect can be shown to be related to concentration of the collagen in the gel. All of the collagenous substrata stimulate not only extracellular matrix production, but also polymerization of corneal-type matrix, as judged by ultrastructural criteria and by the association of more radioactivity with the tissue than the medium. Since purified chondrosarcoma collagen is as effective as lens capsule, the stimulatory effect on collagen and GAG synthesis by corneal epithelium is not specific for basal lamina (lens capsule) collagen.  相似文献   

14.
As an initial step in characterizing the function of basal lamina components during muscle cell differentiation and innervation in vivo, we have determined immunohistochemically the pattern of expression of three components--laminin, proteins related to agrin (an acetylcholine receptor (AChR)-aggregating protein), and a heparan sulfate proteoglycan--during the development of chick embryo hindlimb muscles. Monoclonal antibodies against agrin were used to purify the protein from the Torpedo ray and to characterize agrin-like proteins from embryonic and adult chicken. In early hindlimb buds (stage 19), antibodies against laminin and agrin stained the ectodermal basement membrane and bound to limb mesenchyme with a generalized, punctate distribution. However, as dorsal and ventral premuscle masses condensed (stage 22-23), mesenchymal immunoreactivity for laminin and agrin-like proteins, but not the proteoglycan, became concentrated in these myogenic regions. Significantly, the preferential accumulation of these molecules in myogenic regions of the limb preceded by 1-2 days the appearance of muscle-specific proteins, myoblast fusion, and muscle innervation. All three basal lamina components were preferentially associated with all AChR clusters from the time we first observed them on newly formed myotubes at stage 26. Localization of these antigens in three-dimensional collagen gel cultures of limb mesenchyme, explanted prior to innervation of the limb, paralleled the staining patterns seen during limb development in the embryo. These results indicate that basal lamina molecules intrinsic to limb mesenchyme are early markers for myogenic and synaptic differentiation, and suggest that these components play important roles during the initial phases of myogenesis and synaptogenesis.  相似文献   

15.
The anionic sites of the basement membrane of rat seminiferous tubules were demonstrated ultrastructurally in the lamina densa by using cationic polyethyleneimine (PEI). The sites were largely digested out after incubation with heparitinase, indicating a large proportion of heparan sulfates. The anionic sites were present as early as day 16 of gestation on the interstitial side of the lamina densa, and after gestation day 20 they were symmetrically organized on both sides of the lamina densa. The number of sites is not modified postnatally. They appear more irregular in density with advancing age. Experimental conditions as cryptorchidism, fetal irradiation, and ligation of the ductuli efferents lead to unspecific alterations in the distribution of the anionic sites that are parallel to the modifications in the basement membrane.  相似文献   

16.
Agrin is a heparan sulfate proteoglycan that is required for the formation and maintenance of neuromuscular junctions. During development, agrin is secreted from motor neurons to trigger the local aggregation of acetylcholine receptors (AChRs) and other proteins in the muscle fiber, which together compose the postsynaptic apparatus. After release from the motor neuron, agrin binds to the developing muscle basal lamina and remains associated with the synaptic portion throughout adulthood. We have recently shown that full-length chick agrin binds to a basement membrane-like preparation called Matrigel™. The first 130 amino acids from the NH2 terminus are necessary for the binding, and they are the reason why, on cultured chick myotubes, AChR clusters induced by full-length agrin are small. In the current report we show that an NH2-terminal fragment of agrin containing these 130 amino acids is sufficient to bind to Matrigel™ and that the binding to this preparation is mediated by laminin-1. The fragment also binds to laminin-2 and -4, the predominant laminin isoforms of the muscle fiber basal lamina. On cultured myotubes, it colocalizes with laminin and is enriched in AChR aggregates. In addition, we show that the effect of full-length agrin on the size of AChR clusters is reversed in the presence of the NH2-terminal agrin fragment. These data strongly suggest that binding of agrin to laminin provides the basis of its localization to synaptic basal lamina and other basement membranes.  相似文献   

17.
The level of DNA polymerase gamma as compared to DNA polymerases alpha and beta has been determined in chick embryo by means of specific tests: the amount of gamma-polymerase in the 12-day-old chick embryo reaches about 15% of the total polymerase activity. This enzyme is mainly localized in nuclei and mitochondria, where it represents the prevailing if not the unique DNA polymerase activity. The mitochondrial DNA polymerase gamma is likely to be associated with the internal membrane or the matrix of this organelle since it is not removed by digitonin treatment. The gamma-polymerases have been purified from chick embryo nuclei and mitochondria 500-700 times by means of DEAE-cellulose, phosphocellulose and hydroxyapatite chromatographies. The purified mitochondrial DNA polymerase gamma is closely related to the homologous enzyme purified from the nuclei of the same cells. So far, they cannot be distinguished on the basis of their sedimentation, catalytical properties and response to inhibitors or denaturating agents. The purified gamma enzymes are distinct from the chick embryo DNA polymerases alpha and beta and are not inhibited by antibodies prepared against the latter enzymes. The nuclear and mitochondrial gamma-polymerases do not respond to the oncogenic RNA virus DNA polymerase assay with natural mRNAs.  相似文献   

18.
Summary Distribution and organization of the extracellular glycoproteins, fibronectin and laminin, in clonal cultures of chick retinal pigmented epithelial cells have been investigated using indirect immunofluorescence microscopy. Fibronectin is located on the apical and basal cell surfaces and between the cells in the undifferentiated regions of the colony (outer edge and stratified region). It seems to run parallel to intracellular microfilament bundles and to be associated with them across the cell membrane. In the differentiated region of thecolony (center), it is located exclusively on the basal cell surface and seems to be primarily associated with the collagen bundles of the basement membrane. The locations suggest that it may be necessary to stabilizing the sheet of differentiated cells in the colony center. In all regions except the outer edge of the colony, laminin is associated with the basal cell surfaces where it forms a meshwork of short, fine strands. The laminin has a totally different staining pattern from the fibronectin and does not seem to be associated with collagen bundles. The location suggests that laminin may be present in the basal lamina and may be involved in adhesion of the cells to the substratum. This work was supported by Medical Research Council of Canada (MA-6337).  相似文献   

19.
In bird skin, nerve fibres develop in the dermis but do not enter the epidermis. In co-cultures of 7-day-old chick embryo dorsal root ganglia and epidermis, the neurites also avoid the epidermis. Previous studies have shown that chondroitin sulphate proteoglycans may be involved. Chondroitin sulphate has therefore been visualized by immunocytochemistry, using themonoclonal antibody CS-56, both in vivo and in vitro using light and electron microscopy. Its distribution was compared to those of 2 other chondroitin sulphate epitopes and to that of the growing nerve fibres. In cultures of epidermis from 7-day-old embryonic chicks, immunoreactivity is found uniformly around the epidermal cells while at 7.5 days the distribution in dermis is heterogeneous, and particularly marked in feather buds. In vivo, chondroitin sulphate immunoreactivity is detected in the epidermis, on the basal lamina, on the surfaces of fibroblasts and along collagen fibrils. This localization is complementary to the distribution of cutaneous nerves. Chondroitin sulphate in the basal lamina could prevent innervation of the epidermis and the dermal heterogeneities could partly explain the nerve fibres surrounding the base of the feathers. Chondroitin sulphate could therefore be important for neural guidance in developing chick skin.  相似文献   

20.
《The Journal of cell biology》1989,109(4):1837-1848
The deposition of intestinal heparan sulfate proteoglycan (HSPG) at the epithelial-mesenchymal interface and its cellular source have been studied by immunocytochemistry at various developmental stages and in rat/chick interspecies hybrid intestines. Polyclonal heparan sulfate antibodies were produced by immunizing rabbits with HSPG purified from the Engelbreth-Holm-Swarm mouse tumor; these antibodies stained rat intestinal basement membranes. A monoclonal antibody (mAb 4C1) produced against lens capsule of 11-d-old chick embryo reacted with embryonic or adult chick basement membranes, but did not stain that of rat tissues. Immunoprecipitation experiments indicated that mAb 4C1 recognized the chicken basement membrane HSPG. Immunofluorescent staining with these antibodies allowed us to demonstrate that distribution of HSPG at the epithelial-mesenchymal interface varied with the stages of intestinal development, suggesting that remodeling of this proteoglycan is essential for regulating cell behavior during morphogenesis. The immunofluorescence pattern obtained with the two species-specific HSPG antibodies in rat/chick epithelial/mesenchymal hybrid intestines developed as grafts (into the coelomic cavity of chick embryos or under the kidney capsule of adult mice) led to the conclusion that HSPG molecules located in the basement membrane of the developing intestine were produced exclusively by the epithelial cells. These data emphasize the notion already gained from previous studies, in which type IV collagen has been shown to be produced by mesenchymal cells (Simon- Assmann, P., F. Bouziges, C. Arnold, K. Haffen, and M. Kedinger. 1988. Development (Camb.). 102:339-347), that epithelial-mesenchymal interactions play an important role in the formation of a complete basement membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号