首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding.  相似文献   

3.
The morphology of the erythrosuchid ankle joint is reassessed. Two specimens, recently thought to have been incorrectly referred to Erythrosuchus africanus , are shown without doubt to belong to this taxon. Furthermore, the morphology is essentially similar to that of other early archosaurs. The tarsus of Erythrosuchus is poorly ossified and consists of a calcaneum, astragalus, and two distal tarsals. The calcanea of Erythrosuchus, Vjushkovia triplicostata , and Shansisuchus shansisuchus are all similar in being dorsoventrally compressed, possessing a lateral tuber, and lacking a perforating foramen. The astragalus of V. triplicostata is currently unknown. The astragalus of Shansisuchus is apparently unique in form. The erythrosuchid pes is therefore more derived than has been recently proposed. The tarsal morphology of several other archosauromorph taxa is reviewed and many details are found to be at variance with the literature. The plesiomorphic condition for the Archosauromorpha consists of four distal tarsals and a proximal row of three elements; two of which articulate with the tibia. These proximal elements are interpreted as the astragalus, calcaneum, and a centrale, and the same pattern is retained in the earliest archosaurs. This reassessed tarsal morphology has implications for the homology of the centrale and reconstruction of early diapsid phylogeny.  相似文献   

4.
The origin of birds and avian flight from within the archosaurian radiation has been among the most contentious issues in paleobiology. Although there is general agreement that birds are related to theropod dinosaurs at some level, debate centers on whether birds are derived directly from highly derived theropods, the current dogma, or from an earlier common ancestor lacking suites of derived anatomical characters. Recent discoveries from the Early Cretaceous of China have highlighted the debate, with claims of the discovery of all stages of feather evolution and ancestral birds (theropod dinosaurs), although the deposits are at least 25 million years younger than those containing the earliest known bird Archaeopteryx. In the first part of the study we examine the fossil evidence relating to alleged feather progenitors, commonly referred to as protofeathers, in these putative ancestors of birds. Our findings show no evidence for the existence of protofeathers and consequently no evidence in support of the follicular theory of the morphogenesis of the feather. Rather, based on histological studies of the integument of modern reptiles, which show complex patterns of the collagen fibers of the dermis, we conclude that "protofeathers" are probably the remains of collagenous fiber "meshworks" that reinforced the dinosaur integument. These "meshworks" of the skin frequently formed aberrant patterns resembling feathers as a consequence of decomposition. Our findings also draw support from new paleontological evidence. We describe integumental structures, very similar to "protofeathers," preserved within the rib area of a Psittacosaurus specimen from Nanjing, China, an ornithopod dinosaur unconnected with the ancestry of birds. These integumental structures show a strong resemblance to the collagenous fiber systems in the dermis of many animals. We also report the presence of scales in the forearm of the theropod ornithomimid (bird mimic) dinosaur, Pelecanimimus, from Spain. In the second part of the study we examine evidence relating to the most critical character thought to link birds to derived theropods, a tridactyl hand composed of digits 1-2-3. We maintain the evidence supports interpretation of bird wing digit identity as 2,3,4, which appears different from that in theropod dinosaurs. The phylogenetic significance of Chinese microraptors is also discussed, with respect to bird origins and flight origins. We suggest that a possible solution to the disparate data is that Aves plus bird-like maniraptoran theropods (e.g., microraptors and others) may be a separate clade, distinctive from the main lineage of Theropoda, a remnant of the early avian radiation, exhibiting all stages of flight and flightlessness.  相似文献   

5.
Pneumatic (air‐filled) postcranial bones are unique to birds among extant tetrapods. Unambiguous skeletal correlates of postcranial pneumaticity first appeared in the Late Triassic (approximately 210 million years ago), when they evolved independently in several groups of bird‐line archosaurs (ornithodirans). These include the theropod dinosaurs (of which birds are extant representatives), the pterosaurs, and sauropodomorph dinosaurs. Postulated functions of skeletal pneumatisation include weight reduction in large‐bodied or flying taxa, and density reduction resulting in energetic savings during foraging and locomotion. However, the influence of these hypotheses on the early evolution of pneumaticity has not been studied in detail previously. We review recent work on the significance of pneumaticity for understanding the biology of extinct ornithodirans, and present detailed new data on the proportion of the skeleton that was pneumatised in 131 non‐avian theropods and Archaeopteryx. This includes all taxa known from significant postcranial remains. Pneumaticity of the cervical and anterior dorsal vertebrae occurred early in theropod evolution. This ‘common pattern’ was conserved on the line leading to birds, and is likely present in Archaeopteryx. Increases in skeletal pneumaticity occurred independently in as many as 12 lineages, highlighting a remarkably high number of parallel acquisitions of a bird‐like feature among non‐avian theropods. Using a quantitative comparative framework, we show that evolutionary increases in skeletal pneumaticity are significantly concentrated in lineages with large body size, suggesting that mass reduction in response to gravitational constraints at large body sizes influenced the early evolution of pneumaticity. However, the body size threshold for extensive pneumatisation is lower in theropod lineages more closely related to birds (maniraptorans). Thus, relaxation of the relationship between body size and pneumatisation preceded the origin of birds and cannot be explained as an adaptation for flight. We hypothesise that skeletal density modulation in small, non‐volant, maniraptorans resulted in energetic savings as part of a multi‐system response to increased metabolic demands. Acquisition of extensive postcranial pneumaticity in small‐bodied maniraptorans may indicate avian‐like high‐performance endothermy.  相似文献   

6.
尾羽龙(Caudipteryx)的新材料及其重要骨骼特征的补充和修订   总被引:23,自引:7,他引:16  
尾羽龙和原始祖鸟一起被认为是最早发现的带有真正鸟类羽毛的恐龙(Ji et al., 1998),迄今已发现的尾羽龙包括邹氏尾羽龙(Caudipteryx zoui)和董氏尾羽龙(Caudipteryx dongi)两种(周忠和、汪筱林,2000),前者包括保存在中国地质博物馆的NGMC 97*4朅和NGMC 97*9朅两件标本,而后者依据的材料仅为保存在中国科学院古脊椎动物与古人类研究所的V 12344。以上标本都不是十分完整。本文依据最近新发现的两件几乎完整的尾羽龙标本,对该属的一些重要形态特征进行补充和修订,以期对其系统关系的讨论及其他相关理论问题的研究提供新的…  相似文献   

7.
Theropod Locomotion   总被引:1,自引:0,他引:1  
Theropod (carnivorous) dinosaurs spanned a range from chicken-sizedto elephant-sized animals. The primary mode of locomotion inthese dinosaurs was fairly conservative: Theropods were erect,digitigrade, striding bipeds. Even so, during theropod evolutionthere were changes in the hip, tail, and hindlimb that undoubtedlyaffected the way these dinosaurs walked and ran, a trend thatreached its extreme in the evolution of birds. Some derivednon-avian theropods developed hindlimb proportions that suggesta greater degree of cursoriality than in more primitive groups.Despite this, fossilized trackways provide no evidence for changesin stride lengths of early as opposed to later non-avian theropods.However, these dinosaurs did take relatively longer strides—atleast compared with footprint length—than bipedal ornithischiandinosaurs or ground birds. Judging from trackway evidence, non-aviantheropods usually walked, and seldom used faster gaits. Thelargest theropods were probably not as fleet as their smallerrelatives.  相似文献   

8.
We report here one of the earliest known beaked ornithurine birds from the Lower Cretaceous deposits in Liaoning, northeast China. The new basal ornithurine, Archaeorhynchus spathula gen. et sp. nov., has a rhynchokinetic skull with toothless jaws. It also contains over three dozen preserved gizzard stones, suggesting an herbivorous diet. The distal end of the tibiotarsus is unfused, enabling recognition of the astragalus with a broad ascending process, generally similar to that of Archaeopteryx . The new discovery sheds new light on our understanding of the early radiation and diet diversification of early birds in the Lower Cretaceous.  相似文献   

9.
The hypothesis of the direct origin of birds from theropod dinosaurs has recently become widespread. Direct sisterly relationships between theropods and birds were assumed in the basis of random and formal synapomorphies, such as the number of caudal vertebrae, relative length of the humerus, and flattening of the dorsal margin of the pubis. In essence, this hypothesis is supported by the characters of theropods and birds, such as the presence of feathering, furcula, uncinate processes of ribs, pygostyle, double-condyled dorsal joint of the quadrate, and posteriorly turned pubis, which are recognized as homologies. Until recently, these characters have been regarded as avian apomorphies; however, they are presently known in various coelurosaurian groups. At the same time, they occur in various combinations in the Dromaeosauridae, Troodontidae, Oviraptoridae, Therizinosauridae, and Tyrannosauridae. None of the theropod groups possesses the entire set of these characters. This suggests that theropods and birds acquired them in parallel. Theropod dinosaurs and Sauriurae (Archaeornithes and Enantiornithes) show a number of important system synapomorphies, which indicate that they are closely related. Ornithurine birds lack such synapomorphies; however, their monophyly is supported by a large number of diagnostic characters. The hypothesis of independent origin of Sauriurae and Ornithurae is substantiated; the former are considered to have evolved from theropods in the Jurassic, while the latter deviated from a basal archosauromorph group in the Late Triassic. The hypothesis that birds existed in the Early Mesozoic is supported by the findings of small avian footprints in the Upper Triassic and Lower Jurassic of different continents.  相似文献   

10.
ALAN FEDUCCIA 《Ibis》1986,128(1):128-132
The scapula and coracoid of the first bird Archaeopteryx represents a highly specialized morphology approaching that of modern carinate birds, with the scapula meeting the coracoid at an angle of approximately 90o. The primitive condition of the avian scapula and coracoid is exhibited by the flightless ratites, birds exhibiting many other primitive characters of the skeleton, either retained from primitive ancestors or derived through neoteny. The fact that the scapulocoracoid of ratites is the primitive condition is confirmed by its presence in the embryos of certain birds, and its presence through neoteny in other unrelated birds that have secondarily evolved Sightlessness. This morphology of the primitive avian scapulocoracoid closely approaches that of theropod dinosaurs, such as Deinonychits , and may well indicate relationship between the two groups.  相似文献   

11.
Ellegren H 《Current biology : CB》2007,17(12):R470-R472
Estimates of cell volume in fossilized bones of extinct dinosaurs indicate that genome size underwent a significant reduction in the early theropods, from which birds later evolved. This suggests that birds' small genomes are not an adaptation to metabolic demands associated with flight.  相似文献   

12.
Avian and mammalian endothermy results from elevated rates of resting, or routine, metabolism and enables these animals to maintain high and stable body temperatures in the face of variable ambient temperatures. Endothermy is also associated with enhanced stamina and elevated capacity for aerobic metabolism during periods of prolonged activity. These attributes of birds and mammals have greatly contributed to their widespread distribution and ecological success. Unfortunately, since few anatomical/physiological attributes linked to endothermy are preserved in fossils, the origin of endothermy among the ancestors of mammals and birds has long remained obscure. Two recent approaches provide new insight into the metabolic physiology of extinct forms. One addresses chronic (resting) metabolic rates and emphasizes the presence of nasal respiratory turbinates in virtually all extant endotherms. These structures are associated with recovery of respiratory heat and moisture in animals with high resting metabolic rates. The fossil record of nonmammalian synapsids suggests that at least two Late Permian lineages possessed incipient respiratory turbinates. In contrast, these structures appear to have been absent in dinosaurs and nonornithurine birds. Instead, nasal morphology suggests that in the avian lineage, respiratory turbinates first appeared in Cretaceous ornithurines. The other approach addresses the capacity for maximal aerobic activity and examines lung structure and ventilatory mechanisms. There is no positive evidence to support the reconstruction of a derived, avian-like parabronchial lung/air sac system in dinosaurs or nonornithurine birds. Dinosaur lungs were likely heterogenous, multicameral septate lungs with conventional, tidal ventilation, although evidence from some theropods suggests that at least this group may have had a hepatic piston mechanism of supplementary lung ventilation. This suggests that dinosaurs and nonornithurine birds generally lacked the capacity for high, avian-like levels of sustained activity, although the aerobic capacity of theropods may have exceeded that of extant ectotherms. The avian parabronchial lung/air sac system appears to be an attribute limited to ornithurine birds.  相似文献   

13.
中国中生代的鸟类:介绍及综述   总被引:4,自引:0,他引:4  
周忠和  张福成 《动物学报》2004,50(6):913-920
最近十来年 ,中国辽宁发现的早白垩世的鸟类化石超过了世界上其它任何一个地区。中国的中生代鸟类化石代表了始祖鸟化石之后鸟类历史上第一次显著的分异。它们不仅包括了带有明显恐龙祖先特征的长尾的鸟类 ,而且还包括了许多进步或特化的种类 ,如早白垩世最大的鸟类 ,最原始的反鸟类 ,以及保存最好的、飞行结构和现生鸟类几乎一样的今鸟类。这些早期鸟类在诸如飞行、大小和食性等所反映的演化、形态和生态学特征等方面出现了重大的分异。具有长尾骨骼的原始基干鸟类热河鸟和驰龙类具有的相似性 ,进一步支持了鸟类起源于恐龙的学说。中国发现的早白垩世的鸟类以及树栖的恐龙化石还为鸟类飞行的树栖起源假说提供了十分重要的证据。“恐龙下树”的假说结合了鸟类起源于恐龙的学说和鸟类飞行的树栖起源学说 ,因此也得到了化石证据的支持。由于多种恐龙带有羽毛 ,因此羽毛不一定代表了恒温。恒温的鸟类可能到了早白垩世的进步鸟类中才开始出现  相似文献   

14.
Current phylogenics of mosasauroid reptiles are reviewed and a new phylogeny examining aigialosaur interrelationships presented. Patterns of mesopodial ossification and overall limb morphology are described for adult mosasauroids. Ossification sequences are mapped onto a phylogeny in order to assess the distribution of ontogenetic characters. Consistent and ordered distributions are found. Based on the phylogenetic distribution of ossification patterns, an overall mesopodial ossification sequence for mosasaurs is proposed. Carpal sequence: ulnare—distal carpal four (dc4)—intermedium—dc3—radiale or dc2—de1 or pisiform and dc5. Tarsal sequence: astragalus—distal tarsal four or calcaneum. Skeletal paedomorphosis is recognized as a dominant pattern in the evolution of mosasauroid limbs. Apomorphic characters of skeletal paedomorphosis, apparent in most taxa, reach extremes in tylosaurs. Arguments for the presence of a single proximal cartilage in the tarsus of mosasaurs are made. This cartilage is presumed to include ossification centres from which both the astragalus and calcaneum will ossify.  相似文献   

15.
Gravity-defying Behaviors: Identifying Models for Protoaves   总被引:4,自引:2,他引:2  
Most current phylogenetic hypotheses based upon cladistic methodologyassert that birds are the direct descendants of derived maniraptorantheropod dinosaurs, and that the origin of avian flight necessarilydeveloped within a terrestrial context (i.e., from the "groundup"). Most theoretical aerodynamic and energetic models or chronologicallyappropriate fossil data do not support these hypotheses forthe evolution of powered flight. The more traditional modelfor the origin of flight derives birds from among small arborealearly Mesozoic archosaurs ("thecodonts"). According to thismodel, protoavian ancestors developed flight in the trees viaa series of intermediate stages, such as leaping, parachuting,gliding, and flapping. This model benefits from the assemblageof living and extinct arboreal vertebrates that engage in analogousnon-powered aerial activities using elevation as a source ofgravitational energy. Recent reports of "feathered theropods"notwithstanding, the evolution of birds from any known groupof maniraptoran theropods remains equivocal.  相似文献   

16.
Lee MS  Worthy TH 《Biology letters》2012,8(2):299-303
The widespread view that Archaeopteryx was a primitive (basal) bird has been recently challenged by a comprehensive phylogenetic analysis that placed Archaeopteryx with deinonychosaurian theropods. The new phylogeny suggested that typical bird flight (powered by the front limbs only) either evolved at least twice, or was lost/modified in some deinonychosaurs. However, this parsimony-based result was acknowledged to be weakly supported. Maximum-likelihood and related Bayesian methods applied to the same dataset yield a different and more orthodox result: Archaeopteryx is restored as a basal bird with bootstrap frequency of 73 per cent and posterior probability of 1. These results are consistent with a single origin of typical (forelimb-powered) bird flight. The Archaeopteryx-deinonychosaur clade retrieved by parsimony is supported by more characters (which are on average more homoplasious), whereas the Archaeopteryx-bird clade retrieved by likelihood-based methods is supported by fewer characters (but on average less homoplasious). Both positions for Archaeopteryx remain plausible, highlighting the hazy boundary between birds and advanced theropods. These results also suggest that likelihood-based methods (in addition to parsimony) can be useful in morphological phylogenetics.  相似文献   

17.
Limb ossification patterns for the Lower Jurassic (Toarcian) ichthyosaur, Stenopterygius , are described. It is found that limb ossification follows a continuous proximal to distal sequence from the propodial elements through to the terminal elements of 1st to 4th digit in the manus and the 1st to 3rd digit in the pes. The 5th manal and 4th pedal digit begin ossification later than more preaxial digits and also show evidence of proximal addition of elements near the distal mesopodial row in a manner consistent with delayed ossification of the 5th distal mesopodial in other diapsids. Ossification of manal elements in the Supernumerary 3–4 (S3-4) digit and the 5th digit appear interdependent; if one or the other is highly ossified, ossification of the other is retarded. The 1st pedal digit is considered to be lost in Stenopterygius and the 4th pedal digit is identified as the 5th digit. Delayed ossification of the mesopodium is not observed. The most preaxial proximal tarsal is identified as the centralc; the remaining proximal tarsals are the astragalus and calcaneum, and it is inferred that the astragalus and calcaneum ossified from within a single proximal cartilage.  相似文献   

18.
The origin of flight in birds and theropod dinosaurs is a many-sided and debatable problem. We develop a new approach to the resolution of this problem, combining terrestrial and arboreal hypotheses of the origin of flight. The bipedalism was a key adaptation for the development of flight in both birds and theropods. The bipedalism dismissed the forelimbs from the supporting function and promoted transformation into wings. For the development of true flapping avian flight, a key role was played by the initial universal anisodactylous foot of birds. This foot pattern provided a firm support on both land and trees. Theropod dinosaurs, archaeopteryxes, and some other early feathered creatures had a pamprodactylous foot and, hence, they developed only gliding descent. Early birds descended by flattering parachuting with the use of incipient wings; this gave rise to true flight. Among terrestrial vertebrates, only bats, pterosaurians, and birds developed true flapping flight, although they followed different morphofunctional pathways when solving this task. However, it remains uncertain what initiated the adaptation of the three groups for the air locomotion. Nevertheless, the past decade has provided unexpectedly abundant paleontological data, which facilitate the resolution of this question with reference to birds.  相似文献   

19.
We examine the relationships between primary feather length (f(prim)) and total arm length (ta) (sum of humerus, ulna and manus lengths) in Mesozoic fossil birds to address one aspect of avian wing shape evolution. Analyses show that there are significant differences in the composition of the wing between the known lineages of basal birds and that mean f(prim) (relative to ta length) is significantly shorter in Archaeopteryx and enantiornithines than it is in Confuciusornithidae and in living birds. Based on outgroup comparisons with nonavian theropods that preserve forelimb primary feathers, we show that the possession of a relatively shorter f(prim) (relative to ta length) must be the primitive condition for Aves. There is also a clear phylogenetic trend in relative primary feather length throughout bird evolution: our analyses demonstrate that the f(prim)/ta ratio increases among successive lineages of Mesozoic birds towards the crown of the tree ('modern birds'; Neornithes). Variance in this ratio also coincides with the enormous evolutionary radiation at the base of Neornithes. Because the f(prim)/ta ratio is linked to flight mode and performance in living birds, further comparisons of wing proportions among Mesozoic avians will prove informative and certainly imply that the aerial locomotion of the Early Cretaceous Confuciusornis was very different to other extinct and living birds.  相似文献   

20.
Some of the greatest transformations in vertebrate history involve developmental and evolutionary origins of avian flight. Flight is the most power-demanding mode of locomotion, and volant adult birds have many anatomical features that presumably help meet these demands. However, juvenile birds, like the first winged dinosaurs, lack many hallmarks of advanced flight capacity. Instead of large wings they have small “protowings”, and instead of robust, interlocking forelimb skeletons their limbs are more gracile and their joints less constrained. Such traits are often thought to preclude extinct theropods from powered flight, yet young birds with similarly rudimentary anatomies flap-run up slopes and even briefly fly, thereby challenging longstanding ideas on skeletal and feather function in the theropod-avian lineage. Though skeletons and feathers are the common link between extinct and extant theropods and figure prominently in discussions on flight performance (extant birds) and flight origins (extinct theropods), skeletal inter-workings are hidden from view and their functional relationship with aerodynamically active wings is not known. For the first time, we use X-ray Reconstruction of Moving Morphology to visualize skeletal movement in developing birds, and explore how development of the avian flight apparatus corresponds with ontogenetic trajectories in skeletal kinematics, aerodynamic performance, and the locomotor transition from pre-flight flapping behaviors to full flight capacity. Our findings reveal that developing chukars (Alectoris chukar) with rudimentary flight apparatuses acquire an “avian” flight stroke early in ontogeny, initially by using their wings and legs cooperatively and, as they acquire flight capacity, counteracting ontogenetic increases in aerodynamic output with greater skeletal channelization. In conjunction with previous work, juvenile birds thereby demonstrate that the initial function of developing wings is to enhance leg performance, and that aerodynamically active, flapping wings might better be viewed as adaptations or exaptations for enhancing leg performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号