首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Some cases of endometrial cancer are associated with a familial tumor and are referred to as hereditary nonpolyposis colorectal cancer (HNPCC or Lynch syndrome). Such tumors are thought to be induced by germline mutation of the DNA mismatch repair (MMR) gene, but many aspects of the pathology of familial endometrial cancer are unclear and no effective screening method has been established. However, the pathology of endometrial cancer with familial tumor has been progressively clarified in recent studies. At present, about 0.5% of all cases of endometrial cancers meet the clinical diagnostic criteria for HNPCC. A recent analysis of the three MMR genes (hMLH1, hMSH2 and hMSH6) revealed germline mutations in 18 of 120 cases (15.0%) of endometrial cancer with familial accumulation of cancer or double cancer, with a frameshift mutation of the hMSH6 gene being the most common. Many cases with mutation did not meet the current clinical diagnostic criteria for HNPCC, indicating that familial endometrial cancer is often not diagnosed as HNPCC. The results suggest that the hMSH6 gene mutation may be important in carcinogenesis in endometrial cancer and germline mutations of the MMR gene may be more prevalent in cases associated with familial accumulation of cancer. An international large-scale muticenter study is required to obtain further information about the pathology of endometrial cancer as a familial tumor.Key Words: HNPCC, Endometrial cancer, DNA mismatch repair gene, hMLH1, hMSH6.  相似文献   

2.
Background: Ten genes are associated with increased susceptibility to inherited breast cancer have also been associated with population breast cancer risk, and all are involved directly or indirectly in the monoubiquitinated FANCD2–DNA damage repair pathway. We analyzed 13 haplotype blocks in eight of these genes to estimate the breast cancer risk conferred by individual haplotypes. Methods: Haplotype blocks were constructed with 48 tag single-nucleotide polymorphisms (tSNPs) identified in eight breast cancer susceptibility genes, TP53, PTEN, CHEK2, ATM, NBS1, RAD50, BRIP1, and PALB2. Genotyping was performed by SNPscan on 734 female patients and 672 female age-matched controls. Results: Forty-five tSNPs were successfully genotyped by SNPscan, and call rates for each tSNP were above 98.9%. Thirteen haplotype blocks of eight genes were constructed with 41 successfully genotyped tSNPs. We found that seven haplotypes from four haplotype blocks located within three genes (NBS1, PTEN, and BRIP1) were significantly associated with breast cancer risk. Among these, four haplotypes (ATC in block 1 of NBS1, GCCCC and GCCCT in block 2 of NBS1, and GCT in block 2 of BRIP1) were correlated with breast cancer risk in sporadic cases (OR (95% CI) 1.350(1.124–1.623), 0.752(0.584–0.969), 0.803(0.649–0.993), and 0.776(0.604–0.997), respectively), and only one haplotype (GGCCT in block 2 of NBS1) was significantly associated with breast cancer risk in familial and early-onset cases (OR(95% CI) 1.902(1.134–3.191)). Conclusions: Four haplotypes within two genes (NBS1 and BRIP1) involved in the monoubiquitinated FANCD2–DNA damage–repair pathway are significantly associated with increased sporadic breast cancer risk, while one haplotype within NBS1 is correlated with an increased risk of familial or early-onset breast cancer, indicating that specific haplotypes may be distinct predictors of breast cancer.  相似文献   

3.
《PloS one》2013,8(2)
The identification of the two most prevalent susceptibility genes in breast cancer, BRCA1 and BRCA2, was the beginning of a sustained effort to uncover new genes explaining the missing heritability in this disease. Today, additional high, moderate and low penetrance genes have been identified in breast cancer, such as P53, PTEN, STK11, PALB2 or ATM, globally accounting for around 35 percent of the familial cases. In the present study we used massively parallel sequencing to analyze 7 BRCA1/BRCA2 negative families, each having at least 6 affected women with breast cancer (between 6 and 10) diagnosed under the age of 60 across generations. After extensive filtering, Sanger sequencing validation and co-segregation studies, variants were prioritized through either control-population studies, including up to 750 healthy individuals, or case-control assays comprising approximately 5300 samples. As a result, a known moderate susceptibility indel variant (CHEK2 1100delC) and a catalogue of 11 rare variants presenting signs of association with breast cancer were identified. All the affected genes are involved in important cellular mechanisms like DNA repair, cell proliferation and survival or cell cycle regulation. This study highlights the need to investigate the role of rare variants in familial cancer development by means of novel high throughput analysis strategies optimized for genetically heterogeneous scenarios. Even considering the intrinsic limitations of exome resequencing studies, our findings support the hypothesis that the majority of non-BRCA1/BRCA2 breast cancer families might be explained by the action of moderate and/or low penetrance susceptibility alleles.  相似文献   

4.
Breast cancer is the most common cancer in women in developed countries, and the contribution of genetic susceptibility to breast cancer development has been well-recognized. However, a great proportion of these hereditary predisposing factors still remain unidentified. To examine the contribution of rare copy number variants (CNVs) in breast cancer predisposition, high-resolution genome-wide scans were performed on genomic DNA of 103 BRCA1, BRCA2, and PALB2 mutation negative familial breast cancer cases and 128 geographically matched healthy female controls; for replication an independent cohort of 75 similarly mutation negative young breast cancer patients was used. All observed rare variants were confirmed by independent methods. The studied breast cancer cases showed a consistent increase in the frequency of rare CNVs when compared to controls. Furthermore, the biological networks of the disrupted genes differed between the two groups. In familial cases the observed mutations disrupted genes, which were significantly overrepresented in cellular functions related to maintenance of genomic integrity, including DNA double-strand break repair (P = 0.0211). Biological network analysis in the two independent breast cancer cohorts showed that the disrupted genes were closely related to estrogen signaling and TP53 centered tumor suppressor network. These results suggest that rare CNVs represent an alternative source of genetic variation influencing hereditary risk for breast cancer.  相似文献   

5.
Breast cancer is strongly influenced by hereditary risk factors, a majority of which still remain unknown. Here, we performed a targeted next-generation sequencing of 796 genes implicated in DNA repair in 189 Finnish breast cancer cases with indication of hereditary disease susceptibility and focused the analysis on protein truncating mutations. A recurrent heterozygous mutation (c.904_916del, p.Arg304ValfsTer3) was identified in early DNA damage response gene, MCPH1, significantly associating with breast cancer susceptibility both in familial (5/145, 3.4%, P = 0.003, OR 8.3) and unselected cases (16/1150, 1.4%, P = 0.016, OR 3.3). A total of 21 mutation positive families were identified, of which one-third exhibited also brain tumors and/or sarcomas (P = 0.0007). Mutation carriers exhibited significant increase in genomic instability assessed by cytogenetic analysis for spontaneous chromosomal rearrangements in peripheral blood lymphocytes (P = 0.0007), suggesting an effect for MCPH1 haploinsufficiency on cancer susceptibility. Furthermore, 40% of the mutation carrier tumors exhibited loss of the wild-type allele. These findings collectively provide strong evidence for MCHP1 being a novel breast cancer susceptibility gene, which warrants further investigations in other populations.  相似文献   

6.
Prostate cancer is the most frequent malignancy in males and its etiology is strongly influenced by genetic factors. Nevertheless, no mutated genes which could be used for diagnosis have been identified in a major proportion of familial cases. Three genes with germline mutations have been identified after linkage analysis (ELAC2, RNASEL, MSR1), but these mutations are very rare and their penetrance is not well defined. The association of most genes with genetic variants is weak, and only BRCA2/familial breast cancer is of clinical relevance. As a consequence of the extreme genetic heterogeneity, diagnostic tools are not available and genetic counseling has to rely on risk estimates from pedigree data in which a single affected first degree relative indicates a relevant risk.  相似文献   

7.
Uterine leiomyomas (or fibroids) are the most common tumors in women of reproductive age. Early studies of two familial cancer syndromes, the multiple cutaneous and uterine leiomyomatosis (MCUL1), and the hereditary leiomyomatosis and renal cell cancer (HLRCC), implicated FH, a gene on chromosome 1q43 encoding the tricarboxylic acid cycle fumarate hydratase enzyme. The role of this metabolic housekeeping gene in tumorigenesis is still a matter of debate and pseudo-hypoxia has been suggested as a pathological mechanism. Inactivating FH mutations have rarely been observed in the nonsyndromic and common form of fibroids; however, loss of heterozygosity across FH appeared as a significant event in the pathogenesis of a subset of these tumors. To assess the role of FH and the linked genes in nonsyndromic uterine fibroids, we explored a two-megabase interval spanning FH in the NIEHS Uterine fibroid study, a cross-sectional study of fibroids in 1152 premenopausal women. Association mapping with a dense set of single nucleotide polymorphisms revealed several peaks of association (p = 10−2–8.10−5) with the risk and/or growth of fibroids. In particular, genes encoding factors suspected (cytosolic FH) or known (EXO1 - exonuclease 1) to be involved in DNA mismatch repair emerged as candidate susceptibility genes whereas those acting in the autophagy/apoptosis (MAP1LC3C - microtubule-associated protein) or signal transduction (RGS7 - Regulator of G-protein and PLD5– Phospoholipase D) appeared to affect tumor growth. Furthermore, body mass index, a suspected confounder altered significantly but unpredictably the association with the candidate genes in the African and European American populations, suggesting the presence of a major obesity gene in the studied region. With the high potential for occult tumors in common conditions such as fibroids, validation of our data in family-based studies is needed.  相似文献   

8.
Mutations in the mismatch repair (MMR) genes MSH2, MSH6, MLH1 and PMS2 are associated with Lynch Syndrome (LS), a familial predisposition to early-onset cancer of the colon and other organs. Because not all LS families carry mutations in these four genes, the search for cancer-associated mutations was extended to genes encoding other members of the mismatch repairosome. This effort identified mutations in EXO1, which encodes the sole exonuclease implicated in MMR. One of these mutations, E109K, was reported to abrogate the catalytic activity of the enzyme, yet, in the crystal structure of the EXO1/DNA complex, this glutamate is far away from both DNA and the catalytic site of the enzyme. In an attempt to elucidate the reason underlying the putative loss of function of this variant, we expressed it in Escherichia coli, and tested its activity in a series of biochemical assays. We now report that, contrary to earlier reports, and unlike the catalytic site mutant D173A, the EXO1 E109K variant resembled the wild-type (wt) enzyme on all tested substrates. In the light of our findings, we attempt here to reinterpret the results of the phenotypic characterization of a knock-in mouse carrying the E109K mutation and cells derived from it.  相似文献   

9.
Colorectal cancer is one of the most frequent neoplasms and an important cause of mortality in the developed world. Mendelian syndromes account for about 5% of the total burden of CRC, being Lynch syndrome and familial adenomatous polyposis the most common forms. Lynch syndrome tumors develop mainly as a consequence of defective DNA mismatch repair associated with germline mutations in MLH1, MSH2, MSH6 and PMS2. A significant proportion of variants identified by screening these genes correspond to missense or noncoding changes without a clear pathogenic consequence, and they are designated as “variants of uncertain significance”, being the c.1852_1853delinsGC (p.K618A) variant in the MLH1 gene a clear example. The implication of this variant as a low-penetrance risk variant for CRC was assessed in the present study by performing a case-control study within a large cohort from the COGENT consortium-COST Action BM1206 including 18,723 individuals (8,055 colorectal cancer cases and 10,668 controls) and a case-only genotype-phenotype correlation with several clinical and pathological characteristics restricted to the Epicolon cohort. Our results showed no involvement of this variant as a low-penetrance variant for colorectal cancer genetic susceptibility and no association with any clinical and pathological characteristics including family history for this neoplasm or Lynch syndrome.  相似文献   

10.
Germline mutations in DNA mismatch repair (MMR) genes are the cause of hereditary non-polyposis colorectal cancer/Lynch syndrome (HNPCC/LS) one of the most common cancer predisposition syndromes, and defects in MMR are also prevalent in sporadic colorectal cancers. In the past, the generation and analysis of mouse lines with knockout mutations in all of the known MMR genes has provided insight into how loss of individual MMR genes affects genome stability and contributes to cancer susceptibility. These studies also revealed essential functions for some of the MMR genes in B cell maturation and fertility. In this review, we will provide a brief overview of the cancer predisposition phenotypes of recently developed mouse models with targeted mutations in MutS and MutL homologs (Msh and Mlh, respectively) and their utility as preclinical models. The focus will be on mouse lines with conditional MMR mutations that have allowed more accurate modeling of human cancer syndromes in mice and that together with new technologies in gene targeting, hold great promise for the analysis of MMR-deficient intestinal tumors and other cancers which will drive the development of preventive and therapeutic treatment strategies.  相似文献   

11.
The most important cause of developing hereditary breast cancer is germline mutations occurring in breast cancer (BCs) susceptibility genes, for example, BRCA1, BRCA2, TP53, CHEK2, PTEN, ATM, and PPM1D. Many BC susceptibility genes can be grouped into two classes, high- and low-penetrance genes, each of which interact with multiple genes and environmental factors. However, the penetrance of genes can also be represented by a spectrum, which ranges between high and low. Two of the most common susceptibility genes are BRCA1 and BRCA2, which perform vital cellular functions for repair of homologous DNA. Loss of heterozygosity accompanied by hereditary mutations in BRCA1 or BRCA2 increases chromosomal instability and the likelihood of cancer, as well as playing a key role in stimulating malignant transformation. With regard to pathological features, familial breast cancers caused by BRCA1 mutations usually differ from those caused by BRCA2 mutations and nonfamilial BCs. It is essential to acquire an understanding of these pathological features along with the genetic history of the patient to offer an individualized treatment. Germline mutations in BRCA1 and BRCA2 genes are the main genetic and inherited factors for breast and ovarian cancer. In fact, these mutations are very important in developing early onset and increasing the risk of familial breast and ovarian cancer and responsible for 90% of hereditary BC cases. Therefore, according to the conducted studies, screening of BRCA1 and BRCA2 genes is recommended as an important marker for early detection of all patients with breast or ovarian cancer risk with family history of the disease. In this review, we summarize the role of hereditary genes, mainly BRCA1 and BRCA2, in BC.  相似文献   

12.
Hereditary factors are presumed to play a role in one third of colorectal cancer (CRC) cases. However, in the majority of familial CRC cases the genetic basis of predisposition remains unexplained. This is particularly true for families with few affected individuals. To identify susceptibility genes for this common phenotype, we examined familial cases derived from a consecutive series of 1514 Finnish CRC patients. Ninety-six familial CRC patients with no previous diagnosis of a hereditary CRC syndrome were included in the analysis. Eighty-six patients had one affected first-degree relative, and ten patients had two or more. Exome sequencing was utilized to search for genes harboring putative loss-of-function variants, because such alterations are likely candidates for disease-causing mutations. Eleven genes with rare truncating variants in two or three familial CRC cases were identified: UACA, SFXN4, TWSG1, PSPH, NUDT7, ZNF490, PRSS37, CCDC18, PRADC1, MRPL3, and AKR1C4. Loss of heterozygosity was examined in all respective cancer samples, and was detected in seven occasions involving four of the candidate genes. In all seven occasions the wild-type allele was lost (P = 0.0078) providing additional evidence that these eleven genes are likely to include true culprits. The study provides a set of candidate predisposition genes which may explain a subset of common familial CRC. Additional genetic validation in other populations is required to provide firm evidence for causality, as well as to characterize the natural history of the respective phenotypes.  相似文献   

13.
DNA repair plays a pivotal role in maintaining genomic integrity with over 130 genes involved in various repair pathways that include base excision repair, nucleotide excision repair, double strand break repair and DNA mismatch repair. Polymorphisms within genes that are involved in these processes have been widely reported to be associated with cancer susceptibility in an extensive range of malignancies that include colorectal cancer (CRC). Lynch syndrome is caused by inherited germline mutations in DNA mismatch repair genes, predominantly in MLH1 and MSH2, that predispose to a variety of epithelial malignancies, most notably CRC. Despite being a relatively well understood hereditary cancer syndrome there remain several questions in relation to genetic influences on disease expression. Since Lynch syndrome is associated with a breakdown in DNA mismatch repair variation in other DNA repair genes may influence disease expression. In this report we have genotyped 424 Australian and Polish Lynch syndrome participants for eight common DNA repair gene polymorphisms to assess any association with the age of CRC onset. The DNA repair gene SNPs included in the study were: BRCA2 (rs11571653), MSH3 (rs26279), Lig4 (rs1805386), OGG1 (rs1052133), XRCC1 (rs25487), XRCC2 (rs3218536 and rs1799793) and XRCC3 (rs861539). Cox multi-variant regression modelling failed to provide any convincing evidence of an effect in any of the polymorphisms analysed. The data suggest that polymorphisms in DNA repair genes do not contribute to cancer risk in a population of CRC patients who are at increased risk of disease as a result in a deficiency of DNA mismatch repair.  相似文献   

14.
Despite all the research efforts made during the last few decades, most of the cases of families with breast cancer remain unexplained. Mutations in BRCA1 and BRCA2, and in other breast-cancer-susceptibility genes, account for about 25% of familial breast cancer. Linkage studies have failed to identify other breast-cancer-susceptibility genes. The selection criteria of the families, differences in the population background, or clinical and genetic heterogeneity, among other factors, might determine the power to detect the linkage signal. We have performed a SNP-based linkage scan with a total of 6000 SNP markers across the genome in 41 breast-cancer Spanish families, with an average of four breast-cancer cases per family not associated with BRCA1 or BRCA2 germline mutations. In addition, we have included three BRCA-positive families to test the power in linkage detection from a low-complexity family in which a high-penetrance mutation segregates. We have identified three regions of interest, located on 3q25, 6q24, and 21q22. The two former regions showed a suggestive linkage signal (HLOD scores 3.01 and 2.26, respectively), and the latter region showed a significant linkage signal (HLOD score 3.55). Moreover, we found that a subset of 13 families with bilateral breast cancer presented a HLOD of 3.13 on the 3q25 region. Our results suggest that several variables must be taken into account before performing a linkage study in familial breast cancer because of the high heterogeneity within non-BRCA1/2 families. Phenotypic and geographic homogeneity could be the most important factors.  相似文献   

15.
Fanconi anemia (FA) is a rare genetic disease characterized by congenital abnormalities, bone marrow failure and heightened cancer susceptibility. The FA proteins are known to function in the cellular defense against DNA interstrand crosslinks (ICLs), a process that remains poorly understood. A recent spate of discoveries has led to the identification of one new FA gene, FANCP/SLX4, and two strong candidate FA genes, FAN1 and RAD51C. In this perspective we describe the discovery of FANCP/SLX4 and discuss how these new findings collectively refine our understanding of DNA ICL repair.Key words: Fanconi anemia, DNA repair, ubiquitin, FANCP/SLX4, DNA interstrand crosslink repair  相似文献   

16.
目的:分析hMLH1、hMSH2、hMSH6和hPMS2四种错配修复基因蛋白在结直肠癌中的表达及其临床意义。方法:随机选取2013年1月至2015年12月广州医科大学附属第三医院结直肠癌患者标本177例,采用免疫组织化学法检测hMLH1、hMSH2、hMSH6和hPMS2蛋白的表达情况,并分析蛋白表达与临床参数间关系。结果:177例结直肠癌组织中,hMLH1蛋白的缺失率为6.2%(11/177),hMSH2蛋白的缺失率为4.0%(7/177),hMSH6蛋白的缺失率为1.7%(3/177),hPMS2蛋白的缺失率为8.0%(14/177),四者之和占所有结直肠癌病例的19.8%(35/177)。四种错配修复基因蛋白表达缺失均与肿瘤发生部位有关(P0.05),另外,hMLH1及hPMS2蛋白的表达缺失还与肿瘤分化程度相关(P0.05),hMSH6蛋白的表达缺失还与肿瘤浸润深度相关(P0.05);而缺失均与年龄、性别、淋巴结转移和远处转移无关(P0.05)。结论:错配修复蛋白的表达在部分结直肠癌组织中出现缺失现象,且与肿瘤部位及分化程度密切相关。hMLH1、hMSH2、hMSH6和hPMS2四种基因的突变,为临床判断预后及拟定治疗方案提供一个有参考价值的依据。  相似文献   

17.
Mutations in human DNA polymerase (Pol) ?, one of three eukaryotic Pols required for DNA replication, have recently been found associated with an ultramutator phenotype in tumors from somatic colorectal and endometrial cancers and in a familial colorectal cancer. Possibly, Pol ? mutations reduce the accuracy of DNA synthesis, thereby increasing the mutational burden and contributing to tumor development. To test this possibility in vivo, we characterized an active site mutant allele of human Pol ? that exhibits a strong mutator phenotype in vitro when the proofreading exonuclease activity of the enzyme is inactive. This mutant has a strong bias toward mispairs opposite template pyrimidine bases, particularly T•dTTP mispairs. Expression of mutant Pol ? in human cells lacking functional mismatch repair caused an increase in mutation rate primarily due to T•dTTP mispairs. Functional mismatch repair eliminated the increased mutagenesis. The results indicate that the mutant Pol ? causes replication errors in vivo, and is at least partially dominant over the endogenous, wild type Pol ?. Since tumors from familial and somatic colorectal patients arise with Pol ? mutations in a single allele, are microsatellite stable and have a large increase in base pair substitutions, our data are consistent with a Pol ? mutation requiring additional factors to promote tumor development.  相似文献   

18.
Idiopathic pulmonary fibrosis (IPF) is a lethal scarring lung disease that affects older adults. Heterozygous rare mutations in the genes encoding telomerase are found in ~15% of familial cases. We have used linkage to map another disease-causing gene in a large family with IPF and adenocarcinoma of the lung to a 15.7 Mb region on chromosome 10. We identified a rare missense mutation in a candidate gene, SFTPA2, within the interval encoding surfactant protein A2 (SP-A2). Another rare mutation in SFTPA2 was identified in another family with IPF and lung cancer. Both mutations involve invariant residues in the highly conserved carbohydrate-recognition domain of the protein and are predicted to disrupt protein structure. Recombinant proteins carrying these mutations are retained in the endoplasmic reticulum and are not secreted. These data are consistent with SFTPA2 germline mutations that interfere with protein trafficking and cause familial IPF and lung cancer.  相似文献   

19.
20.
《Cancer epidemiology》2014,38(3):273-278
Malignant mesothelioma is a sporadic cancer linked to asbestos exposure. Its occurrence among blood relatives (familial mesothelioma) may point to genetic susceptibility or shared exposures. The burden of the familial disease is unknown. The aims of the study were to assess at population level the proportion of familial mesotheliomas among all mesotheliomas and to investigate the family history of cancer among relatives of mesothelioma cases. We actively searched familial clusters based on a mesothelioma registry from central Italy (5.5 million people, 10% of the Italian population) of the National Mesothelioma Register network (ReNaM) as well as a pathology-based archive. Among 997 incident mesotheliomas recorded in a 32-year-period (1980–2012), we detected 13 clusters and 34 familial cases, accounting for 3.4% of all mesotheliomas. The most common clusters where those with affected siblings and unaffected parents. Asbestos exposure was occupational (n = 7 clusters), household (n = 2), environmental (n = 1), or not attributable for insufficient information (n = 3). There were 25 additional cancers in nine families. Some were cancer sites for which there is sufficient evidence (lung and larynx) or limited evidence (stomach and colon) of causal association with asbestos. The results suggest potential genetic recessive effects in mesothelioma that interact with asbestos exposure, but it is not possible to estimate the specific proportion attributable to each of these components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号