首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The mechanism of nitrate tolerance is poorly defined. We studied the rat P450 (CYP)-catalyzed conversion of organic nitrate to nitric oxide (NO) by purified CYP isoforms and the relationship between P450 expression and nitrate tolerance following continuous infusion of organic nitrates in rats. CYP1A2 effectively formed NO from isosorbide dinitrate and nitroglycerine (NTG). The hypotensive effect of an NTG bolus injection was abolished in rats which had been previously given a continuous 48 h infusion of NTG. Nitrate tolerance was reversible to control levels 2 days after cessation of the continuous infusion. At 48 h after infusion, NTG-induced NO generation of the vessels increased in acetone (a P450 inducer)-pretreated rats, and nitrite and nitrate levels were markedly greater than in normal rats. The appearance and disappearance of P450 isoforms paralleled the conversion of organic nitrates to NO as assessed by immunohistochemistry and Western blotting. Our observations indicate that nitrate tolerance is in large part the result of decreased P450 expression and activity. Interventions that maintain or increase P450 activity may be a useful strategy to provide sustained relief from ischemic conditions in humans.  相似文献   

2.
We previously reported that cytochrome P450 (P450) is a key enzyme of organic nitrate biotransformation and that P450 levels of the heart and its vessels markedly decreased at the development of nitrate tolerance. Escape from tolerance of organic nitrate by induction of cytochrome P450. Most organic nitrates, including nitroglycerin (NTG), are metabolized in the liver, where nitric oxide (NO) is concomitantly produced from the organic nitrates. Therefore, organic nitrate administration may also affect hepatic P450 levels, since the liver is the major organ of P450-related metabolism. Male Wistar rats were intravenously administrated NTG or isosorbide dinitrate (ISDN) for 24-96 h. Hepatic P450 was drastically decreased after 48 h or 72 h of continuous NTG or ISDN infusion, when nitrate tolerance was observed, but it recovered 48 h after cessation of the drug administration. hemeoxygenase-1 (HO-1) was induced within 24 h of continuous NTG infusion, but it returned to normal levels 48 h after cessation of the NTG. The administration of sodium nitroprusside, an agent to which the animals showed no tolerance, did not induce HO-1 or P450 depletion as judged by SDS-PAGE in combination with Western-blotting. These results suggest that P450-dependent drug metabolism may be drastically affected after continuous organic nitrate administration.  相似文献   

3.
Organic nitrates, such as nitroglycerin (NTG), have been used to relieve the symptoms of angina pectoris. However, their biochemical mechanisms of action, particularly in relation to the development of tolerance, are incompletely defined. It has been reported that supplemental antioxidants such as vitamin E attenuate the development of nitrate tolerance. Therefore, we examined the role of vitamin E in the regulation of nitrate tolerance. Continuous NTG infusion induced nitrate tolerance in rats after 48 h, and vitamin E concentrations decreased in a time-dependent manner in tissues and plasma. Vitamin E supplementation (0.5 g/kg diet) maintained higher concentrations of vitamin E during NTG infusion. The onset and extent of the tolerance, estimated by the decrease in blood pressure following NTG bolus injection during the infusion of NTG, were accentuated in the vitamin E-deficient group. Vitamin E supplementation inhibited nitrate tolerance 48 h after NTG infusion. Cardiac P450 expression (CYP1A2) assessed by immunoblotting, markedly decreased 48 h after NTG administration in control rats. The supplementation of vitamin E significantly attenuated the decrease in P450. Treatment of NTG enhanced vascular superoxide production (L-012 chemiluminescence, DHE fluorescence). The peak of lipid peroxidation and free radical generation in the heart was reached before tolerance developed. In contrast, vitamin E-deficient hearts had lower P450 expression and higher free radical generation than control hearts. To evaluate other vitamin E-inhibitable mechanisms of nitrate tolerance, we studied the NO-cGMP pathway. NTG markedly reduced the vasodilator-stimulated phosphoprotein (VASP) serine 239 phosphorylation (specific substrate of cGMP-activated protein kinase I; cGK-I) in tolerant hearts. Vitamin E inhibited the depletion of pVASP. In conclusion, because continuous NTG infusion causes vitamin E depletion as well as nitrate tolerance, vitamin E deficiency may further accelerate nitrate tolerance via an increase in oxidative stress, the reduced bioconversion because of decreased P450 expression, and impairment of the NO/cGMP pathway in tolerant heart tissues.  相似文献   

4.
Glyceryl trinitrate (GTN) and pentaerythrityl tetranitrate (PETN) are among the most known organic nitrates that are used in cardiovascular therapy as vasodilators. However, anti-ischemic therapy with organic nitrates is complicated by the induction of nitrate tolerance. When nitrates are metabolized to release nitric oxide (NO), there is considerable coproduction of superoxide radicals in vessels leading to inactivation of NO. However, nitrate-induced increase of superoxide radical formation in vivo has not been reported. In this work, the authors studied the in vivo formation of superoxide radicals induced by treatment with PETN or GTN and determined the antioxidant effect of vitamin C. The formation of superoxide radicals was determined by the oxidation of 1-hydroxy-3-carboxy-pyrrolidine (CP-H) to paramagnetic 3-carboxy-proxyl (CP) using electron spin resonance spectroscopy. CP-H (9 mg/kg intravenous bolus and 0.225 mg/kg per minute continuous intravenous GTN or PETN 130 microg/kg) were infused into anesthetized rabbits. Every 5 min, blood samples were obtained from Arteria carotis to measure the CP formation. Both PETN and GTN showed similar vasodilator effects. Formation of CP in blood after infusions of GTN and PETN were 2.0+/-0.4 microM and 0.98+/-0.23 microM, respectively. Pretreatment with 30 mg/kg vitamin C led to a significant decrease in CP formation: 0.27+/-0.14 microM (vitamin C plus GTN) and 0.34+/-0.15 microM (vitamin C plus PETN). Pretreatment of animals with superoxide dismutase (15,000 units/kg) significantly inhibited nitrate-induced nitroxide formation. Therefore, in vivo infusion of GTN or PETN in rabbits increased the formation of superoxide radicals in the vasculature. PETN provoked a minimal stimulation of superoxide radical formation without simultaneous development of nitrate tolerance. The data suggest that the formation of superoxide radicals induced by organic nitrate correlates with the development of nitrate tolerance. The effect of vitamin C on CP formation leads to the conclusion that vitamin C can be used as an effective antioxidant for protection against nitrate-induced superoxide radical formation in vivo.  相似文献   

5.
The long-term benefits of nitroglycerin (NTG) therapy are limited by the development of vascular tolerance and endothelial dysfunction in conductance coronary arteries. We have determined whether nitrate tolerance extends to NTG effects on myocardial O2 consumption (MV(O2)) and the ability of endogenous nitric oxide (NO) to modulate MV(O2) during exercise. In chronically instrumented dogs (n = 8), hemodynamic and MV(O2) responses to treadmill exercise were measured before, during tolerance (3 and 7 days of NTG delivery), and 7 days after NTG withdrawal. Acute NTG delivery caused a parallel downward shift of the MV(O2)-triple product (TP) relations and reversed the disproportionate increases in MV(O2) caused by the blockade of NO formation. After 7 days of continuous transdermal NTG delivery, vascular tolerance was displayed as a >75% reduction of coronary blood flow (CBF) responses to NTG boluses. Despite vascular nitrate tolerance, MV(O2)-TP relations were shifted downward compared with pre-NTG exercise. Seven days after NTG withdrawal, vascular responses to boluses of NTG had recovered from tolerance, and MV(O2)-TP relations during exercise were back to pre-NTG level. At that time, blockade of NO formation failed to alter MV(O2)-TP relations. Thus NTG caused a sustained reduction of cardiac MV(O2), independent of metabolic demand during exercise, despite tolerance of the coronary microcirculation. NTG-induced vascular tolerance and MV(O2) reductions were reversible by NTG withdrawal, but endogenous NO-dependent modulation of O2 consumption was severely impaired.  相似文献   

6.
S X Ma  L J Ignarro  R Byrns  X Y Li 《Nitric oxide》1999,3(2):153-161
The present study was to examine the distributions of nitric oxide (NO) in the brain regions and peripheral vessels following subcutaneously administered nitroglycerin (NTG) and determine the noradrenergic activity and the role of central sympathetic function in acute nitrate tolerance. Tolerance to NTG was produced by subcutaneous (sc) administration of 4.0 mg NTG as four separate hourly pulse injections of 1.0 mg each in male (5-8 months) Sprague-Dawley rats. Rats in sham-treated group received sc injections of saline. Rats were killed by sodium pentobarbital (150 mg/kg, ip) at 10 min after last sc injection. The brain, gracilis muscle, aorta, superior mesenteric artery, coronary artery, and pulmonary vessels were quickly removed. Concentrations of nitrite (NO2-), nitrate (NO3-), and total NO2- plus NO3- (NOx-) were quantified in the micropunches of the anterior hypothalamus, the posterior hypothalamus (PH), the nucleus tractus solitarius, the lateral reticular nucleus, and the vessels in a blinded fashion. The central actions of acute tolerance to NTG were also determined using blockades of sympathetic functions in conscious rats. Four separate hourly pulse sc injections of 1.0 mg NTG produced a marked shift of the dose-response curve for arterial pressure depression induced by intravenous injection of the challenge doses of NTG. The same doses of sc NTG caused increases in NOx- [92+/-16% (mean +/- SE)] and NO3- productions (77+/-15%) in the PH, but did not significantly change in other brain regions (n = 6). NOx- and NO3- productions were significantly enhanced in the superior mesenteric artery, aorta, coronary artery, and pulmonary vessels following sc NTG, but were not altered in gracilis muscle by the treatment. The tolerance responses to arterial pressure depression were attenuated by intravenous administration of either prazosin (300 microg/kg), an alpha1-adrenoceptor antagonist, or chlorisondamine (10 mg/kg), a sympathetic ganglion blockading agent (n = 5-6). The results suggest that acute NTG tolerance predominately increases NO production in the PH. NO production was also markedly enhanced in the large and middle vessels but not in small vessels during acute NTG tolerance. The arterial pressure tolerance to NTG was reversed by blockade of central sympathetic function. We conclude that NO formation is increased in the PH following systemically administered NTG and NO in the PH may facilitate central sympathetic functions which contribute to nitrate tolerance.  相似文献   

7.
Mammalian cytochrome P450 reductase (CPR) and cytochrome P450 (CP) play important roles in organic nitrate bioactivation; however, the mechanism by which they convert organic nitrate to NO remains unknown. Questions remain regarding the initial precursor of NO that serves to link organic nitrate to the activation of soluble guanylyl cyclase (sGC). To characterize the mechanism of CPR-CP-mediated organic nitrate bioactivation, EPR, chemiluminescence NO analyzer, NO electrode, and immunoassay studies were performed. With rat hepatic microsomes or purified CPR, the presence of NADPH triggered organic nitrate reduction to NO2(-). The CPR flavin site inhibitor diphenyleneiodonium inhibited this NO2(-) generation, whereas the CP inhibitor clotrimazole did not. However, clotrimazole greatly inhibited NO2(-)-dependent NO generation. Therefore, CPR catalyzes organic nitrate reduction, producing nitrite, whereas CP can mediate further nitrite reduction to NO. Nitrite-dependent NO generation contributed <10% of the CPR-CP-mediated NO generation from organic nitrates; thus, NO2(-) is not the main precursor of NO. CPR-CP-mediated NO generation was largely thiol-dependent. Studies suggested that organic nitrite (R-O-NO) was produced from organic nitrate reduction by CPR. Further reaction of organic nitrite with free or microsome-associated thiols led to NO or nitrosothiol generation and thus stimulated the activation of sGC. Thus, organic nitrite is the initial product in the process of CRP-CP-mediated organic nitrate activation and is the precursor of NO and nitrosothiols, serving as the link between organic nitrate and sGC activation.  相似文献   

8.
We investigated the endothelial modulations in nitrate tolerance in isolated rabbit aorta. Nitrate tolerance was induced by a 72-h treatment with transdermal nitroglycerin (NTG, 0.4 mg/h) in conscious rabbits, which was verified by a 20-fold increase in the EC50 values [NTG tolerance (6.1 +/- 0.8) x 10(-7) M vs control (3.0 +/- 0.6) x 10(-8) M]. The relaxations to NTG in tolerant and nontolerant aortic strips were enhanced when their endothelia were denuded [E(-)]. In the presence of endothelium [E(+)], NTG-tolerant vessels were not tolerant to acetylcholine (ACh), which can release endothelial nitric oxide (NO), exogenous NO or 8-bromo (Br)-cGMP. In NTG-tolerant and nontolerant vessels with endothelium, concentration-response curves for NO were the same as those in endothelium-absent tolerant vessels. In both NTG-tolerant and nontolerant vessels, treatment with superoxide dismutase (SOD, 20 units/ml), an O2-. scavenger, unaffected the responses to NTG reduced in the presence of endothelium, but treatment with NG-nitro-L-arginine methyl ester (L-NAME, 10(-4) M), an NO synthase (NOS) inhibitor, reversed these reductions. Thus, our data did not indicate that an increased endothelial superoxide O2-. production contributes to nitrate tolerance. Our study suggested that (i) an impaired biotransformation process from NTG to NO is responsible for the occurrence of nitrate tolerance and (ii) vascular response to NTG enhanced by endothelial removal is related to blocked endothelial NO release.  相似文献   

9.
The new pathway nitrate-nitrite-nitric oxide (NO) has emerged as a physiological alternative to the classical enzymatic pathway for NO formation from l-arginine. Nitrate is converted to nitrite by commensal bacteria in the oral cavity and the nitrite formed is then swallowed and reduced to NO under the acidic conditions of the stomach. In this study, we tested the hypothesis that increases in gastric pH caused by omeprazole could decrease the hypotensive effect of oral sodium nitrite. We assessed the effects of omeprazole treatment on the acute hypotensive effects produced by sodium nitrite in normotensive and L-NAME-hypertensive free-moving rats. In addition, we assessed the changes in gastric pH and plasma levels of nitrite, NO(x) (nitrate+nitrite), and S-nitrosothiols caused by treatments. We found that the increases in gastric pH induced by omeprazole significantly reduced the hypotensive effects of sodium nitrite in both normotensive and L-NAME-hypertensive rats. This effect of omeprazole was associated with no significant differences in plasma nitrite, NO(x), or S-nitrosothiol levels. Our results suggest that part of the hypotensive effects of oral sodium nitrite may be due to its conversion to NO in the acidified environment of the stomach. The increase in gastric pH induced by treatment with omeprazole blunts part of the beneficial cardiovascular effects of dietary nitrate and nitrite.  相似文献   

10.
Intravenous nitroglycerin (GTN) has been used as an anti-ischemic agent for the therapy of unstable and post-infarction angina. Nitric oxide (NO) and S-nitrosothiols constitute the biologically active species formed via nitroglycerin bioactivation. Increased levels of reactive oxygen species can diminish the therapeutic action of organic nitrates by scavenging donated NO and oxidizing tissue thiols important in nitrate biotransformation. Studies reported here show that the red cell activity of antioxidant enzymes, catalase and glutathione peroxidase, are significantly decreased after intravenous nitroglycerin treatment. Catalase activity (739.6 +/- 92.3 k/gHb) decreased to 440.1 +/- 111.9 and 459.8 +/- 130.7 k/gHb after 1 and 24 hr GTN infusion, respectively. Similarly, glutathione peroxidase activity (5.8 +/- 1.8 U/gHb) decreased to 3.2 +/- 1.7 and 3.8 +/- 1.1 U/g Hb after 1 and 24 hr GTN infusion, respectively. The reported decrease in antioxidant enzyme activities can lead to an oxidant milieu and contribute to the generation of nitrate tolerance.  相似文献   

11.
Liver glutathione-S-transferases (GSTs) are responsible for the detoxification of electrophiles, and specifically for the metabolism of orally administered organic nitrates such as nitroglycerin (NTG). Recent studies showed that reactive nitrogen species produced by tetranitromethane (TNM), peroxynitrite, or the myeloperoxidase/H2O2/nitrite system can inactivate GST. It is not known whether NTG can similarly inactivate liver GSTs, and if shown, by what mechanism(s). We incubated purified GSTs with NTG, S-nitroso-N-acetylpenicillamine (SNAP), TNM, or vehicle (5% dextrose, D5W), followed by determination of GST activity. Incubation of GST with NTG and TNM caused significant decreases in GST activity whereas no changes were observed with SNAP or D5W. The relative GST activity (vs preincubation) was 73+/-14% for NTG, 37+/-8% for TNM, 98+/-13% for SNAP, and 98+/-9% for D5W, respectively. Exogenous glutathione (GSH) prevented both NTG- and TNM-induced changes in GST activity, consistent with the observed oxidative modification of GST, such as -SH oxidation and dimerization of oxidized GST. In contrast, NTG and TNM exhibited substantial differences in their ability to nitrate tyrosine (TYR) sites in GST. These results demonstrated that NTG can reduce the activity of its own metabolizing enzyme such as GST and this inhibitory effect of NTG was unlikely to be mediated through NO, as such, since SNAP had no effect on GST activity. The partial inactivation of GST by NTG appeared to involve -SH oxidation, but not TYR nitration. These findings provided the first evidence of mechanism-based protein inactivation by NTG, and may lend insight into the hepatic metabolism of NTG and other organic nitrates after repeated oral exposure.  相似文献   

12.
Omar SA  Artime E  Webb AJ 《Nitric oxide》2012,26(4):229-240
Although both organic and inorganic nitrates/nitrites mediate their principal effects via nitric oxide, there are many important differences. Inorganic nitrate and nitrite have simple ionic structures and are produced endogenously and are present in the diet, whereas their organic counterparts are far more complex, and, with the exception of ethyl nitrite, are all medicinally synthesised products. These chemical differences underlie the differences in pharmacokinetic properties allowing for different modalities of administration, particularly of organic nitrates, due to the differences in their bioavailability and metabolic profiles. Whilst the enterosalivary circulation is a key pathway for orally ingested inorganic nitrate, preventing an abrupt effect or toxic levels of nitrite and prolonging the effects, this is not used by organic nitrates. The pharmacodynamic differences are even greater; while organic nitrates have potent acute effects causing vasodilation, inorganic nitrite's effects are more subtle and dependent on certain conditions. However, in chronic use, organic nitrates are considerably limited by the development of tolerance and endothelial dysfunction, whereas inorganic nitrate/nitrite may compensate for diminished endothelial function, and tolerance has not been reported. Also, while inorganic nitrate/nitrite has important cytoprotective effects against ischaemia-reperfusion injury, continuous use of organic nitrates may increase injury. While there are concerns that inorganic nitrate/nitrite may induce carcinogenesis, direct evidence of this in humans is lacking. While organic nitrates may continue to dominate the therapeutic arena, this may well change with the increasing recognition of their limitations, and ongoing discovery of beneficial effects and specific advantages of inorganic nitrate/nitrite.  相似文献   

13.
Our purpose was to evaluate hyporesponsivity to nitric oxide (NO)-induced dilation in small arterioles during nitrate tolerance. An Alza osmotic pump was implanted in the left flank of adult rats (n = 56) for continuous administration of nitroglycerin (140 microg/h) or vehicle (propylene glycol). On postoperative day 3, arcade (approximately 50-microm diameter) and terminal (approximately 20 microm) arterioles were observed in the cremaster preparation with in vivo video microscopy. Local vascular responses were obtained with micropipette-applied NO donors, with and without superoxide dismutase (SOD), Mn(III) tetrakis(4-benzoic acid) porphyrin chloride (MnTBAP), or losartan. On day 3, NO-mediated dilation was significantly attenuated in nitroglycerin-treated rats. Attenuation was greater in the terminal arterioles compared with the arcades. Control responses were restored by SOD, MnTBAP, or losartan, suggesting a role for elevated angiotensin II and reactive oxygen species (ROS) as mediators of the attenuated NO dilation (nitrate tolerance). Addition of losartan to the drinking water likewise prevented nitrate tolerance. In summary, terminal arterioles are affected by nitrates to a greater extent than the arcade arterioles that feed them, in a process dependent on angiotensin II and ROS.  相似文献   

14.
A decrease in serum progesterone at the end of pregnancy is essential for the induction of parturition in rats. We have previously demonstrated that LH participates in this process through: 1) inhibiting 3beta-hydroxysteroid dehydrogenase (3beta-HSD) activity and 2) stimulating progesterone catabolism by inducing 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) activity. The objective of this investigation was to determine the effect of LH and progesterone on the luteal expression of the steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage (P450(scc)), 3beta-HSD, and 20alpha-HSD genes. Gene expression was analyzed by Northern blot analysis 24 and 48 h after administration of LH or vehicle on Day 19 of pregnancy. StAR and 3beta-HSD mRNA levels were lower in LH-treated rats than in rats administered with vehicle at both time points studied. P450(scc) mRNA levels were unaffected by LH. The 20alpha-HSD mRNA levels were not different between LH and control rats 24 h after treatment; however, greater expression of 20alpha-HSD, with respect to controls, was observed in LH-treated rats 48 h after treatment. Luteal progesterone content dropped in LH-treated rats at both time points studied, whereas serum progesterone decreased after 48 h only. In a second set of experiments, the anti-progesterone RU486 was injected intrabursally on Day 20 of pregnancy. RU486 had no effect on 3beta-HSD or P450(scc) expression but increased 20alpha-HSD mRNA levels after 8 h treatment. In conclusion, the luteolytic effect of LH is mediated by a drop in StAR and 3beta-HSD expression without effect on P450(scc) expression. We also provide the first in vivo evidence indicating that a decrease in luteal progesterone content may be an essential step toward the induction of 20alpha-HSD expression at the end of pregnancy in rats.  相似文献   

15.
We compared the nitric oxide (NO)-generating behavior of nitroglycerin (NTG), pentaerythritol trinitrate (PEtriN) and isosorbide dinitrate (ISDN), in the microsomal preparation of bovine coronary artery smooth muscle cells. The comparative NO generating activities among these nitrates were consistent with their relative reported vasodilating activities. Consistent with our previous observations with NTG, 400 microM bromosulfophthalein did not affect NO generation from PEtriN and ISDN in vascular microsomes while 400 microM 1-chloro-2,4-dinitrobenzene completely inhibited NO generation from these nitrates. Gel filtration chromatography with solubilized microsomes of bovine aortic smooth muscle cells showed the primary activity of NO generation from all three nitrates to be eluted at about 200 kD, consistent with that found with solubilized microsomes from the bovine coronary artery microsomes. These results suggest that organic nitrates may be converted to NO by one common enzyme in vascular microsomes.  相似文献   

16.
The long-term benefits of nitroglycerin therapy are limited by tolerance development. Understanding the precise nature of mechanisms underlying nitroglycerin-induced endothelial cell dysfunction may provide new strategies to prevent tolerance development. In this line, we tested interventions to prevent endothelial dysfunction in the setting of nitrate tolerance. When bovine aortic endothelial cells (BAECs) were continuously treated with nitric oxide (NO) donors, including nitroglycerin, over 2-3 days, basal production of nitrite and nitrate (NO(x)) was diminished. The diminished basal NO(x) levels were mitigated by intermittent treatment allowing an 8-h daily nitrate-free interval during the 2- to 3-day treatment period. Addition of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor apocynin restored the basal levels of NO(x) that were decreased by continuous nitroglycerin treatment of BAECs. Apocynin caused significant improvement of increased mRNA and protein levels of endothelial nitric oxide synthase (eNOS) in BAECs given nitroglycerin continuously over the treatment period. Apocynin also reduced endothelial production of reactive oxygen species (ROS) after continuous nitroglycerin treatment. These results showed an essential similarity to the effects of a nitrate-free interval. Application of the NOS inhibitor N(omega)-nitro- l-arginine methyl ester caused a recovery effect on basal NO(x) and eNOS expression but was without effect on ROS levels in continuously NO donor-treated BAECs. In conclusion, the present study characterized abnormal features and functions of endothelial cells following continuous NO donor application. We suggest that inhibition of NADPH oxidase, by preventing NO donor-induced endothelial dysfunction, may represent a potential therapeutic strategy that confers protection from nitrate tolerance development.  相似文献   

17.
The vasodilator action of organic nitrates is thought to be mediated by an increase in the level of cGMP following stimulation of the cytosolic enzyme guanylate cyclase in the vascular smooth muscle cell. However, direct evidence for the formation of the putative active metabolite, nitric oxide (NO) within the different compartments of the vascular wall is still missing. We here demonstrate for the first time that cultured vascular smooth muscle cells as well as endothelial cells from different species actively metabolize organic nitrates to NO. We furthermore present evidence for an outward transport of cGMP from both cell types following stimulation of soluble guanylate cyclase. The rate of NO release closely correlated with the rate of cGMP egression. Biotransformation of organic nitrates to NO appeared to comprise at least two different components, a heat-sensitive enzymatic pathway which is short-lived and prone to rapid desensitization and a second non-enzymatic component which is apparently unsaturable and longer lasting. The marked decrease in the release of NO and cGMP upon the repeated administration of organic nitrates suggests that the phenomenon of "nitrate tolerance" is mainly due to an impaired biotransformation. We propose that the metabolism of nitrates to NO may have important implications for the prevention of atherosclerosis and the therapeutic modulation of blood cell function.  相似文献   

18.
The endogenous biosynthesis of nitrate in rats was investigated by using 15NH3 administered as a continuous intravenous infusion for as long as 96 h. A comparison of the enrichment of 15N in urinary nitrate after a 24 h infusion revealed that it was 36% of the enrichment of plasma NH3 and about 50% of the enrichment of plasma urea and urinary NH3. Continuous infusion of 15NH3 for 96 h showed that a plateau for the incorporation of NH3 into nitrate is reached by 24 h, whereas the enrichment of urinary NH3 and urea increase during the 96 h. After the infusion of progressively larger doses of 15NH3, the concentration of nitrate synthesized de novo increased. Although there was a significant correlation between plasma 15NH3 concentration and 15NO3- appearance, a given change in plasma NH3 concentration does not produce a direct proportional change in nitrate synthesis. Our findings indicate that NH3 is a quantitatively significant nitrogen precursor for nitrate, but that approx. 50% of nitrate nitrogen is derived from other, as yet unidentified, sources.  相似文献   

19.
Nitroglycerine has been used clinically in the treatment of angina for 130 years, yet important details on the mechanism of action, biotransformation, and the associated phenomenon of nitrate tolerance remain unanswered. The biological activity of organic nitrates can be said to be nitric oxide mimetic, leading to recent, exciting progress in realizing the therapeutic potential of nitrates. Unequivocally, nitroglycerine and most other organic nitrates, including NO-NSAIDs, do not behave as NO donors in the most fundamental action: in vitro activation of sGC to produce cGMP. The question as to whether the biological activity of nitrates results primarily or exclusively from NO donation will not be satisfactorily answered until the location, the apparatus, and the mechanism of reduction of nitrates to NO are defined. Similarly, the therapeutic potential of nitrates will not be unlocked until this knowledge is attained. Aspects of the therapeutic and biological activity of nitrates are reviewed in the context of the chemistry of nitrates and the elusive efficient 3e- reduction required to generate NO.  相似文献   

20.
Acute nicotinic acid (NiAc) administration results in rapid reduction of plasma FFA concentrations. However, sustained NiAc exposure is associated with tolerance development resulting in return of FFA to pretreatment levels. The aim of this study was to determine whether a 12 h rectangular exposure profile (intermittent dose group) could avoid tolerance development and thereby reverse insulin resistance induced by lipid overload. FFA lowering was assessed in male Sprague Dawley (lean) and obese Zucker rats (obese) in response to a 5 h NiAc infusion, in either NiAc-naïve animals or after 5 days of continuous (24 h/day) or intermittent (12 h/day) NiAc dosing (via implantable, programmable minipump). We found that intermittent dosing over 5 days preserved NiAc-induced FFA lowering, comparable to dosing in NiAc-naïve animals. By contrast, following 5 days continuous administration, NiAc-induced FFA lowering was lost. The effect of intermittent NiAc infusion on insulin sensitivity was assessed in obese Zucker rats using hyperinsulinemic-isoglycemic clamps. The acute effect of NiAc to elevate glucose infusion rate (vs. saline control) was indeed preserved with intermittent dosing, while being lost upon continuous infusion. In conclusion, an intermittent but not continuous NiAc dosing strategy succeeded in retaining NiAc’s ability to lower FFA and improve insulin sensitivity in obese Zucker rats.—Kroon, T., A. Kjellstedt, P. Thalén, J. Gabrielsson, and N. D. Oakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号